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ABSTRACT. Using the character theory of the symmetric group S,, we study the decomposi-
tion of the product of two conjugacy classes Ky * K, in the basis of conjugacy classes. This product
takes place in the group algebra of the symmetric group and the coefficient of the class K, in the
decomposition, called structure constant, is a positive integer that counts the number of ways of
writing a given permutation of type v as product of two permutations of type A and y. In this paper,
we present new formulas for the decomposition of the products Kyrp_y % Kyop_,, Krn_ry* b —
and Kyrp_, % K(s,n-s) Over a restricted set of conjugacy classes K.. These formulas generalize the
formula for the decomposition of the product of the class of full cycles with itself Kny * Kn)y.

Introduction

Let A = (1 <X <X <... < \) with A1+ A2+4...4 X = n, be a partition of
n denoted A F n. We write also A = 1m19m2 ___nma when m; parts of X are equal to i
(i=1,...,n). Consider the conjugacy classes Cy, C, of permutations in the symmetric
group S, whose cycle type is given by the partitions A and p of n. Let Q[S,] be the
group algebra of the symmetric group over the field Q of rationnals and let C[S,] be
the center of this group algebra. Let K, be the element of C[Sn] defined by

Kx = Y x(c€C)o
OESa
where x is the usual characteristic function. We shall also call k¥ » a conjugacy class.
A product K, * K, of conjugacy classes in C[S.] can always be decomposed in the basis
of conjugacy classes with non negative integer coefficients:

= Y
Ky+xK, = E Ky
yHn

The structure constants ¢] . that we will also write ¢] 4 = (7,2, p) count the number of
ways of writing a permutation of type v as a product of a permutation of type A with
a permutation of type u .

1Work supported by NSERC (Canada).
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Boccara ([1],corollary 4.8), Stanley ([9],theorem 3.1) and Goupil ([3],corollary
1) have previously given different equivalent formulas for the number of decomposi-
tions (v,n,n) of a given permutation of type v as a product of two n-cycles. Boccara
([1], theorem 7.2) has also given a recursive formula that permits the computation of
(7:1*n— k,17n —r). In section two, we show that if y = (k+ 1)™c+1 . 5me s restricted
to partitions with parts of size at least k + 1, then we can derive a closed formula
for the decomposition (v, 1%n — k,1%n — k) of a permutation of cycle type 4 as prod-
uct of two (n-k)-cycles. From this we easily obtain a formula for the expansion of
(7, 1*n—k,1°n—s). In section three, we similarly provide a formula for the coefficients
(7, (k,n— k), (k,n — k)) with the same restriction on the partition v and we expand it to
a formula for (v, (k,n—k), (s,n— s)). These formulas are generalizations of [3], corollary
1 and show potential for a combinatorial interpretation.

To develop our results, we will use a method given by Murnaghan ([7]) to
construct polynomials in several variables that are in bijection with the irreducible
representation of S,. These character’s polynomials provide the evaluation of the
irreducible characters on each conjugacy class and they are used and described in 3.
For character theory concepts that will be used, we refer the reader to Macdonald’s
book ([6]), but in order to make our treatment as self contained as possible, we present
in section one an overview of the concepts used in this paper.

1. Notations and Terminology

1.1. The sum of two partitions of possibly different integers u = 1™19m2 _pma 1
and u/ = 1™2™ k™ k k, k < n, is the partition of the integer n + & defined by
ptp =1mtmgmatmy | pmatml The partial order < on the set of partitions is defined
by the condition:

pap s ml <m;, VYi=1,...,n

1.2. A Ferrers’s diagram of shape A is a set of rows positioned on top of each other
with the ith row, starting from the top, having ); nodes. A hook is a partition of
shape 1'n—4,i=0,... ,n—1. The lenght of a hook is the number of nodes it contains.
A double hook is a partition of shape 1:2im,¢t. Its Ferrers’s diagram consists of two
hooks, one inside the other. Figure 1.2 shows the Ferrers’s diagram of a double hook
of shape 12234, 5 with inner hook of lenght 6.

o

figure 1.2

1.1
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The inclusion order ¢ on the set of partitions is defined by saying that A’ c A
iff the diagram of A contains the diagram of X'. The dimension of the irreducible
representation of S, associated with a partition A is noted f* and is given by the hook

formula:
n!

