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Extracting Combinatorics from Discrete Applied Geometry.
Walter Whiteleyt
Champlain Regional College,
Centre de recherches mathematiques, Université de Montréal,
and LACIM, Université de Québec & Montréal
For many discrete applied geometry problems, the analysis separates into layers,
described by Felix Klein’s classical hierarchy of geometries. This hierarchy focuses on
the properties invariant under various groups (categories) of transformations. Combi-
natorics, and combinatorial topology, appear as several of these layers in the lattice
of groups and invariants. Other important layers include projective geometry, affine
geometry, and Euclidean geometry. How does the combinatorics appear within this ap-
plied geometry? How does the geometry illustate and expand the combinatorics? What
common patterns of results/unsolved problems are emerging?
We present a common pattern for extracting those combinatorial layers which are
implicit in recent work on
- the rigidity of frameworks (civil engineering);
- correct pictures of spatial polyhedral (computer vision);
- multivariate splines (approximation theory);
- rigidity of polytopial skeletons (h-vectors of polytopes).

In each of these examples, the intial form of the problem is:

(i) an abstract cell complex (e.g a graph, a simplicial polytope, an abstract polyhedral
surface, etc.) is given, with a clear combinatorial topology;

(ii) aset of ‘geometric realizations’ is given for these cell complexes, in R? (for example,
the vertices of each i-dimensional face span an i-dimensional affine subspace);

(ili) The geometric problem is recorded by a matrix, whose kernal or co-kernal represent
the objects of study: the matrix has zero and non-zero entries controlled by the cell
complex, (a modification the ‘oriented incidence’ matrix of the cell complex), and
the non-zero entries are polynomials in the coordinates of the realization;

As first clarifying steps, the problem is transformed as follows.

(iv) This basic matrix is re-interpreted as a boundary operator and extended to a chain
complex of vector spaces, indexed by the combinatorial faces in each each dimension.

t This work was supported, in part, by grants from FCAR (Québec) and NSERC
(Canada).
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The top homology, or top two homologies (and the corresponding cohomologies)
represent the original geometric properties. (This geometric chain complex modifies
the usual chain complex for the reduced homology of the underlying abstract cell
complex.)

(vi) The generic rank of the top homology is determined by the combinatorics of the
original cell complex: specifically, the rank is determined by the Euler characteristic
of the chain complex (which is combinatorial) and the lower homologies (which are
also combinatorial for generic realizations). Ideally, we can show that the lower
Betti numbers are zero for interesting classes of structures and realizations, so that
the top homology is determined by the Euler characteristic of the complex.

(vii) The relevant combinatorics for these generic Betti numbers builds on the matroid
for the underlying homology, by a process of matroid union, followed by algebraic
specialization (sometimes equivalent to matroid truncation). The known combina-
torial algorithms for these problems are built from homology algorithms (disjoint
spanning trees, maximal acyclic subcomplexes etc.).

(viii) The residual geometry of the non-generic realizations is captured in the maximal
non-zero minors of the generic matrices, representing the ‘determinant of the com-
plex’, if the sequence of chains and boundary maps is exact.

This underlying pattern is illustrated in explicit form for three of these geometric
studies. While the methods apply to singular geometric homology of CW complexes, for
simplicity we present only the simplicial theory, beginning with the standard simplicial
homology.

Acknowledgements. This talk is based, in part, on continuing joint work with Henry
Crapo; with Peter Alfeld and Larry Schumaker; and with Tiong-Seng Tay and Neil
White.

