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At first glance, category theory may seem singularly inappropriate for studying
combinatorics. Morphisms are the essence of category theory, but combinatorics tends to
focus on structures and their substructures. When the typical morphisms are just
embeddings, why bother with category theory? But there are naturally occurring
examples where morphisms are not always 1-1. For instance, if our structures are totally
unstructured, just sets, then every map is a morphism; moreover, some of the most
fundamental enumerative combinatorics deals with sets and set mappings. Thus, there
may well be a useful role for category theory in combinatorics.

One way of using category theory, due to A. Meush, is intimately connected with
the concept of a factorization of a category; consequently, this approach can involve
considerable category theory. However, in this paper we will only be using the universal
algebraic concepts of direct product and subdirect product. For a much more general
theory we refer the reader to [2], which is the Ph. D. thesis of the first author, completed
under the supervision of the second author.

Let K' be a class of finite algebras closed under finite products and subalgebras; let

K be the skeletal category associated with K': the objects of K consist of one member of

each isomorphism class of K' and the morphisms are all algebra homomorphisms. Let Z(K)

be the free Z-module with basis the objects of K; we will define two multiplications on Z(K).

Let Ob(K) ={A, | i e I}; for i, j e 1, let Ap^ j) be that member of Ob(K) isomorphic to the

direct product of A| and Aj, A, x Aj. For the first multiplication, let A, o Aj = Ap(, ^ and

extend to Z(K) lineariy. For the second, let r(i, j, k) be the number of subdirect
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subatgebras of A, x A) (i. e. subalgebras of A, x A, whose first projection is onto A| and

whose second projection is onto Ap which are isomorphic to A^ and define A, . Aj =

£ r(i. J. k)Ak; extend to Z(K) linearly. Note that r(i, j, k) is always finite and for fixed i and j,
r(i, j, k) is non-zero for only finitely many k. Thus, . is well defined.

Theorem ([2]): <Z(K); o > and <Z(K); . > are isomorphic rings.

Proof: For i e I, define t(A, ) = E t(i, j)Aj where t(i, j) is the number of subalgebras of A,

isomorphic to Aj; let t be the linear extension to a Z-module endomorphism of Z(K). This

will be our isomorphism from <Z(K); °> to <2(K); . >. To see that multiplication is

preserved, notice that t(p(i, j), k) = S t(i, m)t(j, n)r(m, n, k). Hence, t(Aj o Aj) = t(Aj) . t(Aj).
To complete the proof, we need to show that t is invertible. Let us write t= id + u where id

is the identity map and U(A|) = £ {t(i, j)Aj | i ^ j}. We can define a partial order on I by i < j

iff t(j, i) > 0 (i. e. iff A, can be embedded into Aj). Then u(A, ) = £ {t(i, j)Aj | j < i}. Since every

principal order ideal of <1, <> is finite, u is locally nilpotent: for each w e Z(K) there is an n
such that un(w) = 0. This means that the inverse of t is t-1 = X (-1)iui (the local nilpotence of
u guarantees that the sum is always finite).

Let Hom(Aj, A)) be the set of all homomorphisms from A, to A, and Sur(Aj, A, ) the set
of all onto homomorphisms from A, to Aj; define d(i, j) = |Sur(Aj, Aj)| and

c(i, j) = |Hom(A,. Aj)|. Define d, :Z(K ) -» 2 by d,(Aj) = d(i, j) and define C|:Z(K) -» Z by
Cj(Aj) = c(i, j), with both extended linearly. Finally, define d:Z(K) -^ Z' byd = (djjg | and
c:Z(K)^Zibyc=(c, )i6i.

Theorem ([2]): c:<Z(K);°> -> Z/ and d:<Z(K); . > -^ Z 1 are ring embeddings
such that dt = c and ct-1 =d.
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The proof is fairly straightforward and is left as an exercise. That c is an embedding
was first proved by L Lovasz in [1] where it is the basis for his results on cancellation of
common direct factors in categories of finite structures. Using these two theorems, we

can compute a number of combinatorial identities. Let us write t-1(Aj) = £w(i, j)Aj.
Then it is easy to prove the following:

(a)
(b)
(c)
(d)
(e)
(f)

r(i, j, k)
t(P(i, J), k)

c(i, j)
d(i. j)

c(r, i)c(r, j)
d(r. i)d(r, j)

£w(i, m)w(j, n)t(p(m, n), k).
It(i, m)t(j, n)r(m, n, k).
£tG, k)d(i, k).
£wG, k)c(i, k).
c(r, p(i, j)).
£ r(i, j, k)d(r. k).

