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Abstract

In the vein of recent work of Sagan, Yeh and Ziegler, we study extremal
problems connected with the M&bius function of certain families of subsets
from Oy, the lattice of faces of the n-dimensional octahedron. In particular, we
find that for lower order ideals F in O, |u(F)| attains 2 maximum by taking
the lower two-thirds of the poset. Currently we are proving the conjecture
for intervals of rank-selections, the maximum attained by taking the interval
of ranks from two-fifths through four-fifths of O,, and are formulating the
conjecture for the arbitrary rank selection case.

0 Notation

Let P be a partially ordered set (poset) that has unique minimal element ( and unique
maximal element 1 (i.e. P is bounded). All the posets we study will be finite and
graded, so we have a rank function associated with a given poset. In particular, let
O» denote the lattice of faces of the n-dimensional octahedron. We can represent O,,
as the poset of all signed subsets of {1,...,n} ordered by inclusion with the element
1 adjoined. The rank of any element S € O, is given by |S|, where | - | denotes
cardinality. Observe that 1 has rank n + 1 in O,,.

Recall from [11, p. 101] that given a poset P, its dual P* is the poset satisfying

z<yin PP<y<czinP.
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We have Q. = O}, where Q,, is the lattice of faces of the n-dimensional cube. We can
represent the elements of @, as ordered n-tuples of +1’s, —1’s and *’s in R™, where

+={t|0<t<1}.

The elements of this poset are ordered lexicographically using the convention —1 < x
and +1 < *. The rank of any element S € Q,, is given by the number of *’s in S plus
one.

For y the Mébius function of a poset P we let y(P) denote the value of ep(0,1),
for z an element of P we let p(z) denote 1p(0,z), and for any family F of elements
of P we let u(F) equal pp(0,1). (Here F is F adjoined with 0 and 1, if necessary).

Given a non-negative integer n, we let

[n] ={1,2,...,n}.

For F a family in P and R C [ rank 1 — 1], we define the rank-selected subposet

F(R)={SeF: rank Se€ R}
In particular, the i** rank level of F is given by
Also, we use the shorthand
F[k] = F([k]).

Finally, a lower order ideal A is a subset A of P such that if z € A and y < z then
y € A

1 Introduction

Given P a bounded poset with a fixed number of elements, Stanley [11, Exercise
3.41a] posed the question of finding the maximum value of |u(P)|. In [12] Ziegler
answers this question for both bounded posets and graded posets, and determines
the extremal configuration in each situation.

Recent work of Sagan, Yeh and Ziegler [9] has approached extremal problems in-
volving the Mobius function from a slightly different angle. They study the maximum
value attained by the Mobius function p taken over certain subsets of a particular
poset. More specifically, if 7 is a family of subsets contained in the Boolean algebra
B, then the maxsr |u(F)| has been found for three categories of families:



(i.)  all lower order ideals
(ii.)  all intervals of ranks
(iii.) all rank-selections.

The maxima are obtained by taking the lower half, middle third, and every other
rank of B,, respectively. The lower order ideal case was first solved by Eckhoff
[6] and Scheid [1], and viewed in the context of the reduced Euler characteristic by
Bjorner and Kalai [4]. Niven [7] and de Bruijn [5] have previously solved the arbitrary
rank-selection case, while the interval of ranks case is a new result.

In this paper, we will address analogous extremal problems for O,,, the lattice of
faces of the n-dimensional octahedron. More specifically, by extending the techniques
developed for B, in [9] to O, we find the extremal configuration for lower order ideals
is the lower two-thirds of the poset O,. In section 3, we indicate the work we have
completed-to-date for the interval of ranks result. Finally, in section 4 we describe
our future work.

2 Lower Order Ideals

In this section we will be concerned with maximizing |u(F)| as F ranges over all lower
order ideals in O,. Once we have derived some facts about the Mobius function of
certain subsets of O,, we will be able to re-establish the well-known result that O,
is Eulerian. This important property enables us to “dualize” the problem-at-hand
(whenever necessary) from O, to an equivalent problem in Qa-

We state the main result of this section:

Theorem 2.1 If F is a lower order ideal in O,, then

13 ~ R
WAl <13 (32t
k=0
with equality occurring if and only if
F = Oulk] with k= |2].

(Here |- | denotes the greatest integer function.)

Before proving Theorem 2.1, we will first specialize F to be rank-selected lower order
ideals, i.e., lower order ideals of the form O,[k]. We show in Lemma 2.8 that | 1(Ox[k])|
is maximized if we take k to be |2], i.e. the lower two-thirds of O,. Once we
generalize F to be any lower ideal in O,, we will see the ideal On[[%]] is also the
maximal configuration for Theorem 2.1.

We begin by establishing some elementary properties of O,.
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Proposition 2.2 Let z be an element of O, — 1 with rank k. Then p(z) = (=1)*.

Proof. Recall

where

V=

Applying the product theorem for the Mdbius function [11, Prop. 3.8.2] gives the
result. O

We are able to express (O,[k]) in two ways: in terms of a summation formula,
(Corollary 2.3) or a recurrence (Corollary 2.5).