Homology of simplicial complexes

We recall the classical reduced homology of a simplicial cell complex, presented by
chains and boundary operators (for example [Munkres, 1984]). An abstract simplicial
complez is a collection A of finite sets (simplices), such that if A is in A, then all subsets
of A are in A. (We shall assume that A is a finite collection.) The d-simplices, of
cardinality d + 1, are denoted A(?) and the vertices (0-simplices) are V = A,

We choose an arbitrary orientation [v,,...,v;...,vp] for each simplex 0. A p-chain
is a map c from the oriented p-simplices to the reals, such that c¢(o) = —c(¢') if o and
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o' are opposite orientations of the same simplex. The set of all p-chains is a real vector
space Cp(A), and an arbitrary element is written: 3, ca» Co0-

For an oriented p-simplex o = [v,,v1,...,vp] the boundary operator is a map from
the p-chain o to the (p — 1)-chains:

(o) = Z(—l)‘[va, ey Vic1y Di e, Vp) = 2 Sign (1,0)7.

{reAlr-V|rCo}

This map is extended linearly to all p-chains. We note that 8,-19,(c) = 0 for any
p-chain. (We also include the empty set as A=Y generating R as the —1-chains.)

The kernal of 8,, Zp(A), is called the p-cycles. The matrix for operator Jp, with
Z, as cokernal, is the oriented incidence matriz, M(AP), recording the incidences of the
oriented p-simplices and the oriented p — 1-simplices, with appropriate entries of 0, 1
and —1. The image of 8py1, Bp(A) is called the p-boundaries. The row space of the
matrix M(AP) is the p— 1-boundaries, Bp_1(A). With B,(A) C Z,(A), the vector space
Hy(A) = Z,(A)/Bp(A) is called the p-th homology of the complex.

Example 1. For a graph, a complex of dimension 1, this is the usual matrix represen-
tation of the graph (leaving the zero entries blank):

M(AP) A a b ¢ d
ab 1 -1 1
ac 0 -1 1
ad -1 -1 1
be 1 -1 1
bd 0 -1 1
cd 1 -1 1

The second column gives a row dependence i.e. the coefficients of a 1-cycle, or a polygon.
The rank of the matrix is the size of a maximal subgraph with no cycles - a maximal
forest.

Example 2. For a set of triangles, we have, for example:

M(AP) A | ab ac ad bc bd cd

abe 1 1 -1 1
abd -1 1 -1 1
acd 1 1 -1 1

bed -1 1 -1 1
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Again, the row dependence is a 2-cycle, and the rows are the 1-boundaries.

If A has dimension d, the augmented simplicial chain complez H is the entire se-
quence of vector spaces and maps

841

H: 0— Co(A) 2 Cami(A) 23 .. 25 0(A) 2 R — 0.

There is Euler-Poincaré identity for any such sequence of vector spaces and maps, with
8,,_1 8,, =0:

i=d i=d
x(A) = Y (-1)'dim(Ci(A)) = Y (-1)* dim(Hi(A)).
i=—1 i=-1
Since dim(C;(A)) = |A()|, the first sum is the a combinatorially defined number called
the Euler characteristic of the simplicial complex:
’l=d . .
x(8) =3 (-1)'|at.
i=-—1
There are combinatorial criteria under which dim(H;(A)) = 0 for i < n — 2. (For

example, if the complex is a topological wedge of spheres.) When this holds, we have
the simple combinatorial identity:

i=d
dim(ﬂn(A)) - dim(ﬂn_l(A)) = E(_l)nHlA(i)L

i=0

Example 3. Consider the standard graph G = (V, E) of graph theory and matroid
theory. This gives the chain complex:

H: 0—>]RIE|&]R|V|&>]R—>O.

The 1-cycles are generated by the polygons. This complex has Euler characteristic
|E| = |[V| 4+ 1. If the graph is connected, then Hy = 0, and Hy = |E| — (|[V| = 1). The
maximal acyclic subcomplex, with H =0isa polygonal-free subgraph, or a forest,
which satisfies: |E| < |V|-1.

For graphs, there are simple, polynomial time algorithms for finding the rank of the
‘homology matrix’, i.e. the size of the maximal forest. This can also be expressed as a
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polynomial algorithm for the graphic matroid, or the matroid defined by the submodular

function on the edges

fF(E") = V(B -1

where V(E) is the vertices of the subset E'.

