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FINDING /-FREE SUBSETS OF MAXIMAL CARDINALITY
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ABSTRACT. Given a (not necessarily everywhere defined) endofunction / on
a set T, we are interested in /-free subsets of T, that is subsets S such that
s e S and f{s) defined imply f(s) ^ S. We give an algorithm for explicitly
finding such a subset of maximal cardinality. We then compute such cardinality
in several classes of examples.

1. HISTORY.

The problem of finding free subsets goes back to early trials towards Format's
conjecture when people were hoping to find a counter-example modulo p. They
would study sum-free subsets of Zp, that is subsets S such that the sum of two
elements of S is no more an element of 5'. Then came 2-/ree subsets, that is
those subsets S for which x ^ S implies x+ x ^ S. These were studied in many
contexts: notably in near-rings [4], [8], in Zn, and in the dihedral group Dn. In
the last two groups, Yeh [9] also studied q-bee subsets and found their maximal
possible cardinality. In the present paper we generalise the functions (like x \-> qx\
with respect to which S is defined to be free, to include any function / in any finite
set T and we provide an algorithm for finding an /-free subset 5 of T of maximal
cardinality.

2. INTRODUCTION.

Given a set T and a function f: To-> T where To is a subset of T, we shall call
a subset S C T an f-free subset if and only if

x^sr\To==^ f(x) i s,

in other words, if a; e 5 and /(a;) is defined, then f(x) ^ S.
A function f: To -> T with To CT will be called a subendomorphism of T. The

subendomorphisms can be made into a species by setting, for any finite set U and
any bijection g: U ->V:

SubEnd[£/] = {f\f:Uo^U &ndUoCU}
SubEnd[p] = gfg-l\f(u, ).
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By abuse of language, we shall often refer to the subendomorphism (T, f) in order
to stress the set T and to a subset of (T, /) in order to to stress the function /.

For example, if T = [5] = {1, 2, 3, 4, 5} and /(a-) = 2a;, then /(a-) is defined only
for 1 and 2 and 5 = {2, 3, 5} is /-free.

A subset 5' of a subendomorphism (T, /) will be called max-f-free if it is a /-free
subset of T having the maximum possible cardinality. The set S of the above
example is not max-/-free although it is maximal among the /-free subsets of T.
This example shows that the /-free subsets of T do not always define a matroid.

The maximum cardinality of an /-free subset of a subendomorphism (T, /) will
be denoted ip{T, f) or just ^(T) when this does not lead to confusion.

Let us recall that a digraph is functionnal if each of its vertices has at most one
predecessor, that is if it is the digraph Gf = (V, E} of a function f: A -» B where
V = AU B and E = {(a, /(a)) ] a   A). There is a one-to-one correspondence be-
tween functionnal digraphs and subendomorphisms. We shall therefore sometimes
refer to V'(G') for a functional digraph, meaning ^(T, /) where / is the function
such that G = Gf.

We can now reformulate the definition of an f-free subset in terms of the digraph
Gf of /.
Lemma 2. 1. A set S is a f-free subset of a subendomorphism (T, /) if and only
if no edge of G/ has both its endpoints in S.

proof: obvious.

We shall also make extensive use of the next lemma.

Lemma 2. 2. If G} is made ofk connected components G\, . .. Gk, then

^(G/) = ^>(Gi) + ... + y>(G-, ).
proof: Follows from the preceeding lemma.

3. ALGORITHM

In the present section, we present the algorithm for finding a max-/-free subset
of a subendomorphism (T, f) and illustrate it with some of the examples that we
have computed.

Let us recall that a leaf in a digraph G = (V, E) is a vertex without predecessor.
We shall denote by L(G) the set of leaves of G.

Given a subset W of the set V of vertices of the digraph G, the notation G\W
shall mean the digraph

G\W=(V\W, E\{(x, y)\{x, y}nW^0})
obtained from G by removing the vertices in W and all edges connecting to those
vertices. By abuse of language, G = 0 means G = (0, 0).
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we start with G = Gj

at the end of this while loop
G will be a disjoint union of
directed cycles

Algorithm.

INPUT: A function/: To-^T where To CT.
OUTPUT: A max-/-free subset S of (T, /).
begin

y:=r;
^:={(a, /(a))|a ro};
G:=(y, £);
S:=0;
F := L(G);
while F ^ 0 do

pick x ^. F;
5':=5u{a-};
if a-   To then G:=G\ {x, f(x)}

e\seG:=G\{x}
endif;

endwhlle;
forC 6 {D|D is a cycle of G } do

pick a;   C';
C:=C\{x};
while (7 ̂  0 do

pick y   L(C);
5:=5U{y);
ify^TothenC:=C\{y, fW

e\seC:=C\{y}
endif;

endwhile;
endfor;

RETURN(S);
end.

Some remarks are appropriate:

(1) The algorithm allows us to find in at most |T| steps, a max-/-free subset of
T, making computations of max-/-free subsets of a T as big as ©7 feasable
in a few minutes without the help of a computer. (see example 3)

(2) The only choices we have are in the ilpick x   -F" and the ll pick x e C.
These may lead to many different max-/-free subsets S but not necessarily
all of them. (see example 1)

Example 1. Illustration of the algorithm.
The next sequence of pictures shows what might happen to the digraph Gj when

it is acted upon by the algorithm.

this makes C a directed line

y is the beginning of line C

we remove y and the next vertex
on the line C if it exists
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Figure 1. Illustration of the algorithm
We see that during the excution of the algorithm, 5' here takes in succession the
values 5-0, {1}, {1, 4}, {1, 4, 6}, {1, 4, 6, 7} and {1, 4, 6, 7, 9} which is a max-/-
free subset of 1,... , 9.