Corollary 2.3 The following summation formula holds for (O, [k]):

k /n .
p(Onlk]) = —( > (J,)(—?)’ ), n>21,0<k<n.

=0

Proof. Use Proposition 2.2 and the fact there are (;‘) (2) elements of rank j in O,.
a

Corollary 2.4 u(0,) = (-1)"*!, n > 1.

Proof. It is enough to observe u(0,) = p(O,[n]) (recall i has rank n+1 in O,,). The
result then immediately follows once we apply the binomial theorem to the summation
expression for 4(O,[n]) given in Corollary 2.3. O

Corollary 2.5 The u(O,[k])’s satisfy the recurrence

#(On[k]) = =2p(Ona[k = 1)) + p(On-a[R]),
where n > 2, 0 < k < n, with boundary conditions

p(Ox[0]) = =1 forn>0

and

p(On[n]) = (=1)**! for n > 1.
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We have two different proofs of this recurrence. The first applies the interpretation
of the Mobius function as counting certain chains in a poset. The second is a direct
application of the summation formula for #(Ox[k]) and induction.

We are now ready to prove
Corollary 2.6 O, is an Eulerian poset.

Proof. Since O,, is a finite graded poset with 0 and i,itis enough to show

o, (z,y) = (-=1)*¥ forallz <yin O, (1)

in order to conclude O, is Eulerian. Once we recognize that for y = {
[,1] = Ot(z,i)-1>
and for y # 1

[‘Ty y] = Bl(z,y)a

where By,,y) is the Boolean algebra on £(z,y) elements, it becomes a straightforward
exercise to construct the isomorphisms and to show (1) holds. O

Since O, is an Eulerian poset, we can take advantage of its duality properties. In
particular, we are now able to apply the following result from [11, Prop. 3.14.5]:

Proposition 2.7 Let P be an Eulerian poset of rank n, and let Q be any subposet of
P containing 0 and 1. Set @ = (P\ Q)U {0,1}. Then

#e(0,1) = (=1)*u5(0,1).
This proposition implies that for any lower order ideal A with 0 and i in O,

1o, (A) = po.(A)
up to a sign. (Here A= (0, \ A) U {0,1}).

In order to state a special case of the theorem, we make two more definitions. We
say a sequence ao, @1, ...,an of real numbers is unimodal if for some k, 0 < k < n,
we have

B yin S G P wus 2 s

Similarly, a sequence is strictly unimodal if we replace the inequalities by strict in-
equalities in the definition of unimodal. We now state
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Lemma 2.8 For fized n > 2, |u(O,[k])| is strictly unimodal with unique mazimum
occurring when k = |2 ].

Proof. We proceed by induction on n. The lemma is easily checked to be true for
n = 2,3, and 4. Let k* correspond to the index k for which |£(On[k])| is 2 maximum.
By Corollary 2.5, |u(O,[k])| satisfies the recurrence

|1(On k]| = 2|#(On-r[k = 1])| + |#(On-1[K]). (2)

The main theorem in [8] gives conditions for a triangular array of non-negative integers
satisfying a recurrence to be log concave. Applying [8, Theorem 1], we immediately
see |(On41(k])| is log concave in k, hence unimodal. This fact, coupled with the
recurrence in Corollary 2.5 and the induction hypothesis for the nt* row of O, [k]’s,
enables us to pinpoint the index k corresponding to the maximum |1£(On41[k])| to one
of two possibilities. A case-by-case argument using the equivalence class modulo 3 of
n and applying the summation formula for x(0,[k]) gives the result.

We indicate the proof for n = 1(3) below. For ease in notation, let

ar = |u(On[k])|
b = |p(Onsa[K])].

Since n + 1 = 2(3), we wish to show
brey1 > bye.
Applying the recurrence (2) to the above, it suffices to show
2aks + agey1 > 2ape_q + ape,
i.e.
Qge > 2oy — Qfeqy.

The summation formulas given in Corollary 2.3 and the fact n = 1(3) enable us to
rewrite the above as

£ (e > = (B (ow

= \J =0 i=0 \J
- _':g (;‘)(-2)1' +:§ (;’)(—2)". (3)
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In terms of the a)’s, equation (3) says

k*+1 n ]
Qi > Ape_1 + Z (]) (—2)J

j=ke

By the induction hypothesis we have az. > axs_y. If we can show Ef;’,:.l (;)(—2)-* is

negative, then we will be finished. Write n as 3m + 1. Then k* — 2] = 2m. Thus

b (’;)(—2)f - (3”;’: 1)(—2)2m+ (;’:i;)(_z)zmﬂ

i=ke
(3m +1)! - -1
(2m)! m! (-2) [(m +1)2m + 1)] ’

which is negative, as desired.