We are not aware of similar polynomial time algorithms for the rank of the matrices
M(A), p > 2. (For a general complex, this matroid is not defined by a submodular
function.) This issue of algorithms for homology is important in the applications.

There is the corresponding cohomology of the simplicial complex. In fact, the kernal
of the matrix M(AP) is the cocyles, ZP(A) for the corresponding cohomology:

641

H: 00— CaA) & Ca_r(D) 22 ... Co(A) €~ R — 0.

Rigidity of frameworks

The theory of static and infinitesimal rigidity of frameworks [Maxwell, 1864] has re-
cently experienced a upsurge of research (Laman, 1970, Asimow & Roth, 1978, Whiteley,
1984 etc.). The underlying abstract structure of a framework is its graph G = (V, E),
with an arbitrary orientation of all edges. For frameworks in n-space, the Euclidean
realizations are maps p : V — R". For convenience p(vi) = p(i) = pi. The realized
graph G(p) is called a bar framework in n-space provided p; # pj for all {i,j} € E.

This classical theory studies the kernal and cokernal of the rigidity matriz Ry(A).

For example:

R, (A) a b c d
ab b—a@a a-b
ac c—a a-c¢
ad | d-a i-d
be e-b b-¢
bd d-1b b—¢
cd d-¢ ¢-d

The row dependencies of this matrix are the static self-stresses and the column depen-
dencies are the infinitestmal motions of the framework. This matrix represents a basic
boundary operator for a chain complex on the graph:

The 1-chains are R; = C; = R/l as defined for homology.

The set of 0-chains is Ro = @y, evR" = R™V1.
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The boundary map 0, is defined by: 0:(¢,j) = —(pi — pj)vi + (Bi — Pj)v;.
The set of —1-chains is R("3").
O is defined by: (...,(7i — §j), ..., [(@)n(@)k — Pi)k(Fi)n], . ..), where the second
part runs over all pairs of distinct coordinates 1 < h < k < n.
The complete chain complex is then

: 0 — @R LN @ueVIR" R("*) —o.

The Euler characteristic of this complex is |E|—n|V|+ ("}'). If the set of vertices spans
at least a hyperplane of R", & is onto and H -1(R))=0. fall 0-cycles are 0-boundaries,
that is if Ho = 0, the framework is called statically rigid.

The dual cohomology is:

RY: 0e— 2@ece R < @uevR™ <= R("?") — 0.

The 0-cochains (the kernal of Ry (G)) are the infinitesimal motions, and the 0-cobound-
aries are called trivial motions (they are the derivatives of Euclidean motions). If all
infinitesimal motions are trivial motions, that is if H°(R%(G)) = 0, the framework
is infinitesimally rigid. Since the homology and cohomology are isomorphic in these
situations, infinitesimal rigidity is equivalent to static rigidity.

Example 4. Rigidity on the line gives the chain complex: 0 — RIE &, RIVI %,

R — 0. The boundary operator gives: 01([¢,7]) = (p; — pi)vi — (pj — pi)v;. This only
differs from the homology map by the non-zero constant (p; — p;). The cycle spaces are
isomorphic, so this is the simplicial homology of the graph.

Example 5. For higher n, the rigidity matrix retains the appearance of the oriented
incidence matrix. Each entry has been replaced by an n-vector, with 0 replaced by
0 and the two non-zero entries of a row, +1 and —1, replaced by the vectors p; — p;
and —(p; — p;). If we had picked a truly new vector g;j for each row, this would be
the matroid union of graphic matroids (Whiteley 1988a). The maximum possible rank
would be n(|]V| — 1) - and the actual rank could be determined by repeated use of the
algorithms for maximal forests.

