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A combinatorial problem in Hamming graphs
and an example in Scratchpad

Paul Camion* Bernard Courteau^ Andre Montpetit^

Abstract

We present a combinatorial problem which arises in the determi-
nation of the complete weight coset enumerators of error-correcting
codes. This problem is solved by exponential power series with coef-
ficients in a ring of multivariate polynoniials. It is worth noting that
there is associated to this problem a system of differential equations
with coefHcients in a field of rational functions and that Scratchpad
(or Axiom), thanks to its abstraction capabilities, is able to solve sim-
ply and naturally such a differential equation which seems not be the
case for the other computer algebra systems now available.

1 A combinatorial problem in Hamming graphs
Let F be a finite additive abelian group with q elements, let m = g-1 and
fix an ordering F* = [ai,..., am] of the nonzero elements of F. For x in
the cartesian product Fn the (Hamming) weight of x is defined as w(x) =
number of nonzero components of x and the complete weight of x ([3]) as the
list wc(x) = [u;ai(a"),... , Wa^(x)} where Wa(x) = number of components of
x which are equal to a 6 F*. The (Hamming) distance between x and y is
d{x, y) = w{y - x) and the gap between x and y is g(x, y) = wc{y - x).

If n is the set of weight one vectors in Fn, then the Hamming graph
r = T(n, q) is the Cayley graph (7(F"n) that is the vertex set is F" and
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(x y) is an oriented edge (arrow) iff y - x 6 n. Set n. = {a-  f} |
the only nonzero component of a; is a;}. An arrow (a-, ?/) in F will be called
of color t ify-a-   n.. A path of length j joining ~r to y is a sequence
7 =Ja'o'a'1' . . . ̂ x]} where a'o = .r, xj = y and a;. - x^ C d, i = 1, ... , J.
Set Pathj (a;, y) to be the set of all these paths and

Path = U{pathj (^2/)|a:, y F"}.
j^o

We are interested in the various color distributions of the paths in F. For this
it is convenient to work in the multivariate polynomial ring Z[Ta,,..., Ta^].
Definition 1. The weight function <j): Path -> Z[T^,..., T^j is defined as
follows

1. if (x, y) is an arrow and ify- a; £ n.., then ̂ (x, y) = To,;
2. if 7 = (a;o, a-i,..., a-j) is a path, then ̂ (7) = ^[^ ̂(a-. -i, a:, ).

This weight function <^ is extended to subsets U of Path by the formula

W) = E <^(7).
-1&U

<f>(U) is called the inventory of U.
Problem 1. Determine the inventories ^(Pathj (a;, y)) for all j:

^(Path, (.c, z/)) = ^ 5,,..,, (^, y)T^... T^
Jl+-+Jm=J

where Sj, j^(x, y) is the number of paths of length j = j^+... + j^ joining
x to y with ji arrows of color 1, j^ arrows of color 2, etc.
Proposition 1. If g{x, y} =g(x', y'), then

<^(Path, (a-, y)) = ^(Path, (z/, t//)) = <^(Path, (0, i/ - x)).
InfactS^., ^x, y)=S^^(xl, y').
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PROOF^ It is evident that the translation by -x establishes a bijection be-
tween Path, (a-, y) and Path, (0, y - x) that preserves coloration. " Moreover
if g{x^ y) =g(x\ y'\ = wc{y - x) = [i^..., ̂ ], then take a bijection of the
set of coordinate places sending the ?i places where y - a- has component
ai to the corresponding z-i places in y' - x' etc. This establishes a bijection
preserving coloration between Pathj (0, y - x) and Path, (0, y/ - x').

By this proposition we may reformulate our problem as follows.
Problem 2. If a complete weight F= [^,..., ,"] of some a-   F" is given,
determine the inventories

5r., =^(Path, (0, a:))= ^Sr,^
IJ-1=J

whereT. = ^.... T^^= b'i,..., Jm], 171 =^+... +^and^=
T^ ... %. The number Srj counts the paths of length [7| = j and color
distribution 7 joining 0 to a vertex x of complete weight F.

2 Analysis of the problem by exponential gen-
erating power series with coefficients in the
ring Z[^,... , TJ

Definition 2. Let F, (ji,. .. , ;") be the number of sequences in F* contain-
ing ji elements equal to ai, j^ elements equal to 03, ... , jm elements equal
to an, and whose sum is equal to 5   F. We define the power series /, (X) by

f.W = E
J>0

E W^... Jm)T^... T^z-^1
Jl+-+Jm=J

x^
7T

The relationship between these exponential generating power series and
our problem follows from classical results on shuffle product or "compose
partionnel" [2].

