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Abstract

The hyperoctahedral group Bn is treated as the automorphism group of the n-
dimensional hypercube, denoted Qn, which is nowadays understood to be a grapli
on 2" vertices. It is well-known that Bn can be represented by the group of signed
permutations. In other words, any signed permutation induces a permutation on the
vertices of Qn which preserves adjacencies. Moreover, signed permutations also induce
a permutation group on the edges of Qn, denoted Hn. We study the cycle structures
of both Bn and Hn. The technique proposed here is to determine the induced cycle
structure of a signed permutation by the number of fixed verfcices or fixed edges of
a signed permutation in the cyclic group generated by a signed permutation of given
type. Here we directly define the type of a signed permutation by a double partition
based on its signed cycle decomposition. In this way, we obtain explicit formulas for the
number of induced cycles on vertices as well as on edges of Qn of a signed permutation
in terms of its type. By further exploring the connection between cycle indices and
the structure of fixed points, we obtain the cycle indices of both Bn and Hn. Our
formula for the cycle index of Bn is much more natural and considerably simpler than
that of Harrison and High. Meanwhile, the cycle structure of Hn seems to have been
untouched before, although it is well motivated by nonisomorphic edge colorings of Qn
as well as by the recent interest in symmetries of computer networks.

1 Introduction

L

L.

The hyperoctahedral group considered in this paper will be understood as the symmetry
group of the n-dimensional hypercube, or simply the n-cube. As in [1] we shall choose
to treat the n-cube as a graph, usually denoted Qn. To be more specific, the vertex set
of Qn consists of all the sequences of Vs and 1's of length n and two such sequences are
adjacent whenever they differ at exactly one position. Nevertheless, this standpoint is
by no means substantially different from that of treating the hypercube as a regular
solid in the n-dimensional Euclidean space. The recent surge of interest in symmetry
properties of computer networks has led to the investigation of automorphism groups
as well as the induced edge automorphism groups of the currently studied network
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models, including the hypercube Throughout, we shall use Bn to denote the group
of symmetries of the n-cube (graph automorphisms of Q^ in the present context), and
Hn to denote the induced permutation group of B^ on the edges of Q^. Sometimes,
the term line-group of a graph G is used for the permutation group on the edges of G
induced by the automorphism group of G. In this sense, H^ is the line-group of Q^.

In view of Polya theory on enumeration under group action, an important feature
of an automorphism group is its cycle structure. In particular, the study of the cycle
structure of B« has an interesting history. From the signed permutation representation
of Bn, namely, the fact that B» can be represented by the wreath product of Sn and S'2,
Polya [13] noticed that the number of types of Boolean functions in n variables equals
the number of nonisomorphic vertex colorings of the n-cube using two colors. This led
to the question of computing the cycle structure of B^. Although Bn is isomorphic to
the wreath product S^}, which is a permutation group on 2?2 elements whose cycle
index can be obtained by those of Sn and ^ in terms the operation called plethysm
or Polya's composition, Bn itself is a much more sophisticated permutation group on
2" elements which does not seem to possess relatively simple cycle structure. In fact.
P61ya|l3] computed the cycle indices of Bn up to n = 4. This problem got inore
attention with the advent of the switching circuit theory. The complete solution was
first obtained by Slepian [16] based on Young's results on irreducible representations
of Bn. Later on, Harrison and High [9] succeeded in obtaining the cycle index of Bn
which also leads to a solution to the problem of counting types of Boolean functions
However, the formula of Harrison and High is rather involved. Our method turns out to
be more natural and considerably simpler than that of Harrison and High's, moreover,
our approach is more effective regarding its applicability to more general situations
such as the cycle structure of the line-group Hn of Qn, a permutation group on n2n-1
edges. It seems that the cycle structure of Hn has been untouched in previous research,
although it is well motivated by the enumeration of nonisomorphic edge coloring of Q^
as well as by the recent interest in edge symmetries of computer networks.