For higher space, the matrix for the boundary map retains the superficial appearance

of a matroid union of copies of the homology matroid of the graph. Each entry in the
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homology matroid has been replaced by a vector, with 0 replacing 0, and the two non-
zero entries of a row +1 and —1 replaced by the vectors p; — p; and —(p; — p;). If we
had picked a truly new vector 5; ; for each row, this would be the matroid union. The
maximum possible rank would then be rank would then n(|V|— 1) - and the actual rank
could be determined by repeated use of the algorithms for maximal forests.

However, the actual form of the vector entries imposes a relationship among the
entries, and the maximum possible rank is reduced to n|V|— (";’1). What is the impact
of this ‘specialization’ of the entries in the matroid union? For n = 2, the maximum
rank of the rigidity matrix is 2|V| — 3, and the matroid is a generic truncation of the
matroid union - resulting in precise combinatorial algorithms for the rank (Laman, 1970,
Whiteley, 1988a). For n = 3, the precise combinatorics are unknown.

However, important partial results support several conjectures on complex combi-
natorial characterizations (Tay & Whiteley, 1985). In particular, the 1-skeleton of a
simplicial convex d-polytope is infinitesimally in d-space (Whiteley, 1984). Because of
the underlying projective geometry (see below), crucial tools for these proofs include

coning and projections.

Skeletal Rigidity
Recent works of Lee [1991], Filliman [1991] and Tay, White & Whiteley [1992a]
have extracted matrices resembling the matrix for rigidity of frameworks, from the face
ring of a simplicial complex. Their common goal is to analyse the combinatorics and
geometry of the g-theorem of polyhedral combinatorics - a theorem which characterizes
the f-vector of a simplicial polytope in n-space:

F(A)Y=(fo, fryeon fn) = (IA(O)L IA(ml,..., |A(ﬂ_1)|).

The g-theorem is a combinatorial theorem with a complex analytic proof, based on the
homology of a corresponding toric variety and the hard (or strong) Lefschetz theorem.
Major efforts are underway to give a direct combinatorial or geometric proof of the

combinatorial result. For g2, the desired result is

0< g = 1AW~ dla® + (41 1) =g awi+ (1),

This inequality follows from the infiniteismal rigidity of the 1-skeleton of the simplicial
complex (Kalai, 1988).
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Tay, White & Whiteley [1992b] extends this ‘rigidity style’ analysis to a complete
chain complex. As always, the rank of the highest matrix is expressed by the combina-
torics of the complex, and the lower homologies (which should be zero under appropriate
assumptions).

We begin with a reexamination of rigidity of bar frameworks. Surprisingly, the ranks
of the framework rigiaity matrices, or equivalently, the framework matroid, is invariant
under projective transformations of the underlying points. The matrices and the chain
complex can also be written in a projective form. Let # = (z1,...,%n, 1) represent the
affine coordinates of the point . Then the classical exterior (or Grassman) product of
two such points is:

EFVG=(...,ThYk — TkYh,...) 1<h<k<n+1).
This extends to the full exterior algebra of a set of points in projective space. All products
of d points generate a real vector space V(9. For an oriented simplex o = [vp,...,vad],

with & =fo V...V pn € V(41 we have a equivalence relation on elements of V(")

ker o

Q < PVé=QVas.

These equivalence classes, V(") /ker o form the coefficients of ¢ in our chain complex.

Example 6. Consider again the framework rigidity. Since ZV § = 0, p; V p; is precisely
the desired image for 9o(P; - v;). It is a simple exercise to show that the chain complex
can be rewritten as:

Rd(Al) 0 — @ R-2 @ Vd(r)/ke'rat (T'H) — 0.
{i,j}€E a;EA°

This chain complex has the same homologies as the more usual rigidity chain complex
(Crapo & Whiteley 1982).

For a simplicial complex A realized in projective n-space, the r-skeletal chain com-
plez is

Rn(A"): 0 — @ V;O)a'—'f @ V()/ke'ra—-r @ V(z)/ker‘r = ...

peA(r=1) oceA(r=2) TEA(r=3)

@ Vd(r_l)/kera = (r)
a; €A0)
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For an elementry d-chain Po the boundary map is defined by:

84(Po) = 8a(Plav,a1,...,aa)) = D> PVaj-[ao,a,...,8,...,84
{ilej€0}
This is then extended linearly to all d-chains.