Notation: To indicate a specific category K, the numerical functions r, t, c, d, w will
be subscripted with the letter K.

Example 1: Finite Sets. For 1 ^ i <oo, let A| be an i-element set. Our category is S,

the category with object set{Aj 11 ^i <o»} and with all mappings as morphisms. Thus,

Ps(j. J) = iJ; cs(1' J) = Ji: ds(i> J) = J!s(i. J) where s(i'J) is the Stirling number of the second

kind; ts(i, j) = (ij); Ws(i, j) = (-1)'-i ('j). The numbers rs(i, j, k) do not seem to have a common
expression; they can be interpreted as the number of i x j (0, 1)-matrices with at least one 1
in each row and column and exactly k 1s occurring. The identities (a)-(f) become:

(Sa) rs(i, j. k) =£(-1)kJ-m-n(im)(in)(mnk).
(ijk) = ^ (m) (jn) rs(m, n, k).

=£(ik)k!S(i, k).

=£(-1)i-i<(ik)k'
= (iJ)r.

(Sb)

(Sc)
(Sd)
(Se)

j'

J!S(i. J)
jrjr
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(S<) i!j!S(r, i)S(r, j) = S rs(i, j, k)k!S(r, k)

=£(-1)H-m-"(^)(i^)(^)k!S(r, k).
Notice that (83) is trivial, (S^ obvious by counting (0, 1)-matrices, (Sc) and (S^) well known;
(Sg) is the inverse of (Sb); (S{) can be obtained by interpreting Cs(i, j) and

r3(i, j, k) in the combinatorial manner already mentioned.

Example 2: Finite Boolean Algebras. For 1 ^ i < °°, let B; be a boolean algebra with

i atoms. Our category, B, has {B, | 1 ^i<oo} as its object set with morphisms being the

boolean homomorphisms. As is well known, B is dual to the category S. Thus, pe(i, j) = i + j;

by duality, Ce(i, j) = ii; deO, j) = j! ('j); tB(i> J) = S(i, j); w(i, j) = s(i, j), the Stirling number of the
first kind; ̂ (i, j, k) = ('i+j. k) (Ji+j-k) (i +J . k)! (by duality; combinatorially this is the number of
maps from an (i + j)-set onto a k-set whose restrictions to the first i elements and to the last j
elements of the (i +j }-set are 1-1). The identities (a)-(f) become:

(Ba) (IH.k) (j4j-k) (i +J - k)! =1 s(i. m)sU, n)S(m+n, k).
= £ S(i, m)SO, n) (m^n. k) (n^n. k) (m + n - k)!.
=SSG, k)k!(ik).

-£s0-, k)ik.
r'+i.

=I;(^)(l, k)(H-k)!k!(rk);

(Bb)

(Be)
(Bd)
(Be)

S(i+j. k)
ii

)' 0
r^ri

(B<)
or

i'jl (r,) (',)

(', )(', ) -s(k)(K, )('k).

Notice that (Be) is trivial. (Be) and (Bd) are standard, (B() is well known; (Bg) and (Bb) seem
rather obscure. However, if we take j = 1 in (Bb), then we get the basic recurrence relation
for Stirling numbers of the second kind: S(i+1, k) = S(i. k-1) + kS(i, k).
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There is an important special case, namely when k = i. In this case, r(i, j, i) = d(i, j).
This follows from the fact that each onto homomorphism <]):AJ -> Aj can be represented as
{(a, (j)(a)) | a e AJ which is a subdirect product of A, and Aj isomorphic to A|, and
conversely. Combining equations (a) and (d) we get:

(9) £w(j, n)c(i, n) = £ w(j, n)w(i, m)t(p(m, n), i).
n m,n

Because t and t-1 are inverses of each other, for any sequences {ai}jgi and {bjigi of real

numbers, we have: ai = I t(i, j)bj for all i if and only if b, = £ w(i, j)aj for all i. Applying this
inversion to (g) we get:

(h) c(i, n) =£w(i, m)t(p(m, n), i).