Our first objective is to obtain the cycle polynomials of both Bn and Hn. As we
know in many circumstances, such as counting types of Boolean functions and verlex
coloring of the n-cube, we do not really need all the information contained in the cycle
index of Bn. Instead, for a permutation group G, sometimes it suffices to have the
following polynomial:

K(G;x)=^ ̂ w, xk,
k

where w^ is the number of permutations in G with k cycles. Clearly, K(G;x) can
be obtained from the cycle index Z(G;XI, X^, ... ) of G by substituting every x, with
x. We shall call K(G;x) the cycle polynomial of G. As expected, cycle polynomials
would be much easier to compute than cycle indices. Keeping in mind that the signed
permutation representation of Bn is considerably easier than Bn itself, one naturally
expects that the cycle structure of Bn should follow in some way from that of signed
permutations. First, we observe a simple connection between the cycle structure of
a permutation and the Burnside Lemma so that counting cycles reduces to countiiig
fixed points. Secondly, by using a recent result of [I], we unexpectedly found that the
number of fixed vertices of a symmetry of Qn can be easily determined by its signed
cycle decomposition. The notion of balanced signed cycles defined in [l] turned out to



be crucial in our approach. We remark that our method is not only effective for Bn
and Hn^ but also for other permutations groups induced from wreath product of two
permutation groups. It turns out to be satisfying that the notion of double partitions
used in the representation theory of Bn naturally arises in the present context, and \ve
can explicitly give the induced cycle structure of any signed permutation in terms of
its type (in the form of a double partition).

By further exploring the connection between induced cycle structure and fixed
points, we find that for any induced permutation group its cycle structure is determined
by the structure of fixed points (the Cycle Structure Lemma). In this way, we achieve
our goal of computing the cycle indices of both Bn and Hn^ the second objective of
this paper.
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2 A Cycle Counting Lemma

Let G be a group and 5 be a finite set. Let H be a permutation group on 5, namely a
subgroup of the symmetric group on S. Given isomorphism p from G to H:

P-- 9 7Tff' g^G, ^ e n,

we usually say that G is a group acting on 5' in the sense that a element of G acts
on 5" through its image of under the isomorphism p. With the isomorphism p being
understood, we shall simply call R an induced group from G. Specifically, as far as we
are concerned in this paper, G will be the wreath product 5'n[5'2], or the group of signed
permutations on n elements. The hyperoctahedral group is an induced group of 5'n[. 5'2],
which is a permutation group on the vertices of Qn- Given a signed permutation TT the
acting role (i. e., the isomorphism p as above) of TT on Qn is explained as permuting
the sequence of Os and 1's and then taking complements in certain positions, the
detailed definition will be given in the next section. Another induced group is the edge
automorphism group of 5'n[>S'n]. By definition, an automorphism on a graph induces a
permutation on the edges of the graph. Thus, 5'n[5'2] also induces a permutation group
on the edges of Qn- Our objective is to consider the cycle structures of the above
mentioned induced permutation groups on the vertices and edges of Qn.

Given an element g m a. group G, suppose it induces a permuta. tion on S. By the
induced cycle structure oi g we mean the cycle structure of the induced permutation of
g on S. We are going to use the Burnside Lemma to compute the number of cycles of
an induced permutation of g. To this end, let's recall some basic terminology related
to the Burnside Lemma. Given two elements s^ and 53 in 5, we say s-i is equivalent to
^2, denoted s^ ~ Sz? i^ there exists an element g ^. G such that

Tfg-Sl = -52 .

Then it is easy to verify that ~ is an equivalence relation on S. For any g G G, we
denote by i^(g) the number of elements s ^ S such that T^gS = .s, namely the number of
elements fixed by g. Then the Burnside Lemma states that the number of equivalence
classes under ~ equals

I^l ^ ^(^) .
g^G
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Using the Burnside Lemma, we may compute the number of cycles of an induced

permutation in terms of the number of fixed points of the induced permutation.

Lemma 2. 1 (Cycle Counting Lemma) Let G be a group acting on S, and g e G.
Then the number of cycles of the induced permutation Tg of g equals

o{g) E ^),
<^e(s)

where o{g) is the order of g in G and ̂ (cr) is the number of elements s ^ S fixed by a,
namely -Kyd = d.