Again, the matrices corresponding to the top operators are formed from the oriented
incidence matrices, replacing non-zero entries by appropriate non-zero vectors, and zero
entries by corresponding zero vectors. In particular if » = n + 1, this is simplicial
homology.

For shellable complexes in n-space, and n < 2r+ 1, the lower homologies (k < r —2)
are zero, and the study concentrates on showing that H,_»(R(AF)) = 0 (i.e the r-
skeleton is r-rigid). We note that, as usual, there are geometric special positions, which
depend on the underlying projective geoemtry.

Of course we have the dual r-skeletal cochain complez is

RM"AT): 0 + @ V;O) it @ V}l)/lcera t=2 @ Vd(z)/ke'r'r =
pEA(r=1) o€A(r=2) T7€A(r=3)
LS @ VD Jker a; &= VD 0.
a;€A®
Again, the cohomologies are isomorphic to homologies, but this cohomology gives addi-
tional insights into the geometry of the simplicial complex.

Multivariate splines

The theory of mulitivariate splines studies the vector space of all piecwise poly-
nomial (of maximal degree k) globally C"-functions over a simplicial ( or more general
polyhedral) decomposition of the domain Q. Billera [1988] expresses this through a chain
complex, as follows. We denote the space of polynomials of degree at most d by Py. A
realized simplex 7 generates an ideal I, of polynomials which are zero on all vertices of
7, and (I,)* is the ideal generated by all kth powers.

Consider two polynomial functions f,g of n variables, defined on opposite sides of
the hyperplane of a facet 7 in R" with equation L(z,...,zn) = 0. The functions meet
with continuity C” over the simplex 7 if and only if:

F=g=B(1,,oa)lL(@1y- -y za)]H = f—g € It

Assume that the cell complex forms a topological manifold. The functions defined by

polynomials of degree at most d over the cells, meeting in pairs over the facets with C”
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continuity, are then the elements of the vector space @oca Py such that, f oNo' =7
for a facet 7, then f; — f; € I7*'. Thus the splines are cycles for the boundary map:
On-1(fo0) = fs0n-1(c’) where 8,_1() is the usual boundary map of homology and the
image is taken in @,ca Pa/(Pa N (I,)™1).

This boundary operator, expressed in matrix form, looks like a matroid union of
the oriented incidence matrix, but, again, the entries in various rows are linked, leaving
a specialization of the matroid union.

This basic operation is extended to a chain complex:

- . o-
SH(A): 025 @oeaPy 2 @reaPa/Pan (I)H ... 2 @veaPa/Pan (I,)+! 23 0.

Using the Euler characteristic, we find that:

dim(Hn(C(8)) = 3189 - 37 Hi(e(a)).

i<n-1

Again the goal is to prove that the lower homologies are trivial, so that this gives the
dimension of the space of splines. This has been shown to hold for C} over generic
simplicial manifolds in the plane [Billera, 1988] and in 3-space [Alfeld, Schumaker &
Whiteley, 1991].

In practice, this chain complex for splines is also analyzed by means of a short
exact sequence of chain complexes - and the resulting long-exact sequence of homologies
[Billera, 1988]). Without giving the details, we note that the matrices for all these related
chain complexes are formed from the oriented incidence matrix, by inserting appropriate
matrices for the non-zero entries across a row (following the other signs) and similarly
shaped zero matrices for the zero entries.

In this setting, the corresponding cohomology has not been directly analysed. How-
ever it may become a crucial tool for understanding the behaviour of special geometric
realizations of the cell complex. We note that, once more, the underlying geometry is
projective (Whiteley 1991b). This geometry is important in the use of such tools as
coning and projection in the proof of the results.

