A Formula for Two-Row Macdonald Functions

Naihuan Jing and Tadeusz Józefiak

Let F be the field of rational functions in two independent indeterminates q and t over the field of rational numbers. We consider the ring Λ_{F} of symmetric functions over F in infinitely many variables x_{1}, x_{2}, \cdots. If p_{n} is the power sum symmetric function of degree n and $p_{\lambda}=p_{\lambda_{1}} \cdots p_{\lambda_{k}}$ for a partition $\lambda=\left(\lambda_{1}, \cdots, \lambda_{k}\right)$, then the set $\left\{p_{\lambda}\right\}$ forms a linear basis for Λ_{F}.

We define the scalar product on Λ_{F} by setting

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=\delta_{\lambda \mu} \prod_{i \geq 1} i^{m_{i}} m_{i}!\prod_{j \geq 1} \frac{1-q^{\lambda_{j}}}{1-t^{\lambda_{j}}}
$$

where m_{i} is the multiplicity of i in the partition λ and $\delta_{\lambda \mu}$ is the Kronecker symbol.
There exists a distinguished orthogonal basis $\left\{P_{\lambda}=P_{\lambda}(q, t)\right\}$ of Λ_{F} with respect to the scalar product determined uniquely by the following property [2] [3]:

$$
P_{\lambda}=m_{\lambda}+\sum_{\mu<\lambda} u_{\lambda \mu} m_{\mu}
$$

where m_{λ} is the monomial symmetric function associated with λ, " $<$ " is the dominance ordering on partitions, and $u_{\lambda \mu} \in F$.

We are interested in another basis $\left\{Q_{\lambda}=Q_{\lambda}(q, t)\right\}$ of Λ_{F} such that

$$
\left\langle P_{\lambda}, Q_{\mu}\right\rangle=\delta_{\lambda \mu}
$$

The functions Q_{λ} (or P_{λ}) are usually called Macdonald symmetric functions. If $\lambda=(n)$ or (r, s) then we write $Q_{n}, Q_{r, s}$ for the corresponding Macdonald function. The Q_{n} can be explicitly expressed in terms of x_{1}, x_{2}, \cdots. In fact, the generating function of the Q_{n} has the following form:

$$
\sum_{n=0}^{\infty} Q_{n} z^{n}=\exp \left(\sum_{n \geq 1} \frac{1}{n} \frac{1-t^{n}}{1-q^{n}} p_{n} z^{n}\right)
$$

The goal of this note is to announce the following result.
Theorem. If λ is a partition with two parts r and $s, r \geq s \geq 0$, then

$$
\begin{equation*}
Q_{r, s}=\sum_{i=0}^{s} a_{i}^{p} Q_{r+i} Q_{s-i} \tag{1}
\end{equation*}
$$

where $p=r-s, a_{0}^{p}=1$, and for $i>0$

$$
a_{i}^{p}=\frac{(t-1) \cdots\left(t-q^{i-1}\right)}{(1-q) \cdots\left(1-q^{i}\right)} \cdot \frac{\left(1-q^{p+1}\right) \cdots\left(1-q^{p+i-1}\right)\left(1-q^{p+2 i}\right)}{\left(1-q^{p+1} t\right) \cdots\left(1-q^{p+i} t\right)}
$$

If we let $q=t^{\alpha}, \alpha$ a parameter, then

$$
Q_{\lambda}(\alpha)=\lim _{t \rightarrow 1} Q_{\lambda}\left(t^{\alpha}, t\right)
$$

is known as the Jack symmetric function associated with λ. Hence the Theorem implies the following formula.

Corollary. If λ is a partition with two parts r and $s, r \geq s \geq 0$, then

$$
\begin{equation*}
Q_{r, s}(\alpha)=\sum_{i=0}^{s} a_{i}^{p}(\alpha) Q_{r+i}(\alpha) Q_{s-i}(\alpha) \tag{2}
\end{equation*}
$$

where $p=r-s$ and

$$
a_{i}^{p}(\alpha)=(-1)^{i} \frac{(1-\alpha) \cdots(1-(i-1) \alpha)}{i!} \cdot \frac{(p+1) \cdots(p+i-1)(p+2 i)}{(1+(p+1) \alpha) \cdots(1+(p+i) \alpha)} .
$$

Notice that the normalization of Jack functions is different from that of Stanley in [4].
We can express formula (1) in terms of basic hypergeometric series as follows:

$$
Q_{r, s}={ }_{4} \Phi_{3}\left(\begin{array}{cccc}
q^{p}, & t^{-1}, & q^{p / 2+1}, & -q^{p / 2+1} \\
& q^{p+1} t, & q^{p / 2}, & -q^{p / 2}
\end{array} ; q, t R\right) Q_{r} Q_{s}
$$

where $p=r-s$ and R is the raising operator on monomials $Q_{i} Q_{j}$, i.e. $R\left(Q_{i} Q_{j}\right)=Q_{i+1} Q_{j-1}$. We assume that $Q_{i}=0$ for $i<0$.

Formula (2) can be rewritten as

$$
Q_{r, s}(\alpha)={ }_{3} F_{2}\left(\begin{array}{ccc}
p, & -1 / \alpha, & p / 2+1 \\
& p+1+1 / \alpha, & p / 2
\end{array} ; R\right) Q_{r}(\alpha) Q_{s}(\alpha)
$$

where $p=r-s$ and ${ }_{3} F_{2}$ is a hypergeometric series.

References

[1] I.G. Macdonald, "Symmetric Functions and Hall Polynomials," Oxford University Press, Oxford, 1979.
[2] I.G. Macdonald, A new class of symmetric functions, Publ. I.R.M.A. Strasbourg, Actes 20^{e} Séminaire Lotharingien, 1988, 131-171.
[3] I.G. Macdonald, "2nd edition of [1]," to appear.
[4] R.P. Stanley, Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989), 76-115.

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