Proof. We simply write TT for TTg. It is easy to see that two elements s^, s-^ G S are in
the same cycle in the decomposition of TT if and only if there exists a permutation o- = ^t
for some i such that o-{si) = s^. Therefore, the number of cycles of TT is the same as the
number of equivalence classes of D under the permutation group (?T) = {e, TT, ?T2,
Clearly, (7r) is finite. By the Burnside Lemma, we have

E ^},o(^) V (T)

where o(7r) is the order of TT and .0(<^) is the number of elements d ^ D fixed by y,
namely ̂ pd = d. Since (5) is isomorphic to (-n-), we have o{g} = o(7r). This completes
the proof. B

3 The Cycle Polynomial of Bn

We first recall some definitions from [1]. For any positive integer 11, we shall use [n]
to denote the set {1, 2,... , n}. We may represent an element w 6 5n bya signed
permutation of [n], i.e., a permutation of [n] with a + or - sign attached to each
element 1, 2, . .., n. For simplicity of notation we omit the + sign in examples. Thus
(^t'5)('3)(t'6)or(24'5)(3)(l '6) represents an element of B^ with underlying
permutation (2 4 5) (3) (I 6) (written in cycle notation). We call each a representation
of an element of Bn a signed cycle decomposition. A signed permutation w acts on a
vertex Ui^s -. . Un of Qn by the rule

W(ui U2 .. . Un) = U^(l) U^(2) . . . U^(n) ,
where TT is the underlying permutation of w and

u^j), if j has the sign + ,
1 -u.

U^(j) = (3. 1)
u^(j), if j has the sign - .

Thus the action of^ on u = UjUs . . . "n can be understood as the action of permuting
u into u^. (i) u^(2) . . . u^(n)i and then taking complements at positions where TT has minus
signs. If we define the sign vector (51, ^2,... , ^n) of a signed permutation w as

s,=
0 , if j has the sign + ,

1 , if j has the sign -,
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Then (3. 1) can be rewritten as

^(j) = u^(j) + SJ (mod 2). (3. 2)

To make the above definition a little clearer, we may let v-^v^ . .. Vn = w(u-i u^ . . . Un},
then (3.2) becomes

v^j) = Uj + s^, ) (mod 2). (3. 3)
For two symmetries TT and (T of Qn-, we define their product by

(7TCr)(ui U2 -.. Un) = (7(7r(Ui U; . . . "n)) ,

where u^u^ .. . u^ is any vertex of Qn. Note that the above convention is consistent,

with the usual definition of product of ordinary permutations, i.e., for two permutations
TT and o- on [n], TTO- is defined by (7Tcr)(t) = o-(7r(z)) for any i. If no confusion arises, we
shall identify a signed permutation TT with its underlying permutation when applied to
an element in [n] instead a vertex of Qn.

Proposition 3. 1 Let TT^ and a^ be two signed permutations on [n] with underlynifj
permutations TT and a and sign vectors (si, 52, . . . , 5n) and (^, (2, . .. , <n). Then the
signed permutation TTicri has underlying permutation TTCT and sign vector

(tl + ^-l(i), t-2 + 5^-1(2), . . . , tn + S^-l(n)) (mod 2) .
Proof. Let u-iu^ .. . Un be any vertex of Qn and let ViV2 ... Un = 7Ti(ui "2 . . . Un),

By (3. 2), we have
V^(, ) = U, + S^(, ) (mod 2). (3. 4)

Let Wi W2 . .. Wn = O-i (ui U2 . . " "n)- Hence for any j,

W^(j) = Vj + ta(j) (mod 2) . (3. 5)

Substituting j with 7r(z) in (3. 5), we get

W<,(^(, )) = W(^)(.)

= i'7T(<) + ^(TT(, )) (mod 2)

= VTT(, ) + f(^)(;) (mod 2) .

From (3. 4) it follows that

W(^)(. ) = U< 4- S^(;) + ^(7T(7)(>) (mod 2). (3. 6)

Let ri = s^-i(i). Then we have,

r(^)(i} = ^-l((lTCT)(l)) = 5(^^a-I)(t) = 5^(. ) .

Therefore (3. 6) can be written as

W(^)(;) = u; + r(^)(, ) + <(7r<T)(. ) (mod 2). (3. 7)

Since wiW-i-'-Wn = (7TiCTi)(uiU2 . . . un), this implies that TTio-i has underlying permu-
tation 7T<7 and sign vector (r-i + <i, ..., rn+ Sn)- This completes the proof. .

The following corollary will be used later.