Polyhedral pictures
The theory of polyhedral pictures studies a plane realization of a set of polygons,
together with the vector space of spatial liftings which lift the underlying vertices into
space, and keeps each of the polygons flat. Without going into detail, we note:
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(a) The problem of polyhedral pictures is isomoprphic the the problem of piecewise
linear, globally continuous functions, C{ splines, if the polygons do not overlap.

(b) Classical results of James Clerk Maxwell [1864] connect polyhedral pictures with the
self-stresses of a planar graph (see also Whiteley, 1982, Crapo & Whiteley, 1986).

(c) These correspondences extend to pictures of ‘polytopes’ in higher dimensions con-
necting to splines and skeletal rigidity.

These particular chain complexes are defined only if the underlying cell complex is a

manifold (with boundary). However there are also extended theories:

(d) There is an explicit theory of such polyhedral scenes, via a ‘geometric’ homology
theory, elaborated by Crapo & Ryan (1986a,b). This theory is based on a theory of
chains and boundary operators different from the standard homology.

(e) Crapo’s homology and cohomology is intimately related to the analysis of C° splines
by sheaves and cohomology (Yuzvinski,1991).

For both this general theory and the manifold theories there are explicit combina-

torial algorithms for the lifitings of a generic realization, derived from truncations of a

matroid union of appropriate incidence matrices (Sugihara, 1986, Whiteley, 1988b).

Summary.

The oriented incidence matrices of cell complexes, and the corresponding chain
complexes, are the combinatorial foundation of an important class of problems in discrete
applied geometry. The combinatorial analysis of these extensions draws on everything
we know about the homology of the cell complex - and poses additional combinatorial
questions for the structures, and their matroids.

The analysis of each of these geometric chain complexes includes the following steps:

(i) A proof that the ‘lower homologies’ (all but the top two) are zero, under appropriate
assumptions (e.g. a strongly connected manifold with boundary). This involves simple
arguments, and induction from step (ii), below, for structures in lower dimensions.
(i1) A proof (or conjecture) that the matrix for the top boundary operation has ‘maximum
rank’ (defined from the Euler characteristic), possibly under additional assumptions, so
that only the top homology is non-zero. This involves more direct combinatorial analysis
of the matrix, and the underlying cell complex.

For example, framework rigidity is analysed by graph theoretic inductions, in ways
that apply to all triangulated manifolds (n > 3) (Tay & Whiteley, 1985, Whiteley, 1984,
1991a). The results actually apply to a larger class of ‘minimal homology cycles’ - sets of
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simplices which are a cycle in the homology of an underlying complex, and are minimal
with this property (Fogelsanger, 1989).

(iii) For each problem, the chain complexes for related structures in adjacent dimensions
are connected by geometric or combinatorial constructions. For example, cones of struc-
tures in lower dimensions connect the homologies of the original structure in dimension
n—1 and the cone in dimension n (Whiteley, 1983, 1984, Alfeld, Schumaker & Whiteley,
1991). This coning reflects the underlying projective invariance for each of the examples
(Crapo & Whiteley, 1982, Whiteley, 1991b).

(iv) If the chain complex is exact for generic realizations (the homologies are all zero)
then the geometry of non-generic realizations is captured in the ‘determinant’ of the
complex (Gelfand, Kapranov & Zelivinski, 1991), generalizing the pure conditions of
rigidity theory (White & Whiteley 1984).

Some common combinatorial techniques have been developed for these examples.
Other basic combinatorial and algorithmic questions remain to be solved. Continuing
combinatorial research on each of these problems should expand the results in all these
related fields.

Finally, although we have talked about the role of combinatorics in understanding
these geometric problems, we should not ignore the role of geometry as a tool to prove
combinatorial results. One feature of the the work on the g-theorem is the role of geomet-
ric tools (either toric varieties or perhaps skeletal rigidity) in proofs of the combinatorial
results. The interaction of combinatorics and geometry is a two-way street.
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