H:’,j hi,j

In particular, when 2 is a hook, we have:

flin_i=<n;1) t=0,...,n—1

=

1.3. The Murnaghan-Nakayama’s rule computes recursively the values x} of the
irreducible characters A on the conjugacy classes indexed by u. It relates the values
x; and xi_; where p—i=1™ . _im=1  pmappn_iand v is obtained from A by taking
a border strip out of its Ferrers’s diagram. A border strip s is a connected subset of A
that lies on its northeast most part which contains no 2z2 block of nodes. The lenght
|s| of a border strip s is the number of nodes it contains and its height h(s) is one less
than the number of rows it occupies in A. The Murnaghan-Nakayama rule is given
by the formula:

Xu= Do (CDMMNL Yk

AFn—g

Xca
where the sum is taken over all ' c A such that the diagram A — ) is a border strip of
lenght i. A description of Murnaghan’s method and how we use it to construct char-
acters’ polynomials associated with the irreducible representations of S,, is presented
in [3] section 1, and in the original paper of Murnaghan [7]. A table of characters’
polynomials is given in [5]. In particular the following identity can easily be obtained
from Murnaghan’s method:

‘n—i k~1 —k— k-1 .
Xikn_k=< ; )+(—1)" k 1(i—n+k) Vi=0,...,n—1

2. The products Kju,_,+Kien_,

Our point of departure is the character formula (see [3],section 3)

cilic Xaxaxa
(‘7,A,}l) - l '\Tlll' ﬂlz AAp Ay

akn fﬂ
When we have the restriction A = g = 1¥n — k, formula 2.1 becomes:
[Cyxp—i|? XTkn—kXThn_k X5
(1,1¥n —k,1*n—k) = o P fa" X

akn

1.2
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Our goal is to evaluate the characters in the right hand side of 2.2 and then evaluate
the sum. The next result serves that purpose:

Theorem 2.1 Let A+ n and v = (k+ 1)+ .. .n™~ be a partition of n with smallest

part of size 1 > k+1. The product X1xn_xX3 S mon zero only if A has one of the following
two shapes:

) A=1n—i 0<i<k—1or n—k<i<n-—1
i) A= 1'27k+1-j,t; t.e. X is a double hook with inner hook of lenght k.

Notice that when & < n—k, the condition 0<i<k—1 or n—% <i<n-1 gives
rise to two conjugate sets of partitions. To establish theorem 2.1, we first derive the
following lemmas.

Lemma 2.1 Let A=1%m,t+n be a double hook, then we have:

) G ) C7 ) O =i = 25— 3m 4 1)
(HHY (G + 5 +m)

o=

Proof. This is a straighforward application of the hook formula 1.92. |

Lemma 2.2 Let A = 1%k - j+1,t - n be a double hook with inner hook of lenght k,

then: -
Xien—t =(—1)i+j+l( J )

Proof. We make use of Murnaghan’s method and see that when ) = 1*2m,tF n with
i+j4+m < n-k, the character Xisn_i 15 Obtained by evaluating only the contribution
of the fixed points in the character’s polynomial of A. Recall that the fixed points
contribution in a character’s polynomial is the monomial obtained by replacing n by
k in the hook formula for . The only other possible non zero term in the character’s
polynomial of ) is annihilated by the condition i+j+m < n-k. So we have

