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Abstract

Using techniques from combinatorial theory, methods have been elaborated for the
enumeration of aU the distinct perforation patterns that must be considered in exhaustive
searchs for goiod punctured convolutional codes. An enumeration formula for computing
the number ofperforation patterns remaining after taking account of equivalences between
patterns is derived. Numerical results are provided for the number of distinct patterns
for deriving (v, b) punctured codes from (2, 1), (3, 1) and (4, 1) original codes, for values
of b varying from 2 to 12.

1 INTRODUCTION

A punctured convolutional code is obtained by periodically eliminating (i. e. puncturing) code
symbols from the output of a convolutional encoder. With a low-rate original encoder, the
choice of an appropriate puncturing rule allows the specification of a resulting punctured con-
volutional code with coding rate R > 1/2. Since the underlying structure of such high-rate
punctured codes is that of low-rate codes, they are more easily decoded than usual high-rate
convolutional codes [1]-[3]. This is one of the principal motivations for using punctured con-
volutional codes.

Using a puncturing rule that specifies the elimination of all but v coded symbols out of
every b branches of the original code, a (v, b) punctured convolutional code with coding rate
R = b/v is produced. Assuming a low-rate (u,,, 1) original code, the puncturing rule, called the
perforation pattern, has period b bits and is conveniently specified by a binary Vo x b matrix P
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with entries

Pij -I; if symbol i of every j-th branch is punctured
if symbol i of every j-th branch is not punctured (1)

Given the original code, the resulting punctured code depends only on the perforation pattern.
As is the case with convolutional codes in general, punctured codes are seldom constructed

by systematic methods but most often obtained by search techniques [1]-[5]. An original
encoder is usually selected at the outset, and punctured codes corresponding to valid perforation
patterns are evaluated in order to select the best ones according to certain criteria of error and
decoding performances. Since much work is involved in the evaluation process - it usually
relies on computing distance properties: weight spectra, column distance function, etc., or on
performing lengthy computer simulations - the set of valid perforation patterns should be
kept as small as possible in order to reduce the search effort.

In this paper, we consider the task of enumerating all the valid perforation patterns for a
given set of parameters b, v, and Vo. A general technique from combinatorial theory is adapted
to the specific task of evaluating the number of distinct perforation patterns remaining after
equivalences between patterns have been taken into account.

The remainder of the paper is organized as follows. A formalism compatible with the
relevant elements of combinatorial theory is established in section 2. Our main result, the
enumeration formula for distinct perforation patterns, is presented in section 3. Numerical
results derived from the formula are presented in section 4 for several values of parameters 6, v
and Vy.

2 FORMALISM
It has been observed in [6] that a cyclic shift of the columns of the perforation pattern leaves the
ensemble of Hamming distances between sequences of the resulting punctured code unchanged.
Since the performances of a convolutional code depend exclusively on this ensemble of distances,
cyclic shifts of the perforation patterns yield punctured codes having the same performances.

Let the set of valid perforation patterns for a certain group of parameters 6, v, and Vo, be
partitioned into classes according to the following equivalence relation: two perforation patterns
are equivalent if one may be obtained from the other by cyclic shifts of the columns. Then,
with respect to error and decoding performances, equivalent perforation patterns give rise to
equivalent punctured codes. For example, whatever the original (2, 1) code used, the following
four perforation patterns all yield (5, 4) punctured codes with equivalent performances

(2)
When searching for good punctured codes, only one representative from each equivalence class
has to be considered, thus reducing the total number of distinct perforation patterns to consider.

Enumerating distinct perforation patterns therefore amounts to counting the number of
equivalence classes induced by this equivalence relation. While this may sound simple, com-
plications arise from the fact that the number of patterns is not the same in every equivalence



class. The maximum number of patterns in one class is obviously &, the period of the perfora-
tion patterns, as is the case for the class of patterns of (2), but the number of patterns may be
smaller. For instance, the two following perforation patterns form a size two equivalence class

(3)

The number of patterns in one class will be called the effective period of the class. This
may also be viewed as a property of the patterns belonging to the class since it is the smallest
number of cy die shifts that leaves the patterns invariant. In order to evaluate the number of
distinct perforation patterns, we utilize a powerful theorem from combinatorial theory: Polya's
enumeration formula (see for example [7, pp. 225-237]). But before we may proceed with this
formula, we need to establish a formalism compatible with the framework of the theorem.