Proposition 2. If7= [i^,..., i^} is the complete weight of some a-   F" and
j is a natural number, then Syj is the coefEcient of X31j\ in the expansion
^^w---/::w/on-lrlw
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PROOF. We have to count the paths of length j joining 0 to a- paying atten-
tion to the various color distributions of these paths.

In any path and for any z, the contribution of pertinent arrows has to
sum up to Xi. Let k be the number of coordinates of x that are equal to s.
Now by expressing the generating power series fs{X) in the more convenient

form

f.W = ^
J>0

s;
[bi+-+b,=s

-Tfei... Tb,
xj

(1)

we obtain

f^W = E [(E^... r^)... (E^... ^J] X^ ... X3"

Jl.-J* Jl.'. . ^!

° s
J>0 E ̂11 . . . T^, . . .Ti» ... Tb^ jj-^ij -^-

where in the inner sum bii + ... + fci j, = s,..., bki + .. . + bkj^ = s. This

corresponds in shuffling the j arrows affecting these k different coordinates
in such way that the endpoint of the various paths so obtained is s at those
k coordinates.

By multiplying all these powers we obtain the result. D
Remark 1. In fact, the coefficients of the series fs (X) are

^+...+
,(Jl, --. Jm}=\Q31'-'3=J&:£")if5=^+---+^

if not,

giving

f.W = E
3>.0 jiai+-+jmam=a

\ Jl+-+Jm=J

Vi,...,j
X3
it '

So, at least in the case when the alphabet F = Z/mZ is the ring of integers
modulo m and m is not too big, problem 2 is solved by using proposition 2
and any computer algebra system to write down the filtered sums in /, and
to extract coefficients from a product of power series.



37

Remark 2. From (1) we deduce trivially

^MX)=exp{{^T^X}.
sef .=1

(2)

Example 1. Take F = {0, 1, 2), n = 4, r= [2, 1]. We seek the paths joining
0= [0, 0, 0, 0] to z= [1, 1, 2, 0]. We have

foW = 1 + 2TiT2^ +  3 + r^3)^ +...
f,(X) = T, X 4- T^ + ̂ T^ + . . .
/2(X) = r, x + r,2^ + 3Tir^ +...
f^(X) = T^X2 + QT,T^ + (24T,3T2 + 6^)^- + ...

A2 /2/o(^) = ^T,^ 4- (12Ti4 + 2^T,T^ + (360^^ 4- SO^5)^ + . . .

In Tables 1, 2 and 3, we give a detailed account of what is going on.

3 A differential equation
We have seen that the series fs (X) are easily determined in some particular
cases but it may be worth noting that the series do satisfy a system of
linear differential equations with coefficients in a field of multivariate rational
functions and that such a system is solved easily and naturally in Scratchpad.
This may have interest in other problems where the series /, are not so easily
determined directly.

We first observe the recurrence

^O'l, . . . , J'm) = S F.»-"k0'l> . . . ̂.Ik - 1> . . . >Jm)
k=l

for all s e F.
This is because we obtain a sequence a of sum s containing ji times ai,

... , jm times a^ from a sequence of sum s - Ok containing ji times ai, ... ,
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{jk - 1) times Ok, ... just by adding an a^, and all sequences a are obtained
in this fashion.

In differential terms this gives

z?/, (x)=^r, j, -^(X), , eF
fc=l

because the derivative Dfs ^x) of the series of Definition 2, defined formally
as usual, gives here

DUx} = ^
J>1

^ /, 0\,..., ^)^... T^
Jl+-+]m=3

^-1
(T^T)'

=E
J>1

°s
J'^l

E E /, -a. Oi,... , jfc -1,... ,^)r^ ... ̂ :
Jl+-+Jm=J k=l

^-1
U -1).'

^T^ ^ /. -a. 0-1,..., ^-l,..., ^)^---^-1---^:
k=l J"l+-+Jm=J

X3?-1

0- -1)'

=£r-.S
fc=l j>0

E f. -a, U^... Jm}T^. -. T^
Jl+-+Jm=J

xj

This proves the following result.