B _ C* 7)) Gamed) 7)Y (k=i - 25— 2m 4 1)
1on—k = i+ -
" (Y GE+5+m)

and lemma 2.2 follows from replacing m by k-j+1 in 2.3. Observe that when we have
k<n-k, if a double hook does not satisfy the condition i4+j+m < n-k in lemma 2.2,
then its conjugate diagram does. [ |
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Lemma 2.3 Let A+ n and v = (k + 1)™k+1 . 0™ + n be partitions with the smallest
part of v of size l > k+1. Then we have:
i) x),_, is non zero only if a hook shape can remain after removing k dots
Jrom the Ferrers’s diagram of .
ii) x3 is non zero only if we can remove a border strip of lenght 1 from )
and obtain a Ferrers’s diagram.

Proof. These two observations are straightforward consequences of the Murnaghan-
Nakayama’s rule. [ |

Proof of theorem 2.1 Combining the two observations in lemma, 2.3, it is easy to
realize that the product x2,, _ 1X5 is non zero only if A itself is a hook or a double hook.
If X=1'n—i1is a hook, then 1.5 imposes that 0<i<k-lorn-k<i<n-1.If)isa
double hook 1¢2/m,t, then by lemma 2.3 (1), the inner hook of A is of lenght at most
k, and also k < n — k — 1 because otherwise v = (n) and X has to be a hook. Suppose
that the inner hook of A is of size j+m-1<k and Xien_r # 0, then v must contain at
least two parts of size at least k+ 1 and we have n > 2k+2. The inner hook of A must
be part of only one border strip that is removed via 7, otherwise there would have a
border strip of size smaller than k+1 that would remain in the recursion process. Let
the border strip that contains the inner hook be of size I = # + J+m>2k+1 (¥ <i)
then we obtain at the same time, using the assumption and lemma 2.2:

)

!>k—j—-m
0<i'<i<k—j-m

and this is a contradiction. Thus the inner hook of A must be of lenght &. [ |
Proposition 2.1 Let y = (k+1)™+ ...n™» be q partition of n and A = 12 k+1-j,n-i-
k-j-1 be a double hook with inner hook of lenght k. Then

A k n [ ME+1 Mn
= (-1
M0 T () ()
Yhitk+1
¥'ay

where the sum is over all partitions y' = (k 4+ 1)™+ .. .n™ of i+k+1 satisfying v’ <.

Proof Using Murnaghan’s method, the contribution of the fixed points of v in the
character’s polynomial of A is given by lemma 2.1 in which we replace n=1+2j+m-+t
by 0. This contribution is always zero unless j = 0 and m = 1 in which case we obtain
(=1)**1. In other words, the contribution of the fixed points is always zero unless
A 1s reduced to a hook. This forces us to remove the border strip of lenght i+k+1
that contains the inner hook of A with border strips of lenght at least &+ 1 that will
constitute each y'. This explains the index set and the binomial coefficients in the
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sum. To explain the sign contribution in the expression, suppose that the border
strip of lenght i + k+ 1 is a vertical strip (which imposes that k = 0), then only the
term sgn(y’) will appear. If it is not a vertical strip, the only alteration to sgn(v’) is
provided by the removal of the border strip that contains the inner hook of A. Such
border strip of lenght say I = i’ + k + 1 will have height # + j and the hook that will
remain after the removal will have height j. So the contribution of the removal of
that border strip will have sign (=1)+/(=1)/ which is the signature of the associated
cyclic permutation of lenght # 4+ k+1 times (—1)* and the proposition is proved. o

Remark 2.1 Observe that the sum in proposition 2.1 does not depend on the variable
j and that in fact, proposition 2.1 is equivalent to the following generating function
of double hooks with inner hook of lenght k evaluated on classes of type 7 restricted
as in proposition 2.1:

n—2k-2 o ) o ) n
Z X‘lr 21k+1—_1,n—;—_1—k—1y|+k+1 — (__1)k H (1 _ (_y:))m.'
=0 i=k41

where v = (k + 1)™+1 .. o™=
Lemma 2.4 Let v = (k+1)™+ ...n™~ be a partition of n and 0 <i < k, then
1 n—g - ( l)‘

