FINDING f-FREE SUBSETS OF MAXIMAL CARDINALITY

PIERRE BOUCHARD AND YEONG-NAN YEH

31 March 1992

Abstract

Given a (not necessarily everywhere defined) endofunction f on a set T, we are interested in f-free subsets of T, that is subsets S such that $s \in S$ and $f(s)$ defined imply $f(s) \notin S$. We give an algorithm for explicitly finding such a subset of maximal cardinality. We then compute such cardinality in several classes of examples.

1. History.

The problem of finding free subsets goes back to early trials towards Fermat's conjecture when people were hoping to find a counter-example modulo p. They would study sum-free subsets of Z_{p}, that is subsets S such that the sum of two elements of S is no more an element of S. Then came 2 -free subsets, that is those subsets S for which $x \in S$ implies $x+x \notin S$. These were studied in many contexts: notably in near-rings [4], [8], in Z_{n}, and in the dihedral group D_{n}. In the last two groups, Yeh [9] also studied q-free subsets and found their maximal possible cardinality. In the present paper we generalise the functions (like $x \mapsto q x$), with respect to which S is defined to be free, to include any function f in any finite set T and we provide an algorithm for finding an f-free subset S of T of maximal cardinality.

2. Introduction.

Given a set T and a function $f: T_{0} \rightarrow T$ where T_{0} is a subset of T, we shall call a subset $S \subseteq T$ an f-free subset if and only if

$$
x \in S \cap T_{0} \Longrightarrow f(x) \notin S,
$$

in other words, if $x \in S$ and $f(x)$ is defined, then $f(x) \notin S$.
A function $f: T_{0} \rightarrow T$ with $T_{0} \subseteq T$ will be called a subendomorphism of T. The subendomorphisms can be made into a species by setting, for any finite set U and any bijection $g: U \rightarrow V$:

$$
\begin{aligned}
\text { SubEnd }[U] & =\left\{f \mid f: U_{0} \rightarrow U \text { and } U_{0} \subseteq U\right\} \\
\text { SubEnd }[g] & =\left.g f g^{-1}\right|_{f\left(U_{0}\right)} .
\end{aligned}
$$

By abuse of language, we shall often refer to the subendomorphism (T, f) in order to stress the set T and to a subset of (T, f) in order to to stress the function f.

For example, if $T=[5]=\{1,2,3,4,5\}$ and $f(x)=2 x$, then $f(x)$ is defined only for 1 and 2 and $S=\{2,3,5\}$ is f-free.

A subset S of a subendomorphism (T, f) will be called max-f-free if it is a f-free subset of T having the maximum possible cardinality. The set S of the above example is not max- f-free although it is maximal among the f-free subsets of T. This example shows that the f-free subsets of T do not always define a matroid.

The maximum cardinality of an f-free subset of a subendomorphism (T, f) will be denoted $\psi(T, f)$ or just $\psi(T)$ when this does not lead to confusion.

Let us recall that a digraph is functionnal if each of its vertices has at most one predecessor, that is if it is the digraph $G_{f}=(V, E)$ of a function $f: A \rightarrow B$ where $V=A \cup B$ and $E=\{(a, f(a)) \mid a \in A\}$. There is a one-to-one correspondence between functionnal digraphs and subendomorphisms. We shall therefore sometimes refer to $\psi(G)$ for a functional digraph, meaning $\psi(T, f)$ where f is the function such that $G=G_{f}$.

We can now reformulate the definition of an f-free subset in terms of the digraph G_{f} of f.

Lemma 2.1. A set S is a f-free subset of a subendomorphism (T, f) if and only if no edge of G_{f} has both its endpoints in S.
proof: obvious.
We shall also make extensive use of the next lemma.
Lemma 2.2. If G_{f} is made of k connected components $G_{1}, \ldots G_{k}$, then

$$
\psi\left(G_{f}\right)=\psi\left(G_{1}\right)+\cdots+\psi\left(G_{k}\right)
$$

proof: Follows from the preceeding lemma.

3. Algorithm

In the present section, we present the algorithm for finding a max- f-free subset of a subendomorphism (T, f) and illustrate it with some of the examples that we have computed.