Let X = {1, 2,..., n) be a set of n objects. A mapping of X

9= (4)

into itself is a permutation of degree n. In what is called cycle notation, a permutation g may
be written as a product of cycles, each cycle being obtained by writing the image under g of
each element after the element. Let \, (g) be the number of cycles of length i in permutation
g. The cycle index of g is the polynomial in the indeterminates x-i, x^,.. ., Xb

x>l(9)^\2(s)
x >h(9) (5)

With composition of permutations as product, a set of permutations that conforms to the
axioms of group theory forms a group G. For our purposes, X = {1, 2,... , 6} is the set of the
b columns of a perforation pattern and the group of interest defined on this set is the cy die
group Cb of order b generated by the circular permutation. It is clear that permutations from
this group transform a perforation pattern into equivalent patterns.

The cycle index of a permutation group G is the average of the cycle indices of the permu-
tations of G:

P(G'; .Fl, ^,.. . , ^) = ^ E Z?l(ff)Z^2(5) . . . xtb (9). (6)
see

A mapping ̂  of X into a set A = {fli, 03,... , 0m} of colors is called a coloring of the objects.
Here, the colors are the m = 2"° possible binary column vectors. A coloring thus corresponds
to a given perforation pattern. For example, the coloring i)} that assigns the following colors to
the four columns

V.(l)=^j, W)=^], ^(3)= ;1.^)=f;1

corresponds to the perforation pattern

(7)

(8)



Let ^ be a set of colorings. A group G is said to act on ^ if each g ^ G induces a
permutation g9 on f, called the action of g, and if (g, o ^)- = ^,

* 
o g^. The second condition

implies that the set of g^ also forms a group. Suppose the group G acts on the set of colorings
^. Two colorings ̂  and ̂ 2 of ̂  belong to the same scheme - written t/'1 ~ ^2 - if there
exists a permutation g ^ G whose action takes ^i to ^2 (i. e. ^"(^i) = ^2). A scheme will
be denoted ^. The relation V>i ~ ^2 is thus an equivalence relation that partitions ^ into
equivalence classes called schemes. Clearly, when the group of permutation is the cyclic group
C';,, schemes correspond to classes of equivalent perforation patterns.

Let us assign to each color a, a weight w, for z = 1, 2,... , m. For ̂  a coloring of the objects
in X, define the weight of ̂  to be the product of the weights of the colors assigned. The weight
of a scheme is the common weight of all the colorings in it

w(^) = w(^;), ^;   ̂ . (9)
For our purpose, the weights of the colors should correspond to the Hamming weights of the
binary column vectors in such a way that pertinent information about the perforation patterns
may be extracted. This is achieved by the following assignment

w(a. ) = zwH(ai) (10)
where z is an indeterminate and W//(a. ) is the Hamming weight of column a.. The exponent
of the weight of a coloring is thus the total number of '1's in the corresponding perforation
pattern, that is, it is equal to v.

3 ENUMERATION FORMULA
We are now in position to state Polya's theorem:

Theorem 1 (Polya) The sum of the weights of all of the schemes, called the inventory of the
weights of the schemes, is

E ww = P(G; S w., s w.2, E";?'-.. >E ̂ ).
t=l 1=1 t=l t=l

(11)

The number of schemes ̂  that use a; times colors a;, for ? = 1, 2,... , m, is the coefficient of
w^w^2 . . . w^m in this inventory.

The application of Polya's enumeration formula is easier than the formulation of the theorem
suggests, as the following example demonstrates.