Proof This is a straightforward application of either Murnaghan-Nakayama’s rule
or Murnaghan’s method. |

Theorem 2.2 Let v = (k+1)™+ ...n™= be a partition of n and 0 <k <n-—1, then

bk CDECEDICka k] s~ sgn(7)ICy [ICy—y]
(7,1"n—k,1°n —k) = El(n — 2k + 1)|C,] 1247 (|'1| 1 n ]-yl 1)

where the sum is over all partitions 4’ satisfying v’ <y as defined in 1.1.

Proof We verify immediately that theorem 2.2 gives (v,1¥n—k,1¥n—k) = 0 if sgn(v) =
—1. We may thus assume that C, contains only even permutations. By equation 2.2
and theorem 2.1, the only non zero characters here are indexed by hooks or double
hooks and we have:

M (n—k - 1) e (Xik';"k) =
(v,1%n — k,1*n — _?(—)—- (1+(-1) I)Z Fins +

n—2k—2 k=1 (41 2 k=j+ln—i—j-k-1 1°27k—j41,n—i—j—k-1
X1kn—k X~
f1‘2ik-j+1,n-i-j-k-1

(2.4)
i=0  j=0
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The first sum in 2.4, is multiplied by (14 (~1)"~1) because we use the fact that when
A is the conjugate partition of A, then x2 = sgn(7)xy - Thus each irreducible character
in this sum has a conjugate and can be counted twice or annihilated. Then using

identities 1.3, 1.5, lemmas 2.2 and 2.4 and proposition 2.1, we transform equation 2.4
into:

™ (n—k—1)! k=1 1yi(k=1)2

n—2k-2 n mo\ k=1 (k—'1)2
b .
> 2 (“Drsgn(y) I1 (m’)Zfl‘zjk—j+1],n-i—j-k—1 (#45)
i=0 ¥ r=k+1 T/ j=0
' |=i+k+1

Now recall the following two binomial identities (12], equation 7.1 and [4], 5.93)

T EVED e _ G
Z =T = (::i (2.6)

=0

Z‘:(;)( M I

N—g—k— T ne—i—k— (2.7)
j=0 ( jk 2) ( k-I; 2)
and observe using (2.7) and lemma 2.1:
k-1 (k;—l)z ~ k-1 (k;l)z(i+§+1)(k +it+1)
j; FU2k=j+ln—i-j—k-1 — jgo (k;l) (:) (n—f:-l) (n—o’;k—2)(n -i-2k—1)
~ E4itl g (k;l) (i+§+1)
DO e -i-2%-1) 5 (55
(n=H) ("
= n i\ (n—i—k— (28)
(n—2k+ 1)(i+k+1) (k: )( kk 2)
Observe also that for partitions v¢ = 1™+ . .. pmi 4y =1™1 . .n™~ we have:
7 &) _ IovliCy -yl
[I55= (2.9)
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Then we use (2.6) to transform equation 2.5 into:

(7,1kn -k, 1%n — k)= M [(1 4o (—l)"‘l) (Zif +

ki(n — &) (o=
(n;k) (n— k) "_2Zk—2 Z (_l)ks.‘]"ﬁ") H?=k+1 (2':)
(n—2k+1) o " (I‘;"I) (l7’L—1) (n-—l”rc’l—l)
' l=i+k+1
= O8Ol [+ (1)) |
THm-2Z 1) | ()
(=D*("")ICrrn_s| 5gn(y)|Cy||Cyryr]
L o (2.10)
k'(n -2k +1)|C,| 722 (leL B ‘1' )
7'#0,y
The double sum in the right hand side of 2.10 is the result we are looking for
except that it excludes the two cases 4/ = 0,9' = v, but if we use the following fact:
CDE 5~ sgn(0)ICxlICy-yl _ (-1)* [ Cyl _, (=1)mtey|
S, (YY) TG [CoECE) T ) r
_ @41
"z
we see that the sum in the right hand side of (2.10) now covers all partitions 7'«
and the theorem is proved. |
Remark 2.2 We obtain from theorem 2.2 the formulas:
" ooy A4+ (=D an - k- 1)1(70F)
(n),1*"n—k,1* n—k) = Fi(n — 26+ ) (n = 1) (2.11)
((k+1)% 1%k +2,1%k + 2) = (k + 1)3 (2.13)