For our categories S and B, we get:

(Sh) J- =S(-1)-(, )(my.
(Bh) ii =Is(i, m)S(m+j, i).

Equation (B^) is particularly appealing because of its simplicity. Yet it is at best obscure
and perhaps previously unknown.

Let us return to the rings <Z(K); o> and <Z(K); . >. Clearly, <Z(K); o> is generated by

D(K), those A, e K which are directly irreducible. In fact, if K has unique direct factorization,

then <Z(K); o> is freely generated by D(K). What about <Z(K); .>? Since it is isomorphic to

<Z(K); °>, the same is true, but with t(D(K)), the image of D(K) under t, as (free) generating

set. It is natural to ask whether D(K) itself is a (free) generating set for <Z(K); . >.

Lemma : <Z(K); . > is generated by D(K).
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Proof: Induct on [An|; it suffices to show that each reducibte An is a polynomial in

some finite subset D of D(K) with |Aj| < |An| for each A, e D. For this, use the equation Ap;; j,
=A, . A, -£ {r(i, j, k)Ak | k < p(i, j)} and note that if k < p(i, j), then \\\ < |Ap^ j, ].

Theorem ([2]): If K has unique direct factorization, then D(K) is a free generating set

for <Z(K); . >.

Proof: For i, j   I, define A; precedes A, if (A,, Aj) is in the transitive closure of the
union of the relations (i) that Ag is properly embeddable in A( and (ii) that As is a proper

direct factor of A(. Note that if A; precedes Aj, then JA, ] < |Ajj; thus, this relation is a partial
order on I. The assumption that K has unique direct factorization implies that every finitely
generated order ideal of I under this partial order is finite (if our type is finite, then we do not

need unique factorization at this point). Let C be a finite subset of D(K) and D the members

of D(K) belonging to the order ideal of I generated by C. It is easily seen that the subring of

<Z( K ); . > generated by D is the same as the subring of <2( K); . > generated by t(D) =

{t(Aj) | A, e D}; denote this ring by <Z(D); .>. But as t(D(K)) generates <Z(K ; .> freely, t(D)

generates <Z(D); . > freely. Hence there is an onto endomorphism ^ of <Z(D); . > defined

by <i>DO(Aj)) = A, for all A; e D. But <Z(D); . >, being finitely generated, is Noetherian, and in
a Noetherian ring every onto endomorphism is an isomorphism. Hence, if we define <}> on

<Z(K); . > by <{>(t(A, )) = A, for all A, e D(K), then <() extends to an isomorphism of <Z(K); . >,
proving the theorem.

Corollary: If K has unique direct factorization, then every A, is expressible as a unique

polynomial (with integer coefficients and zero constant term) in the members of D(K) which
precede or equal A,.
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Recall our embedding d:<Z(K), . > -> Z'. For each n e I, d(An) is the function
dL> n):l -> Z where d(_, n)(i) = d(i, n). Thus, we see that for each n e I, there is a unique
polynomial, Pp, (with integer coefficients and zero constant term) in the directly irreducibles

A| which precede or equal Ap (say, A,, ..., A|() such that

dL, n) =Pn(dL, 1)...., dL, k)).

For S, An is directly irreducible iff n is prime and A, precedes Aj iff i < j. Since ds(i, j)
= j!S(i, j), we see that for each n there is a unique polynomial Pn (with rational coefficients

and zero constant term) in the primes ^ n (say pi,..., P|() such that S{_, n) =

Pn(SL. Pl), .... SL, Pk)). For example, S(_, 4) = (1/6)SL. 2)2 - SL. 3) - (1/6)S(_, 2). The

existence of such a polynomial can be inferred from equation (Sd). For B, B^ is the only
directly irreducible. The reader can check that the corresponding polynomial is well
known.
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