49
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Corollary 3. 2 Let TTi 6e a signed permutation with underlying permutation TT and sign
vector (61, 62, . . ., .Sn). Let 6 = TT-I . Then ̂  has underlying permutation TTk and sign
vector

(^i+50(1)4-... +5^-1(1), ..., 5n+se(n)+... +5^-1 (")) (mod 2). (3. 8)
Proof. We use induction on k. The assertion is trivial for k = \. Suppose it is true

for k. Let o-i = TT^. Then o-i has underlying permutation 7Tk and sign vector (3. 8). Let
(fi, ^2,... , <n) be the sign vector of o-i = TT^, and a = 7Tk be the underlying permutation
of o-i. By Proposition 3. 1, TT^+I has underlying permutation 7!-fc+l and sign vector

tl + ^-l(l), ^2 + 5^-1(2), . . . , <" + 5^-l(n))
Clearly, we have

ti + S^-l(i) = (^S, + se(t) + . .. + 5^-i(, )J + S^-<c(, ) = Si + Sg(, ) + . .. + 50t(, ) .

The proof is thus coinplete by induction. |

A double partition (A, /^) of an integer n, denoted (A, /^) I- n, is a an ordered pair
(A, /x) of partitions such that |A| + \/j. \ = n where |A| denotes the sums of parts of
A. A double partition (A, /^) can also be denoted by (A, ^) [- {p, q), if |A| = p and
|^| = g. The number of parts of A will be denoted by £{\). Given two partitions A
and p., we shall define A U/^ to be the partition obtained by joining the parts of A
and ^ together. For example, 221U321 =32221. The notion of a double partition
is closely relation to the that of balanced cycles introduced in [1]. A signed cycles is
said to be balanced if it contains an even number of minus signs; otherwise, it is called
unbalanced. Moreover, a signed permutation is said to be balanced or if every cycle
is balanced in its cycle decomposition, and it is said to be totally unbalanced if every
cycle is unbalanced in its cycle decomposition. Given a signed permutation TT, the cycle
structure of TT is defined by a double partition (A, ^) such that A is the cycle structure
of balanced cycles in the signed decomposition of TT, and ^ is the cycle structure of
unbalanced cycles in the signed decomposition of TT. For example the type of the
signed permutation (3 74) (15 6 2) (810) ( 9) is (24, 13). From the representation
of Bn it is known that irreducible representations of Bn can be indexed by double
partitions. For a partition X = l-*'i2 2 . . . n>n of n, i.e., the number i occurs A; times in
A for any z, we shall use ^j to denote the number of permutations on [n] of type A.
It is well-known that

n\

lA'Ai!2^A2!

Given a double partition (A, /x) \- (p, g) of n, it is not difficult to show that the number
of signed permutations of type (A, /^) equals

y-((\)-(w (3. 9)

Suppose 5'U T is a disjoint union of [n] such that |5'| = p and \T\ = q. Consider
all balanced permutations TT on 5" of type X. Given an underlying cycle of length in,



there are 2m-1 ways to form a balanced cycle by attaching signs to each element in the
underlymg cycle- Thus'given an underlyi"g permutation on 5 of type A, we can form
2^-^^ balanced permutations the same type. A similar argument shows that given
any underlying ̂ permutation on T of type /,, we may form V-tW totally unbalanced
permutations of the same type. Combining these two arguments, we obtain (3. 9).

^ The following Lemma gives the parity of the number of minus signs in each cycle
of the signed permutation TT*, where the underlying permutation of 7Tuis a'cvcfe"

Lemma 3. 3 (Cycle Splitting Lemma) Let ̂  be a signed permutation with under-
lying permutation is a cycle of length n. Suppose TT has~^ minus signs. Then ̂  "can
be decomposed into (k, n) signed cycles with each of length n/(k, n). Moreover, the
number of minus signs in each signed cycle of 7Tk is congruent to k/(k, n)A module 3.
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Proof. Without loss of generality, we may assume that TT has underlying permutation
C' = (1 2 . . . n). Let ̂  = (<?i, ̂ ,..., 6n) be the sign vector of TT; it is known that C'fc can
be decomposed into {k n) cycles with each of length n/(k, n). Thus, the underlying
cycle decomposition of ̂ k also has {k, n) cycles with each having length 7i/(/k, n). Let
d == (fc, n), in general, a cycle of Ck containing the element z has the following form:

z

i + k

i+k
i + 2k

i+(n/d- l)k z ,

here the numbers in the above diagram are taken module n. Let (0^0^ ..., i9,. ) be the
si^gn vector of TT*. Since C(j) = j + 1 (mod n), we have C'<:(j) = j + k~ (mod n). Since
(°-l(z) =i-l (mod 2), applying Corollary 3. 2, it follows that

0, = S, + <?. _i + .. . + .5, -fc+i (mod 2) .