Observe also that v # (n) in theorem 2.2 implies the inequality ¥ < n — k.
Moreover, theorem 2.2 is a generalization of [3], corollary 1, [1], corollary 4.8 and [8],
theorem 3.1 (when & = 2).

Remark 2.3 An immediate consequence of theorem 2.1 is that if we have k < s and
7= (s+1)"+ .. .nm= then the product Xirn_kXen—sX) 18 nON zero only if A is a hook.
This observation has the following consequence:

Corollary 2.1 Let 0<k<s<n/2 and v= (s+1)me+: ... n™~ then

2n(n—-k-1)(n—s—1)! if san = (—1)k+s
(1, 1*n—k,1'n—s)={  Foln—b=stI sgn(7) = (-1)
0 otherwise
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Proof We use remark 2.3, lemma 2.4 and formula 1.5 and we transform formula 2.1
into the following:

(7,1%n - kE,I'n—s)=

n! S DR 7Y

kl(n = k)sl(n — s) () (A eon(n = E)sgn(1'n = s)sgn())

and we deduce corollary 2.1 by using identity (2.6). [ |

The coefficients obtained in corollary 2.1 do not depend on the partition +.
This means that all conjugacy classes with cycles of lenght at least s+ 1 have the
same coefficient in the decomposition of Kji,_, * Kisn—s. This fact is reminiscent
of the observation that the product K(ny * K1 n-1) has constant coefficients in its
decomposition over all odd conjugacy classes (see [3]).

Theorem 2.2 only permits the evaluation of coefficients of conjugacy classes K.,
with relatively large cycle lenghts but it is possible to find coefficients of conjugacy
classes K., with partitions ~ containing fixed points and large cycles by using the
following conjecture:

Conjecture 2.1 Let0<k<n-1and y=+"+ 1™, where v* = 2M2 | _p™~ 45 the
part of v that does not contain fized points. Then:

—2k+i-1

k n
(7, 1%n — k,1%n — k) = m,! > (%_ (O, 15—kt i-my, 10 — k 4 immy)
1=0 :

This conjecture generalizes a result of Walkup ([10], theorem 1) and has been
proved by the author for 0 < k < 3.

3. The product Kkn-k)y*K(s,ns)

Let k¥ < n -k and write the character formula (2.1) for the product Kk n—i) *
Kkn-k):

ICk,n—r)l? Xf\k,n-k)xf\k,n-k)x%\
(7)(k)n—k)>(kan_k))= nl ; f,\
n

The following result contributes to the evaluation of the characters in formula 3.1.

Proposition 3.1 Let Ak n, v = (k+ 1)met1. . n™~ and 0<k<n—k. The product
xz‘k,n_k)x,’; is non zero only if A has one of the following two shapes:

) A=1n—q, 0<i<k-1or n—k<i<n-1
i) A = 1°27k-j+1,t; i.e. A is a double hook with inner hook of lenght k.