Proposition 3. The vector [fo(X), /a, (X),..., fa^(X)] consisting of the ex-

ponential generating power series of Definition 2 is the unique solution of the
linear system

Df, =^T^-^ . F
fc=l

(**)

with initial condition vector [1, 0,... , 0].
Remark 3. We may consider this differential equation as having coefficients
in the field K = QCTai r . ., Tam) an^ the solution we seek has components in
the differential ring ̂ <[[^]]. Thanks to its abstraction capabilities, Scratch-
pad is able to solve easily and naturally such a problem whereas others com-
puter algebra systems available nowaday seem not.
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4 An example in Scratchpad

We give an Axiom interactive session to illustrate the preceding in the par-
ticular case where the alphabet F is the additive group of the ternary field
GF(3).

4. 1 Solution of the diflferential equation (**)
# Creation of the coefficient field

-> k := Fraction MultivariatePolynomial([tl, t2], Integer)

# Specification of the solution

-> s := UnivariateTaylorSeries(k, x, 0$k)
-> sol : List s

# Specification of the right members of (**)

-> (f, g, h) : List s -> s
-> f u == tl*u. 4 + t2*u.3

-> g u == tl*u. 2 + t2*u.4
-> h u == tl*u. 3 + t2*u.2

# Call to Scratchpad command to solve (**)

-> )set expose add constructor UnivariateTaylorSeriesODESolver
-> sol := mpsode([l$k, 0$k, 0$k], [f, g, h])

4. 2 Detennination of the nuinbers 5rj
The user gives the length n (Positivelnteger) and the complete weight z =
[ii, ^] (List Positivelnteger).
^ Calculation of the product power series as in Proposition 2

-> series := sol. 2**i. l*sol. 3**i. 2*sol. l**(n-i. 1-i. 2)

# Stream of the numbers Srj for j 6 N

-> c_i := [factorial(j)*coefficient (series, j) for j in 0..]

^J
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5 The case where F is a finite field

When the alphabet F is the additive group of a finite field, the multiplicative
structure of the field may be used to reduce the calculation of the series
/, (JC) to only one of them, say fi{X), which is then determined by an order
2 (scalar) differential equation.
Let Q; be a primitive element of the finite field F and let us denote by a the
shift operator defined by

a(T) = a{T31.. . T3^\ == TJmTJl TJm-la . . .. lcim) =-la~la'2 . . . la'n

By observing that

jia + j^a2 +... + j^am = 1 ^=^ j^a + jia2 4- .. . + J'^-ia"1 = J

we may write the power series f^. (X) in terms of /i(X) alone. Indeed, if we
denote fs (X) by

/, (X, T)=^
J^O JlOt+-+JmOl'n=S v--'1'

Jl+-+Jm=J

l^. 'Jm
am

X'

then we have

UX, T) = ^
3^0

= fz{^a(T))

.^ \T3mT']l T'-'m
^-l-^... l-^

-+JmC»m=l VI'... '^"/Jia+-+JmO'T"=
]l+-+Jm=J

x^
^'

and, in general,

/,, (x, T)=/i(x, <7t(r)) (3)
for i = 1,.. ., m.
The system (**) then gives

Df, {X, T) =^, f^X, T)T^. = ^f, (X, a\T))T_^
<=1 . =1
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and

m-1
Df,{x^ = /o(^T)ri +E^(^T)'ri -a.

t=l
m-1

= /o(^, T)Ti + Y^ /i(^, a'(r))T, _,..
«=1

Hence

m-1
p2/i(x, /r) = E/i(x, <r«(r))r_,. r, + EA/i(x, <7f(T))r, _,.

«=l ;-.1=1 (***)
which, together with the initial conditions /i(0, T) = 0 and Dfi(0, T) = Ti,
determines the series /i(X, T).
The above relations (2), (3) and (* * *) then give the following result.
Proposition 4. Let the alphabet F be a finite field, let a be a primitive
element of F and let a be the shift operator defined by a(T^ .. ., T^m) =
('TO '", Ta?- . . , Tam-i). TAefl

/iW=E^-(r)^
J>b J'-

where the coefEcients Cj(T) satisfy the order 2 recurrence

m-1

^(T) = Ec, (<7'(r))r, T_,. + ^ c,^(<r;(r))r, _,,
.=1 .=1

with initial values Co(T) = 0, Ci(T) = T^m = Ti.
Moreover, for?" = 1,.. m- 1

and

/,. (x, r)=/i(x, <7t(r))

/o(X, r)=exp{(^T,, )X}-^/i(X, <7'(T)).
<=1 . =1
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