Example 1 Let us evaluate the number of distinct perforation patterns to consider for produc-
ing (u, 8) punctured codes from (2, 1) original codes, i. e., b=8, Vo=2. The eight permutations
in the cyclic group Cs are listed using cycle notation in Table 1, together with the corresponding
cycle indices. The set of colors is the set of possible binary column vectors of dimension Vg = 2

A= (12)



w
0

0 ([?DS W([o])=-([S])=
and the corresponding weights are

= 1, w

From Table 1, the cycle index for Cs is

P(Cs; a-1, 3-2,... ,a-8) = ^ (a;? + ̂  + 2^ + 4^) .
On the other hand, we have

m

^w, =l+2z+z2,
»=1
m

Ew.2=l+2z2+z4,
.=1

m

1:^=1+2.4+.8,
«=1
m

^ws=l+2zs+z
»=1

16

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

The inventory of the weights of the schemes is therefore

E^W = j[(l+2z+^2)8+(l+2z2+^)4
+ 2(1 + 2z4 + z8)2 + 4(1 + 2z8 + z16)}

= l+2z+ 16z2 + 70z3 + 232z4 + 546z5 + 1008z6
+ 1430^7 + 16202s + U30z9 + 1008z10 + 5462"
+ 232z" + 70z13 + 16^14 + 2z15 + z16

This inventory informs us that there are:
1430 distinct perforation patterns for (9, 8) punctured codes,
1008 distinct perforation patterns for (10, 8) punctured codes,
546 distinct perforation patterns for (11, 8) punctured codes,
232 distinct perforation patterns for (12, 8) punctured codes,
70 distinct perf oration patterns for (13, 8) punctured codes,
16 distinct perforation patterns for (14, 8) punctured codes,
2 distinct perforation patterns for (15, 8) punctured codes.

Much of the work involved in evaluating the inventory of weights is devoted to finding the
cycle index of the group Cb. Fortunately, this operation is highly regular for a cyclic group.
One can show that for the cyclic group Cb of order 6, the cycle index is [8, p. 171]

P{C^...}=\^[k}{xk)blk
k\b

(21)



Table 1: Permutations in the cyclic group C& and corresponding cycle indices.
permutation

9i
52
53
94
55
96
97
5r8

cycle notation
(1)(2)(3)(4)(5)(6)(7)(8)

(1, 2, 3, 4, 5, 6, 7^87
(1, 3, 5, 7)(2, 4, 6, 3)
(1, 4, 7, 2, 5, 8, 3, 6)

(1, 5)(2, 6)(3, 7)(4, 8)
(1, 6, 3, 8, 5, 2, 7^7

_(1_, 7, 5, 3)(2, 8, 6, 4)-
^1, 8, 7, 6, 5, 4, 3, 2)

cycle index
x\

xi

X;

xi

x's

xi
T
'8

where the sum is over all integers k, I <: k <b, such that k divides b. <f>(k'} is Euler's function
and given the factorisation of k

k=Prpr---PQ,\ (22)
where the p; are prime numbers different from 1, it is readily evaluated as

^)^fl -i')fl -^... fl -l
PiY \ P-i) \ ?<,.

(23)

Another simplification comes from the observation that with the weight assignments (10) the
sums of weights used in (11) may be evaluated simply as

^wf=(l+^)t;°, j=l, 2,..., 6. (24)
t=l

For large values of b and Vo, the computations in (11) become rather involved. Fortunately,
using (24), the computations are reduced to sums of binomial powers which may be evaluated
using the binomial theorem. With this formulation, the inventory for the former example
becomes

^w(^) = ^[^+^+(l+^+2{l+z4)4+^l+z8)2]8
l F^

(25)
16 8

= sLSl* .fc+ E ( 8J ̂ k (26)
fc=0

k

+2E(
fc=0

.4fc -i:fn-»i
fc=0

For instance, the number of distinct perforation patterns for (12, 8) codes may be evaluated as

1^)^}^(t (27)

Finally, observing that the vast majority of equivalence classes have maximum effective
period, a good lower bound to the number of distinct perforation patterns is readily obtained



by assuming that all equivalence classes have period b. Then the number of distinct patterns
for (v, b) punctured codes derived from (vo, 1) original codes is lower bounded by

(28)

For b prime, the bound (28) is exact: the cycle index for the cyclic group as evaluated by (21)
comprises only one term corresponding to equivalence classes with maximum size.