The number of minus signs contained in the above cycle equals 6l;+61^. +- . .+6(nld--i)k+i-
Then we have

n/d-1 n/d-1 k-1
Y. ej k+i = E E 6jk+.-i (mod 2)
3=0 j=0 1=0

= (6, +8,_, + .. . + S,_^)
+(S, +k + S. +k-l +... + <?,. +! ) + . . .
+(6i+(n/d-l)k + 6i+(n/d-l)k-l + ... + 6i+(n/d-2}k+l) .

Rearranging the summands in the above identity, we obtain

(Si_k+l+S, -k+2+- . .+^)+(^+1+^, +2+- . .+<?,+*)+. . .+(<5, +(n/d_2)/l. +l+- . .+<5,+(^-i^. ) .
Note that (n I d) k =0 (mod n). Thus i + (n/d -l)k and i- k+1 can be regarded
as consecutive numbers (mod n) so that all the above suminands can be arranged on



52

a circle of length (n/d)fc. Since all the indices of 8 in the above summation are taken
modulo n, the above sum can be further simplified to

<?1 +<?2+ . .. + <5(n/d) A

= ^+^2+---+^/rf)^

= {k/d)(6, +6, +... +6^
{k/d} A .

Thus the number of signs in each cycle of 7Tk is congruent to {k/d) A module 2. B
By the above Lemma, it can be seen that if TT is a balanced cycle, then ̂  is balanced

for any fc; and that if TT is totally unbalanced, then TT* is balanced whenever k/(k, n)[s
even or otherwise ̂ k is totally unbalanced. Furthermore, the Cycle Splitting Lemma
can be used to determine the cycle structure of TT* based on the cycle structure of TT.

Lemma 3. 4 Let TT be an unbalanced cycle of length n. Let k be a positive integer. Now
write n and k in the form n = 2'\s and k = Vt where s and t 'are odd. Then TT* is
balanced if and only ifj > i.

Proof. Since n = 2'5, k = 2^, and 5 and t are odd, we have
k 23t 2J t

(^, n) (2'6, 2^<) - 2min(1^') ' (5, <) '

Then it is easy to see that k/(k n) is even if and only \{ j > z. By the Cycle Splitting
Lemma, it follows that 7Tfc is balanced if and only if kl{k, n} is even. This completes
the proof. |

" n^.w recalla I'esult from I1] concerning the number affixed vertices ofasymmetry
of Qn. This result altogether with Lemmas 3. 3 and 3.4 will be sufficient to give the
cycle polynomial of Bn-

Proposition 3. 5 ([!]) Let TT be a symmetry of Q^ represented by a signed permutatz
// TT is balanced, then it has 2k fixed vertices where k is the number of balanced cycl
O/TT; otherwise TT /ta5 no fixed vertex.

ion.

es

To describe the main result of this section, we need the following notation. Let A be
a partition of n and TT be a permutation on [n] of type A. We shall use C^(x) to denote
the cycle polynomial of the cyclic group (7r), and we shall call it the cyclic polynomud
of A. Clearly, such a definition does not depend on the choice of the permuta. tion TT. For
a permutation TT of type A, it is easy to see that the order of the TT equals [A], where [A]
stands for the least common multiple of the components of A. Let A = lAi2A2 . . . ?iAn
for any k, the cycle structure of Trk, denoted Afc, is given by

^ = n [il^ k)\ (i, k) A,
(3. 10)



As a result, the number of cycles in 7rfc equals

£(\k) = ^ (z, fc) A,.
t

Thus the cyclic polynomial of A is given by

w

c^x) = TiT E^-(t-<:)A-.
fcTo

We are now are ready to present the main result of this section.
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(3. 11:

(3. 12)