Proof Since X(kn—x) 18 DON zero only if a hook remains after removal of a border
strip of lenght k, the partition A must be a double hook, possibly degenerated into a

(2.12)

(3.1)
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hook. Moreover, this double hook A = 1°2/m, ¢ must satisfy at least one of the following
conditions:

aym=k—i—j
bt=k—j
oom=k—j+1

This is because the border strip of lenght k that is removed starts either at
the top (condition a), at the right (condition b) or is the inner hook (condition c) of
the Ferrers’s diagram X. When the first or the second constraints are satisfied, then
x5 = 0 unless X is a hook, i.e. j =0 and m = 1. This permits shape i). Shape ii) is
obtained by the third constraint. O

The main result of this section is the following:

Theorem 3.1 Let y=(k+1)™+ ...n™ and 0< k < n—k, then

(% (k:n - k),(k,n - k)=

(—l)klc(k,n—k)l 39"(7')|C~/'||C-1—7'| k-1 (I‘Yli;k-’-j)
FG 2 TE) e - B 2 )

i=0

v'ay

To prove theorem 3.1, we establish the following lemmas.
Lemma 3.1 Let 0<k<n—k, then
(-1, ifo<r<k

) Xemoiy =4 (D™, if n—k<r<a
0 otherwise
) X g P TIEI T 2 C1 v 0
Proof These two identities follow from Murnaghan-Nakayama’s rule. [ |

Lemma 3.2 Let k,n be two positive integers, then we have:

RO ()

j=0

Proof Set f(n,k) = Y52) (_l)j(:-"‘“ . Then using the binomial identity ([2], formula
4.1) ’

1 k 1 1
[ [Uﬁ] e
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we have:

" k-1 C[(r—k+i n=k+y
f(n, k) = m;(_l)] [( (E) ) ! ((13-1))]

=0

k-1 n—k+j+1 n—k+j
= [f(n+ Lk+ 1)+(—1)’°‘1<Z> +3(-1y [ L I rre )H
=0

E = AN
= % [f(n +1,k+1)+ (-1)*? (Z) —f(n+1Lk+1)+ f(n, k+ 1)}
= T [V (:) TR 1)} (3.3)

On the other hand, we also have:

o [ @« men () = e () &

Thus both sides of lemma 3.2 satisfy the same recurrence with the same initial value
k=1 and their equality follows. [

Proof of theorem 3.1 We proceed similarly to the proof of theorem 2.2 and we
assume that sgn(y) = 1. Using proposition 3.1, we transform equation 3.1 into:

1'n—i 1'n—i
n! Lty (X(k,n—k)) Xy
(7’(k’n_k))(k)n_k)) - Ic2(n—k)2 [g flln_" +
n-2k-2 k-1 (X(li’?:i;;'+1m—i—i—k—1)2X_lr‘Z’k-j+1,n—i—j—k—1
Z Z fl-’zik—j+1,n-x'-j—k-1 (3'5)
=0 ji=0
Then using identity 1.3, lemma 2.4, lemma 3.1 and proposition 2.1, we have:
k=1 ;
ol (-1)
(v, (kn = k), (k,n— k)) = Bk [22 @) +
1=0 H
L "2k nog N kol 1
/7
(_1) Z Z Sgn(')’ ) H (m;‘) Z fl'ij—j+1,n—i—k—j-1 (36)
1=0 y'Fi+k+1 r=k+1 j=0

Using lemma 2.1 and the binomial identity([2], formula 2.1):

o) [1+(_1)H} (3.7)

(&)
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we get:

(7, (k,n = k), (k, n — k) = —" [2’1 [1+(—13’°‘1}+

kX (n—k)? | (n+ 1) (e
n—2k—-2 n m,")(]c+i+ 1) k-1 (i+j_+1)
(-DF sgn(v') R . YT 3.8
; -y'l-%;-:i+1 rzl;-[f-l ()( f 1)(n_2k—’_1)_jgo(kjl)( 2jk_z) &8
where the second sum in the right hand side of 3.8 is over all partitions v/ =
(k+1)™x+1 .. .n™n of k+i+1. This sum does not contain the two partitions 4 = 0,~. But
if we set |v'|=k+i+1 and we use 3.7 and lemma 3.2, we observe the two identities:
(k+i+1) (n—k)
n\ m—k— = n H (39)
DO R ED
(—l)k(n _ k) , k-1 (i+_;'_+1
7 - sgn(y’) TE<I) fn—i—F =y
(k:)("—2k_’—1)7r=zgﬂ ;(kjl)( jk 2)
. k=1 (II=k4)
= (=1)*(n—k) = e Ty e
7':%1 (hll: 1)(n_|7’l_k) j=0 (k] 1)( '}I 1)
2n (=1)k-1
= 1+ 3.10