4 NUMERICAL RESULTS

Polya s enumeration formula has been used to determine the number of distinct perforation
patterns to consider in an exhaustive search for high-rate (v, 6) punctured codes derived from
(u,,, 1) original codes, for periods b ranging from 2 to 12. The results are presented in Tables 2
to 4 for Vo = 2, 3, and 4 respectively, for values of v such that b <v < bvg.

From these results, we may infer a number of general observations about the amount of
work involved in searchs for good punctured codes. For (v, 6) punctured codes derived from
(uo, 1) original codes, the perforation patterns are bxvo matrices with v '1' entries and bvo - v
'0 entries. For enumeration purposes, the '1's and 'O's play entirely symetric roles in the
patterns. Therefore, for given values of b and i?o, the number of distinct patterns as a function
of v should be symetric about the value v = bvo/2. It can be seen, particularly from Tables 3
and 4, that such is the case, with v = bvo/2 corresponding to a maximum. On either side of
this maximum, the numbers of distinct patterns decrease, down to values ofv<, at v = 1 and
v == bvo-1. The actual value of the maximum depends on Vo: to larger values of Vg correspond
larger maxima, and the rate of increase is rather steep. This means that for a given period
b, choosing a lower rate original code implies that considerably more perforation patterns will
have to be considered.

When searching for punctured codes, many combinations of parameters b and v yield the
same resulting coding rate R = b/v. Tables 5 and 6 present the number of distinct perforation
patterns to consider for coding rates 2/3 and 3/4 respectively, for Uo =2, 3, 4 and 2 ^ &^ 12.
For a given coding rate, it can be seen that the number of patterns increases with &, and the
rate of change increases rapidly with Vo. It comes as no surprise then that most searchs for
good punctured codes have concentrated on perforation patterns with short periods b [1]-[5],
even tough it has been observed that longer periods may yield more powerful codes [9].

5 CONCLUSION

Techniques from combinatorial theory have been used for enumerating all the valid perforation
patterns remaining after equivalences between patterns are taken into account. An enumeration
formula for computing the number of distinct perforation patterns for sets of parameters &, v,
and Vo has been derived. Using the formula, numerical results were obtained for the number of
distinct patterns for deriving (v, b) punctured codes from (2, 1), (3, 1) and (4, 1) original codes,
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for values of b varying from 2 to 12. These results provide useful insights on the amount of
work involved in exhaustive searchs for good punctured codes.
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Table 2: Number of distinct perforation patterns for deriving (u, 6) punctured codes from (2, 1)
original codes, 2 ^ b ̂ 12, b+1 ^v <, 2b-l.

b+1
b+2
6+3
6+4
6+5
6+6
b+7
6+8
6+9
6+10
6+11

14
8
2

42
24

9

2

6 7

132
85
38
12

2

429
286
143

52
13

2

1430
1008
546
232

70
16

2

9

4862
3536
2066

952
340

92
17

2

10
16796
12618
7752
3888
1552
489
114
20

2

11
58786
45220
29070
15504
6783
2394

665
140

21
2

12
208012
163504
108968
61333
28842
11240
3542

892
170
24

2

Table 3: Number of distinct perforation patterns for deriving (u, b) punctured codes from (3, 1)
original codes, 2<b<, 12, b+l<v<, 3b-l.

2|3|4|5 I 6 I 7 9 10 TT TT
b + 1
b+2
6+3
6+4
b+5
6+6
fc+7
b+8
fr+9
fc+10
b+n
6+12
6+13
6+14
6+15
6+16
6+17
6+18
&+19
6+20
b+21
fr+22
6+23

10
9
3

42
42
30
12

3

198
236
198
129
55
18

3

1001
1287
1287
1001
603
273

91
21

3

5304
7314
8110
7314
5304
3114
1428
516
138

27
3

29070
41990
50388
50388
41990
29070
16614
7752
2907

855
190
30

3

163438
245256
312018
338140
312018
245256
163438
92001
43263
16852
5313
1338
253

36
3

937365
1448655
1931568
2228700
2228700
1931568
1448655
937365
520779
246675
98670
32898