Theorem 3.6 Let (A, //) be a double partition and let i be the maximum number such
that 2' is a factor of some part offz. Set r = 2'+1 if^j, ̂  0 otherwise setr = 1. Suppose
TT is a signed permutation of type (A, /^). Then the number of cycles o/TT when acting
on Qn equals

^A'U"''2)=[^'S1 2"A"""")-

Proof. By Lemma 2. 1, the number of reduced cycles of TT on Qn is determined by the
number affixed vertices of the signed permutations of 7T(:. It follows from Proposition
3. 5 that TTk does not have any fixed vertex if nk is not balanced. To make TTk balanced,
by Lemma 3.4, ̂  has to contain the factor r; otherwise there exists an unbalanced cycle
0 ofv such that r does not divide the length of 0, it follows that 0k totally unbalanced.
In other words, Ttk has no fixed vertex unless 7rfc G (7Tr). Clearly, TT'' is a balanced
permutation of type Ar U ^T. Suppose TT is of order m. Since the identity permutation
is balanced, it follows that m must contain the factor r. Since TTT is balanced, the order
of (TTT) is just the order of an ordinary permutation of type \r U //r, which is [\T, ^r].
Therefore, the order of TT equals m = r[Ar, ^r]. By Lemma 2. 1, it follows that the
number of induced cycles of TT on the vertices of Qn equals

^ \^ othe number of cycles of 7Trk _ ^
^^ y^ ̂ .^ " .y.^ .. . , ^ ̂ ^^^) "

Corollary 3. 7 The cycle polynomial of Bn is given by

1

"nt

n

2nn! £
p+g=n \P/ (A, ^)T(p, g)

where r is given as in Theorem 3. 6.

p

^
y-e(\)-ew ^c, r^rW/r

By Polya s theorem, the number of nonisomorphic vertex colorings of Qn using m
colors equals the cycle polynomials of Bn evaluated at 3- = m. In particular, for m = 2
it yields the number of types of Boolean functions in ?z variables.
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4 The Cycle Polynomial of Hn

In this section, we shall restrict ourselves to induced permutations of signed permuta-
tions on the edges of Qn. In a similar vein of the preceding section, one expects that
the number of cycles in the induced permutation is dependent only on the type of the
original signed permutation. Thus, the aim of this section is to compute the number
of induced cycles (i. e., the number of cycles of the induced permutations) of a signed
permutation of type (A, p.). To this end, we first consider the number of fixed edges of
a signed permutation of given type, again, a signed permutation is considered to act on
edges of Qn through its induced permutation. Now we need the following result from
[1]: let TT be a signed permutation acting on the edges on Q^ then TT has a fixed edge
if and only if TT is balanced and contains a 1-cycle or TT contains a unbalanced 1-cycle
and all the other cycles are balanced, i.e., TT is of type (A, 1), where A I- n- 1. Using
this result, we may derive the number of fixed edges of a signed permutation of given
type.

Proposition 4. 1 Let TV be a signed permutation acting on the edges of Q^. If TT is
balanced and of type X, then it has \^2(w~1 fixed edges. If TT is of type (A, l), theii it
has 2e^ fixed edges.

Proof. We first consider the case when TT is balanced. If Ai = 0, i.e., TT has no 1-
cycle, then it has no fixed either. So we may assume that Ai > 1. Asin [I], an edge of
Qn is represented by a sequence ofn- 1 O's or 1's with one occurrence of the symbol *.
For example, 00101*10 denotes the edge joining the vertices 00101010 and 00101110.
Treating TT as a symmetry on the vertices of Qn, it then fixes an edge, 0:1 ... a,_i *
ai'+l 

" " ' ani if and only if TT contains the 1-cycle (z) (by the separation argument in [1]).
In such a case, a-i . . . a;_i 0, 4.1 . . . Qn becomes a fixed vertex for the signed permutation
TT/ obtained from TT by removing the cycle (?). Thus by Proposition 3.5, there are
2^7r) = 2^7r^~1 choices for the subsequence ai . .. a, _i a, +i . . -On. Moreover, for any
1-cycle (i) of TT we may place * in the ith position of the above edge representation.
Thus, there are \i choices for the position of *, so that the total nvimber of fixed edges
of TT equals Ai2^)-1.