So that the right hand side of identity 3.8 now contains all partitions ¥’ <y and we use
identities 2.9 and 3.9 to get:

(v, (k,n — k), (k,n — k)) =

(—l)klc(k,n-k)l Z sgn('y’)|C.,:||C.7_7,| k-1
s - G e I P~ A Gl D D

which proves our theorem. |

(I‘Y'I;kﬂ')

Corollary 3.1 For 0 <k < n—k, we have:

((m), (k= B), (ks = k) = (14 (=122 [(;‘) + <—1)k-1]

Proof This is immediate from theorem 3.1 ]

Remark 3.1 No closed form similar to formula 2.7 seems to be known for the

binomial expression
k-1 (i +i+ 1)
J

e (lc]—'l) (n—i;k—2)
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contained in 3.8. For example , if we apply theorem 3.1 to compute the structure
constants a(k) := ((k + 1)2, (k,k +2),(k, k + 2)), we obtain:

. on! n (D)1 (k+1)&2 (G +1)
W= w0 O D 20 e

and the more simple binomial expression in 3.11 does not seem expressible in closed
form. The first nine terms of the sequence a(k) starting at k=1 are:

8,27,384,12100,736128,70990416, 9939419136, 1896254551296, 472882821120000

No rational function seems to generate the sequence a(k) or the binomial expression
in 3.11.

Remark 3.2 (J. Remmel [8]) An immediate consequence of proposition 3.1 is that if
k # s then the product x}.,_,X3:n_,x5 is non zero only if X is a hook. We thus obtain
the following result:

Corollary 3.2 Let 0<k<s<n/2and y=(s+1)™+ ...n™=, then

(m(k,n—k),(s,n_s))={k("_k)'(""“"“’[ i Rk

0 otherwise

Proof We use remark 3.2, lemma 2.4 and lemma 3.1 and we transform formula 2.1
into the following:

(v, (k,n—k),(s,n—5)) =

| E-l i
E(n = kr)ls(n =3 ; (n‘—.l)) (1+ sgn(k,n — k)sgn(s,n — s)sgn(y)) (3.12)
then we use formula 3.7 to obtain our result. ]

Again, we observe that the coeflicients obtained in corollary 3.2 do not depend
on the partition y so that we have the same coeflicient for all the conjugacy classes K,
with cycles of lenght at least s+1 in the decomposition of the product K n_iy* K5 nos)

We terminate with another product whose decomposition has the same prop-
erty of being distributed evenly over a restricted set of classes.
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Corollary 3.3 Let 0<k < s <n/2 and y = (s 4 1)men ...n™»_ then

2n(3)(n—k-1) . _
(1 (15 n = k), (s,n —5)) = { T if son(r) = (-t

0 otherwise
_ { (5= 1)si(7,1°n — s, (k,n—k)) if sgn(y) = (=1)F-1 = (=1)~1
“lo otherwise

Proof For the first 1dentity, we apply theorem 2.1, lemma 2.2, lemma 3.1 and lemma
2.1 to the character formula 2.1. We obtain:

(7) (1ky n-— k),(S,n &= S)) =

2)(n—k—1)172=1 (k-1
) i(n = 1) ((nll) (1+ sgn(1*n - k)sgn(s,n — s)sgn(y))
=0 i

and the first identity follows. The second identity is obtained from the observation:
,Cl"n—k”C(s,n—c)I = (s - l)s—klcl'n—a”c(k,n—k),

where (s —1),_; is a descending factorial.
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