Had we chosen to remove 7 or 9 from the cycle, we would have obtained the
max-/-free subset S = {1, 3, 4, 6, 8} instead.

Notice however that the max-/-free subset {2, 4, 6, 7, 9} could not have been
obtained by the algorithm. Notice also that {1, 3, 5, 8} is a maximal /-free subset
of [9] but not a max-/-free subset because it has only four elements.

In the next 3 examples, we shall study f(x} = x2 in different contexts: finite
fields, integers module an odd prime power and symmetric groups.
Example 2. The finite field Fg, q= pn, p prime.

This example gives us an idea of the form that may take the cardinality of a
max-/-free subset.

Here the digraph Gf has a component {0} (with a loop at 0) and on the com-
plement of {0} is like the digraph of the integers modulo q - 1, the multiplicatlve
group of Fq being cy die. The max-/-free subsets of F^ are therefore in bijection
with the max-2-free subsets of Zg_i, (that is max-(a; h-> 2a;)-free subsets of Zg_i).
Therefore

^{Fy, X ^ X2) = ^{Zg-^X ̂  2X).
The last term of the above equation has been computed in [9] and this gives us
the following proposition.

Proposition 3. 1. The cardinality of a max-f-free subset of the finite field Fq,
where f(x) = x2 and q-1 .= 2mpê  .. . peh" = 2mpe is equal to

pc . ^ 2.-1-.. ^ ^ ,, ""). ^ ^p L^J
0^^|^S_lj 0<a<e "a

where da, = ordpa(2) and a = (ai,... cifc) < (ei,... Cfc) = e means a; ^ e, /or
\ <^i <^k, (f) is Euler's (^-function and ')((?) = 1 if P is true, )({P) = 0 otherwise.

With the help of the computer algebra program Maple, we have been able to
compute some values of ̂ }{Fpc, } for small values of p and a:
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alpha p=2

1

2

3

4

5

6

7

8

9

10

0

1

2

7

12
30
54

127
226
508

p=3
1

5

13
52

121
455
093
305

9 841
36 905

p=5
2

15
74

409
1 951
9 765

48 827
256 347

1 220 699
6 103 515

p=7
3

31
171

1 575
8 403

77 206
411 771

3 828 187
20 176 803

185 374 380

Example 3. The multiplicative monoid Zpa.
Here the trick is to observe that Zpa is the disjoint union

Zpa = D(Zpa) U C/(Zpa)

where £)(Zpa, ) is the set of zero-divisors of Zpa and C7(Zpa) is the set of units of Zpc..
We know ([6], th. 2. 25) that l7(Zpa) is a cyclic group of order ^{p0 ) = p°-l(p -"1)
and therefore

V>(t7(Zp<»),. r ^ a;2) = 0(Z^a), a; ̂  2^)

which is known from [9]. The functionnal graph of (a- ̂  x2) on -D(Zpa) is a graph
implosing on 0 to which the algorithm is easily applied. For example, li p = 5 and
a = 2 we get

10

5 .. > 20

15

Figure 2. D{Z^}

and a max-(a;»-+ a-2)-free subset has 4 elements and ifa = 3 we get
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80
95

105

50

75

90

Figure 3. D{'Z, ^s)

and a max-(a; h-^ a"2)-free subset has 22 elements. The case p = 5 and a G
{1, 2, 3, 4, 5} is suminarized in the next table:

a 5a ^(C7(Z5. )) ^(I3(Z5a)) ^(^5°)
1 5
2 25
3 125
4 625
5 3 125

2

12
62

312
1 562

0

4

22
114
552

2

16
84

426
2 114

Example 4. The symmetric group Gn-
Here we observe that the type of the square of a permutation depends only

on the type of the permutation itself. That gives us immediately the shapes of
the connected components of G!/, looking only at the partititons of n, that is at
the type of pennutations of n. All the vertices of such a connected component
eventually lead to one cycle of length fc, (possibly k = 1). The permutations inside
such a cycle will all be of the same type. Therefore we know that the number
of connected components of a given shape containing a cycle of lenght k made of
permutations of type lal2 . . . na" is

1 n!
k laiai!2a2a2'---"a"an'

We can compute a max-/-free subset for each such shape using our algorithm
and then apply our Lemma 2. 2.

Let us illustrate this for the case of ©e. There are four shapes summarized in
the following diagrams (fig. 4), where, for example, the number 3 on the edge from
the vertex 1 2 3 to the vertex I3 3 means that a given permutation of type I3 3 is
the square of 3 different permutations of type 123. This avoids otherwise messy
digraphs.
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Figure 4. ©e

Using the above formula, we see that the first shape repeats itself 20 times, the
second one 36 times, the third one only once (the component that contains the
identity), the fourth one 20 times. The cardinality of the max-/-free subsets in
each of the four shapes of components is respectively 6, 2, 210, 6 which gives us
that the cardinality ^(©e, <7 i-^ o' ) of the max-/-free subsets of ©e is 6*20+ 2*
36 +210+ 6 *20 = 522. Let us conclude by listing the values of ̂ (©») for 1 <n ̂ 8:
0, 1, 4, 16, 72, 522, 3 642, 30 753.
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