8970
1950
327

39
3

5462730
8649823

11975985
14542911
15511760
14542911
11975985
8649823
5462730
3004809
1430715
585429
203580
59423
14253
2751

406
45

3

32256120
52106040
74437200
94287120

106073010
106073010
94287120
74437200
52106040
32256120
17594250
8414640
3506100
1262196
388368
100688
21576

3720
496

48
3

192565800
316360752
463992012
608993010
716458050
756265484
716458050
608993010
463992012
316360752
192565800
104308122
50067108
21182952

7845310
2521956

695640
162396
31416
4923

597
54

3
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Table 4: Number of distinct perforation patterns for deriving (v, b) punctured codes from (4, 1)
original codes, 2 ^b <12, b+1 < v <4b-l.

i I 4 I 4 -r .To- 11 -[7-
~n~r
fc+2
b+3
b+4
b+5
b+6
b+7
fc+8
b+8
t>+ 10
fc+ 11
fc+ 12
fc+ 13
fc+ 14
b+ IS
b+ 16
b+17
b+ 18
b+ 19
6+20
(>+ 21
b+ 22
b+23
b+24
b+25
b+ 26
b+ 27
fr+ 28
t>+ 29
6+30
6+31
b+ 32
b+ 33
t+34
t>+ 35

165
264
312
264
165

76
82

4

1092
2016
2860
3238
2860
2016
1092

464
140

32
4

.TTST
15504
25194
33592
36956
33592
25194
1S504

7752
3104

969
228

38
4

57684
122661
217936
327008
416024
4S0872
416024
327008
217936
122661

57684
22480

7084
1782
340

48
4

444015
986700

1874730
3067740
4345965
S348880
5730948
5348880
434S96S
3067740
1874730

986700
444015
169152

53820
14040
2925

468
54

4

3506100
8064576

16128060
28225120
43421700
S8930880
70715340
75136678
70715340
58930880
43421700
28225120
16128060
8064576
3506100
1315024

420732
113344

25172
4512

620
64

4

28242984
667S6144

139075410
256754400
421810800
618656016
811985790
955277400

1008348576
955277400
811985790
618656016
421810800
2567S4400
139075410
66756144
28242984
10460416
3362260

927520
216436

41888
6545

796
70

4

231180144
SS8689224

1203322288
2320700736
4022534528
6285222762
8873237880

11338042976
13128240B40
13784671388
13128240840
11338042976

8873237880
6285222762
4022&34S28
2320700736
1203322288

SS8689224
231180144

84767616
27343888

76909S3
1864356

383952
65804

9158
988

80
4

1917334783
4719593312

10450528048
209010S6096
37883164174
62395799816
93S93699724

12807SS89096
160094486370
182965127280
191281723980
182965127280
180094486370
128075589096
93593699724
62395799816
37883164174
20901056096
10450528048

4719593312
1917334783
697212652
22SS6g798

64448228
161120S7

3483688
641732

98728
12341

1204
86

4

16077354108
40193414112
91105007340

187904537509
353701790376
609153193728
961820658040

1394640117728
1859519940784
228213B314816
2579808294648
2687300S34584
2S79808294648
2282138314816
1859519940784
1394640117728

961820658040
609153193728
3S3701790376
187904137509
91105007340
40193414112
160773S4108

5805722768
1882933364
545063200
139758980
31446646

61357S6
1022816

142692
16240

1444
96

4

Table 5: Number of distinct perforation patterns for deriving (u, b) punctured codes such that
b/v = 2/3 from (v<,, 1) original codes, 2 ^ & < 12., v^ =2, 3,4

2

4

6

8

10
12

Vo=2
2

8

38
232

1552
11240

Vo=3
10

236
8110

338140
15511760

756265484

Vo = 4

28
2016

217936
28225120

4022534528
609153193728

Table 6: Number of distinct perforation patterns for deriving (v, b) punctured codes such that
bfv = 3/4 from (vo, 1) original codes, 2 ^6< 12, Uo= 2, 3, 4.

3
6

9
12

Vo=2
5

85
2066

61333

Vo=3
42

7314
1931568

608993010

fo = 4

165
122661

139075410
187904537509