Let us now consider the case when TT is of type (A, l), that is, TT contains only
one unbalanced 1-cycle, say, ( i ), and all other cycles of TT are balanced. Then the
separation argument of [l] shows that the symbol * must appear at the zth posi-
tion in the above representation of fixed edges of TT. Thus, a fixed edge of TT is
of the form ai . . . a, _i * a;+i---Gn, and the number of choices for the subsequence
(Xl - - . a, _i a,+i . . . fln equals 2(('x\ which makes the number of fixed edges of TT. |

Analogous to the strategy of computing the cycle polynomial of -Bn, here we need
to count the number of induced cycles on edges of Q^ of a signed permutation of given
type. Because of the appearance of two cases in the above Proposition 4. 1, we shall
proceed according to these two cases. For a partition a, we shall use /9j(Q) to denote
the number occurrences of j in a. Let A = 1A12A2 . . -nxn. From (3. 10) it follows that

/3i(A<:)=E!A-
>lfc

(4. 1)



We now give the main result of this section which leads to the cycle polynomial of
the induced edge automorphism group H^ of the n-cube.

Theorem 4. 2 Suppose TT is a signed permutation of type (A, l), then the number of
induced cycles of TT equals

55

iH5i(E'2"A")+ I:, A(A2t)2«l»>).
^=1 2fc^[A2]

(4. 2)

7/7T is a signed permutation of type (A, ^) where ^ ^ I, then the number of induced
cycles of TT is given by

h]
E^(^)2^-1,E^7]^

where r is defined as in Theorem 3. 6 and 7 = Ar U^r.

(4. 3)

Proof. We first prove (4. 2). Suppose TT is of type (A, l). Recall that for TT, the
number r equals 2; the order of TT is thus 2 [A2]. If fc is odd, then TT<; is of type (Afc, 1).
By Proposition 4. 1, the number of edges fixed by ̂ k equals 2^Afc>. If k is even, then
TTk is balanced with type A* U 1. Then Proposition 4. 1 shows that the number of fixed
edges of 7Tfc equals

A(A/E U 1) 2^A'EU1)-1 = (^(Afc) + l) 2e^ = 2^Afc) + A(Afc) 2^Afc).
Hence by Lemma 2. 1, the number of induced cycles of TT adds up to (4. 2).

Next we prove (4. 3). Suppose TT is of type (A, ^/) where ^ 7^ 1. We claim that
7Tk does not have any fixed edges unless TTk is balanced. We may assume that ̂  7^ 0
otherwise the claim holds trivially. Suppose 7Tfc is not balanced, this implies that there
exists an unbalanced cycle 6t of TT such that 0k contains an unbalanced cycle. By the
Cycle Splitting Lemma, every cycle of 6k must be unbalanced. Let i be the length of
the cycle 0, then 0k contains (z, k) cycles with each having length i/(i, k). If i > 1, then
either (?, A-) > 1 or !'/(?, fc) > 1, that is, 0k contains either an unbalanced cycle of length
at least 2 or at least two unbalanced 1-cycles. By Proposition 4. 1, 7Tk cannot have any
fixed edge. We now consider the case when 0k is balanced for every unbalanced cycle
0 oi TT with length at least two. If such a cycle 0 exists, then k must be even. Thus
TT must be balanced because for any signed 1-cycle a, ak is balanced whenever k is
even. Finally, we are left to the case when TT does not have any unbalanced cycles of
length at least two. Since /x ̂  1, TT has at least two unbalanced 1-cycles. If TT has at
least two unbalanced 1-cycles, then for any odd number k, TTk has the same number
of unbalanced 1-cycles as TT, which implies that TTA: has no fixed edge and for any even
number k, TTk becomes balanced. Thus, we arrive at the conclusion that 7rk does not
have any fixed edge unless 7Tk is balanced. As we showed in the proof of Theorem 3. 6,
vk is balanced if and only if 7rfc G (7Tr). By Proposition 4. 1, nrk has ̂ i(7<:)2^)c)-1 fixed
edges. Since TT is known of order r [7] and 7 has order [7], by Lemma 2. 1 we obtain
(4. 3). .