Let us recall that a leaf in a digraph $G=(V, E)$ is a vertex without predecessor. We shall denote by $L(G)$ the set of leaves of G.

Given a subset W of the set V of vertices of the digraph G, the notation $G \backslash W$ shall mean the digraph

$$
G \backslash W=(V \backslash W, E \backslash\{(x, y) \mid\{x, y\} \cap W \neq \varnothing\})
$$

obtained from G by removing the vertices in W and all edges connecting to those vertices. By abuse of language, $G=\varnothing$ means $G=(\varnothing, \varnothing)$.

Algorithm.

```
Input: A function \(f: T_{0} \rightarrow T\) where \(T_{0} \subseteq T\).
Output: A max- \(f\)-free subset \(S\) of \((T, f)\).
begin
    \(V:=T ;\)
    \(E:=\left\{(a, f(a)) \mid a \in T_{0}\right\} ;\)
    \(G:=(V, E) ; \quad\) we start with \(G=G_{f}\)
    \(S:=\varnothing\);
    \(F:=L(G)\);
    while \(F \neq \varnothing\) do
        pick \(x \in F\);
        \(S:=S \cup\{x\}\);
        if \(x \in T_{0}\) then \(G:=G \backslash\{x, f(x)\}\)
                        else \(G:=G \backslash\{x\}\)
                    endif;
        endwhile;
    for \(C \in\{D \mid D\) is a cycle of \(G\}\) do
        pick \(x \in C\);
        \(C:=C \backslash\{x\} ; \quad\) this makes \(C\) a directed line
        while \(C \neq \varnothing\) do
            pick \(y \in L(C)\);
            \(S:=S \cup\{y\} ;\)
            if \(y \in T_{0}\) then \(C:=C \backslash\{y, f(y)\} \quad\) we remove \(y\) and the next vertex
                else \(C:=C \backslash\{y\}\)
                endif;
            endwhile;
        endfor;
    Return(S);
    end.
at the end of this while loop
\(G\) will be a disjoint union of
directed cycles
                                    \(y\) is the beginning of line \(C\)
                                    on the line \(C\) if it exists
```

Some remarks are appropriate:
(1) The algorithm allows us to find in at most $|T|$ steps, a max- f-free subset of T, making computations of max- f-free subsets of a T as big as \mathfrak{S}_{7} feasable in a few minutes without the help of a computer. (see example 3)
(2) The only choices we have are in the "pick $x \in F$ " and the "pick $x \in C$. These may lead to many different max- f-free subsets S but not necessarily all of them. (see example 1)
Example 1. Illustration of the algorithm.
The next sequence of pictures shows what might happen to the digraph G_{f} when it is acted upon by the algorithm.

Figure 1. Illustration of the algorithm
We see that during the excution of the algorithm, S here takes in succession the values $S=\varnothing,\{1\},\{1,4\},\{1,4,6\},\{1,4,6,7\}$ and $\{1,4,6,7,9\}$ which is a max- f free subset of $1, \ldots, 9$.

Had we chosen to remove 7 or 9 from the cycle, we would have obtained the max- f-free subset $S=\{1,3,4,6,8\}$ instead.

Notice however that the max- f-free subset $\{2,4,6,7,9\}$ could not have been obtained by the algorithm. Notice also that $\{1,3,5,8\}$ is a maximal f-free subset of [9] but not a max- f-free subset because it has only four elements.

In the next 3 examples, we shall study $f(x)=x^{2}$ in different contexts: finite fields, integers modulo an odd prime power and symmetric groups.
Example 2. The finite field $F_{q}, q=p^{n}, p$ prime.
This example gives us an idea of the form that may take the cardinality of a max- f-free subset.
Here the digraph G_{f} has a component $\{0\}$ (with a loop at 0) and on the complement of $\{0\}$ is like the digraph of the integers modulo $q-1$, the multiplicative group of F_{q} being cyclic. The max- f-free subsets of F_{q}^{*} are therefore in bijection with the max- 2 -free subsets of \mathbb{Z}_{q-1}, (that is max- $(x \mapsto 2 x)$-free subsets of \mathbb{Z}_{q-1}). Therefore

$$
\psi\left(F_{q}, x \mapsto x^{2}\right)=\psi\left(\mathbb{Z}_{q-1}, x \mapsto 2 x\right)
$$

The last term of the above equation has been computed in [9] and this gives us the following proposition.