Similar to Corollary 3.7, the preceding Theorem actually gives the cycle polynomial
of H^ by summing over all double partitions of n. Let K{Hn\ a") be the cycle polynomial
of Hn, then by Polya's theorem, K[Hn\ m) gives the number of nonisomorphic colorings
on the edges of Qn using m colors.
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5 A Cycle Structure Lemma

In this section, we propose a method to compute the cycle index of a permutalion
group G in terms of the number of fixed points of an element in G. We will first give
a general formula and then apply it to the hyperoctahedral group B^ and its induced
edge automorphism group Hn- In view of Polya's theorem, using the cycle index of
a permutation group one obtains the generating function of nonisomorphic coloring
patterns, which is more detailed than just the number of nonisomorphic colorings.
For this purpose, sometimes it is necessary to know the cycle index of a permutation
group. We shall achieve this goal for both Bn and Hn. The cycle index of Br, has
been computed by Harrlson and High [9] in a rather complicated way, but our formula
is much more natural and clearer. The cycle structure of Hn seems to have been
untouched before, although it is well motivated by the nonisomorphic edge colorings of
Qn as well as by the recent interesting in edge symmetries of computer networks, and
our formulas for Hn are believed to be new.

Let G be a permutation group on a finite set 5'. As in Lemma, 2. 1, for any TT E S
we shall use ip(^) to denote the mimber of elements of 5' that are fixed by TT. Then
the following Lemma establishes a connection between the cycle structure of TT and the
number of fixed points of a permutation in G.

Lemma 5. 1 (Cycle Structure Lemma) Let TT be a permutation on S, then the
number of k-cycles of TT is given by

E^/Q^'L
z\k

(5. 1)

where y. is the classical Mobius function.

Proof. Let /A;(^r) denote ^(?T ) and ̂ (^r) denote the number of elements 2- of 5" such
x is fixed by TTk but not by any permutation 7Tr forr < fc. We are going to establish
the following relation:

 

)=^g^}. (5. 2)
i}k

Let 3; be a fixed point of TT* and i be the small number such that a; is fixed by TT'. We
claim that i\k; otherwise we assume k = qi+ r where 0< r < ?. Since x is fixed by
both TT and ?r , it follows that 7T9'(a-) = a- and

TTT(x)=7Tr(7T9t(x))=7Tk{x)=X,

which contradicts the definition of i. Thus, we have shown that z'jfc, which yields (5.2).
From (5. 2) and the Mobius inversion, we obtain

9kW = E ^{k/z} /. (TT) .
. Ifc

(5. 3)

What remains to be proved is that gk(v} equals the number of k cycles of TT. It is
not difficult to see that if a; is in a k-cyde of TT, then it must be fixed by Trk but not



by any vr for r < k. Therefore, k must be the smallest number such that, Tvk fixes .r.
Conversely, if A; is the smallest number such that 7rk fixes x, then x must be in a k-cyde
of TT. The proof is thus complete. B

As expected, the purpose of the remainder of this paper is to obtain the induced
cycle structure of ̂a signed permutation of given type. 'In accordance with-t'he" above
Lemma, this problem reduces to the computation of the number of fixed "vert'ices "and
fixed edges of the signed permutation TT<:, given the type of TT. At this point", " we"h'ave
already encountered these numbers in computing the cycle polynomialsof ̂ ' and ^
In the proofs of Theorem 3. 6 and Theorem 4. 2 we have actually shown the'follo wir
two propositions. Recall that for a double partition (A, ̂ ), the number r is determined
by // as in Theorem 3. 6.

Proposition 5 2 Let TT be a signed permutation of type (A, /^), then 7Tfc has 2^A'CU^)
fixed vertices if r\k; otherwise 7Tk has not fixed vertex

Proposition 5. 3 Suppose TT is a signed permutation of type (A, l), then 7rk has 2e(xls)
fixed edges if k is odd; otherwise 7Tfc has (/3, (\k) + l) 2<1(A') fixed edges. If TT is a signed
permutation of type (A, ^) where ̂  ^ 1, then the number of fixed edges of 7Tk is qrven
by A(Afc U ^e(x^)-, ^^ ^^^ ̂  ^ ^ ^^ ^

Finally, we note that the maximum length of an induced cycle of a signed permuta-
tion TT is bounded by the order of TT, which has been shown to be r [\r U^]. Since the
number of signed permutations of a given type is determined in (3. 9), like Corollary
3. 7 the cycle indices of Bn and Hn can be obtained by summing the cycle structures
of signed permutations TT of type (A, ^/) over all double partitions (A, /x).
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