Proposition 3.1. The cardinality of a max-f-free subset of the finite field \boldsymbol{F}_{q}, where $f(x)=x^{2}$ and $q-1=2^{m} p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}=2^{m} p^{e}$ is equal to

$$
p^{e} \cdot \sum_{0 \leq j \leq\left\lfloor\frac{m-1}{2}\right\rfloor} 2^{m-1-2 j}+\chi(m \text { is even }) \cdot \sum_{0<a \leq e} \frac{\phi\left(p^{a}\right)}{d_{a}}\left\lfloor\frac{d_{a}}{2}\right\rfloor
$$

where $d_{\boldsymbol{a}}=\operatorname{ord}_{p^{a}}(2)$ and $\boldsymbol{a}=\left(a_{1}, \ldots a_{k}\right) \leq\left(e_{1}, \ldots e_{k}\right)=e$ means $a_{i} \leq e_{i}$ for $1 \leq i \leq k, \phi$ is Euler's ϕ-function and $\chi(P)=1$ if P is true, $\chi(P)=0$ otherwise.

With the help of the computer algebra program Maple, we have been able to compute some values of $\psi\left(\boldsymbol{F}_{p^{\alpha}}\right)$ for small values of p and α :

alpha	$\mathrm{p}=2$		$p=3$			$\mathrm{p}=5$			$\mathrm{p}=7$
1	0		1			2			3
2	1		5			15			31
3	2		13			74			171
4	7		52			409		1	575
5	12		121		1	951		8	403
6	30		455		9	765		77	206
7	54	1	093		48	827		411	771
8	127	4	305		256	347	3	828	187
9	226	9	841	1	220	699	20	176	803
10	508	36	905	6	103	515	185	374	380

Example 3. The multiplicative monoid $\mathbb{Z}_{p^{\alpha}}$.
Here the trick is to observe that $\mathbb{Z}_{p^{\alpha}}$ is the disjoint union

$$
\mathbb{Z}_{p^{\alpha}}=D\left(\mathbb{Z}_{p^{\alpha}}\right) \cup U\left(\mathbb{Z}_{p^{\alpha}}\right)
$$

where $\boldsymbol{D}\left(\mathbb{Z}_{p^{\alpha}}\right)$ is the set of zero-divisors of $\mathbb{Z}_{p^{\alpha}}$ and $\boldsymbol{U}\left(\mathbb{Z}_{p^{\alpha}}\right)$ is the set of units of $\mathbb{Z}_{p^{\alpha}}$. We know ([6], th. 2.25) that $\mathbb{U}\left(\mathbb{Z}_{p^{\alpha}}\right)$ is a cyclic group of order $\phi\left(p^{\alpha}\right)=p^{\alpha-1}(p-1)$ and therefore

$$
\psi\left(\mathbb{U}\left(\mathbb{Z}_{p^{\alpha}}\right), x \mapsto x^{2}\right)=\psi\left(\mathbb{Z}_{\phi\left(p^{\alpha}\right)}, x \mapsto 2 x\right)
$$

which is known from [9]. The functionnal graph of $\left(x \mapsto x^{2}\right)$ on $\boldsymbol{D}\left(\mathbb{Z}_{p^{\alpha}}\right)$ is a graph implosing on 0 to which the algorithm is easily applied. For example, if $p=5$ and $\alpha=2$ we get

Figure 2. $\boldsymbol{D}\left(\mathbb{Z}_{25}\right)$
and a max- $\left(x \mapsto x^{2}\right)$-free subset has 4 elements and if $\alpha=3$ we get

Figure 3. $D\left(\mathbb{Z}_{125}\right)$
and a max- $\left(x \mapsto x^{2}\right)$-free subset has 22 elements. The case $p=5$ and $\alpha \in$ $\{1,2,3,4,5\}$ is summarized in the next table:

α	5^{α}	$\psi\left(\boldsymbol{U}\left(\mathbb{Z}_{5^{\alpha}}\right)\right)$	$\psi\left(\boldsymbol{D}\left(\mathbb{Z}_{5^{\alpha}}\right)\right)$	$\psi\left(\mathbb{Z}_{5^{\alpha}}\right)$
1	5	2	0	2
2	25	12	4	16
3	125	62	22	84
4	625	312	114	426
5	3	125	1562	552

Example 4. The symmetric group \mathfrak{S}_{n}.
Here we observe that the type of the square of a permutation depends only on the type of the permutation itself. That gives us immediately the shapes of the connected components of G_{f}, looking only at the partititons of n, that is at the type of permutations of n. All the vertices of such a connected component eventually lead to one cycle of length k, (possibly $k=1$). The permutations inside such a cycle will all be of the same type. Therefore we know that the number of connected components of a given shape containing a cycle of lenght k made of permutations of type $1^{a_{1}} 2^{a^{2}} \cdots n^{a_{n}}$ is

$$
\frac{1}{k} \frac{n!}{1^{a_{1}} a_{1}!2^{a_{2}} a_{2}!\cdots n^{a_{n}} a_{n}!}
$$

We can compute a max- f-free subset for each such shape using our algorithm and then apply our Lemma 2.2 .

Let us illustrate this for the case of \mathfrak{S}_{6}. There are four shapes summarized in the following diagrams (fig. 4), where, for example, the number 3 on the edge from the vertex 123 to the vertex $1^{3} 3$ means that a given permutation of type $1^{3} 3$ is the square of 3 different permutations of type 123 . This avoids otherwise messy digraphs.

Figure 4. \mathfrak{S}_{6}
Using the above formula, we see that the first shape repeats itself 20 times, the second one 36 times, the third one only once (the component that contains the identity), the fourth one 20 times. The cardinality of the max- f-free subsets in each of the four shapes of components is respectively $6,2,210,6$ which gives us that the cardinality $\psi\left(\mathfrak{S}_{6}, \sigma \mapsto \sigma^{2}\right)$ of the max- f-free subsets of \mathfrak{S}_{6} is $6 * 20+2 *$ $36+210+6 * 20=522$. Let us conclude by listing the values of $\psi\left(\mathfrak{S}_{n}\right)$ for $1 \leq n \leq 8$: $0,1,4,16,72,522,3642,30753$.

References

1. Bruce W. Char, Keith O. Geddes, Gaston H. Gonnet, Benton Leong, Michael B. Monagan, and Stephen M. Watt, Maple V Library Reference Manual, Springer-Verlag, New York, Berlin, Heidelberg, 1991.
2. , Maple V Language Reference Manual, Springer-Verlag, New York, Berlin, Heidelberg, 1991.
3. , First leaves: A tutorial introduction to Maple, Springer-Verlag, New York, Berlin, Heidelberg, 1991.
4. Y. Fong and Yeong-Nan Yeh, Near-rings generated by infra-endomorphisms of groups, To appear.
5. L. K. Hua, Introduction to number theory, Springer-Verlag, New York, 1982.
6. Ivan Morton Niven and Herbert S. Zuckerman, Introduction to the theory of numbers, John Wiley \& Sons, New York, Chichester, Brisbane, Toronto, 1980.
7. W. D. Wallis, Anne Penfold Street, and Jennifer Seberry Wallis, Combinatorics: Roomsquares, sum-free sets, hadamard matrices, Lecture Notes in Mathematics, vol. 292, SpringerVerlag, New York, 1972.
8. E. Wang, On double-free sets of integers, Ars Combinatoria 28 (1989), 97-100.
9. Yeong-Nan Yeh, On q-free subsets of an operation set, Submitted.

Pierre Bouchard, Département de mathématiques et d'informatique, Université du Québec à Montréal (UQAM), C.P. 8888, Succursale A, Montréal (Québec), Canada H3C 3P8

Yeong-Nan Yeh, Institute of Mathematics, Academia Sinica, Nankang, Taipei, Taiwan, R.O.C., and Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, U.S.A.