The argument for the remaining two cases proceeds similarly. The exception is
that the n = 0(3) case requires the induction hypothesis for both the nt* and n — 1°¢
rows, plus the result

Qke—1 = Qkoy; for n = 2(3), (4)
which is found in the course of proving the lemma for the n = 2(3) case. O

Suppose we are given elements S all of the same rank in a poset. Since we are
working with lower order ideals, we would naturally like to be able to estimate the
number of elements in the poset covered by S. (Recall the Mébius function can
be defined inductively in terms of covering relations.) More formally, we define the
shadow of a subset S of rank r in O, by

A(S)={B € 04(r—1): BC Afor some 4 € S}.
We then have

Lemma 2.9 (Shadow Lemma for O,) If S C O,(r), where r > 242 then |A(S)| >
|S| with equality only when n = 2(3) and S = On(222).

Proof. For the first half of the proof we utilize an edge-counting argument. Consider
the bipartite graph G formed in the Hasse diagram of O, by S and A(S). Each
vertex A € S has degree r, so the graph G has exactly r|S]| edges. Also, every
vertex B € A(S) has degree at most 2(n — r + 1), giving an edge count of at most
2(n —r + 1)|A(S)|. Thus when r > 2n42 the first part of the lemma follows.
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If n = 2(3) and r = 2242 then the above argument works as long as some vertex
in A(S) does not have degree %2, If every vertex B € A(S) has this degree, then
in O, the vertices of A(S) are only adjacent to vertices of S (and vice-versa). Hence
if § C On(r) (strict containment), this would contradict shellability of the chain
complex of O,. [2] [3] O

We similarly prove a shadow lemma for Q,,, the lattice of faces of the n-dimensional
cube. We shall simply state it here:

Lemma 2.10 (Shadow Lemma for Q) If S C Qn(r) where r > 244 then |A(S)| >
S| with equality only when n = 2(3) and S = Q. (211).

Now we are ready to give a proof of Theorem 2.1. Let F C O,, be a lower order
ideal with maximum |u(F)| and let k£ be the maximum rank of all the elements in
F. We will first derive some expressions that will enable us to compare u(F) with
p(Flk —1]) and p(F[k —2]), yielding an upper bound for k. The Shadow Lemma for
O, and the following proposition enable us to do this:

Proposition 2.11 [11, Lemma 3.14.4] Let P be a bounded poset and P = P\ {0,1}.
If T C max P then

p(P) = p(P\T)- ETﬂ(ﬁ,z)- (5)
T€

This result follows by counting the chains in P not containing elements of T" and the
chains in P containing elements of T'. Proposition 2.11 is useful in the sense that it
enables us to see how the Mobius function of a poset changes if we “peel off” some
(or all) of its top elements.

Applying equation (5) to P = F, T = F(k), and recalling u(0,z) = (—1)* for
z € O, \ 1 of rank k gives

w(F) = p(Flk = 1)) = (=1)*|F (k)]

p(Flk = 1]) = u(F) + (=1)*|F(k)|. (6)
Similarly applying equation (5) to P = F[k — 1], T = F(k — 1), substituting for
p(F[k — 1]) in equation (6) and solving for u(F[k —2]) gives
p(Flk = 2]) = p(F) = (-1 (1F(k = 1))| = |F(K)]). (7)
Since F is an ideal, AF (k) C F(k — 1), implying



|F(k = 1)) = |AF (k)| > 0.
Suppose k > [%]. By the Shadow Lemma 2.9 we know

|AF (k)| > |F (k).
Hence
|F(k—1)| = |F(k)| > o0.

After considering all the possibilities for the sign of u(F) and the parity of k, we see
one of equations (6), (7) implies |x(F)| is not a maximum, contradicting the fact that
F C On is an ideal with maximum |u(F)|. Hence k < [Z]. In particular,

o if n=0(3)
k=¢ 2 if n=1(3)

nt2 - if n=2(3).

As we have previously remarked after Proposition 2.7, uo, (F) equals pq, (F*) up
to a sign. We will now work with F* in @, to extract further information about the
structure of F. Define

¢=min{|B|: Be€O0,\F}.

Using the Shadow Lemma for @),,, we proceed as in the first part of the proof of this
theorem. Let § = (F*) and let £ be the maximum size of a set in G. As before, we
apply equation (5) first to P = G,T = G(£) and then to P = G[{ —1],T = G(Z - 1)
to obtain equations resembling those of equations (6) and (7):

(GlE-1]) = p(G) + (-1)"16(D)| (8)

p(GlE-2]) = u(G) - (-1 (IG(Z - 1)| - 1G(B))). (9)

(Here we are using the fact Q, is Eulerian, so if z € Q, of rank Z, then uq,(0,z) =
(=1)%) Since G is an ideal, AG(¢) C G(£ — 1), implying

1G(2-1)| - |AG(2)] > 0.

As before, we first suppose £ > 244 and apply the Shadow Lemma for @,. Once we
consider all the possibilities for the sign of x(G) and the parity of £, we see that one
of equations (8), (9) implies |#(G)| is not a maximum. Hence we must have £ < 2$4.
This says
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S |3
fEelid
L [N

B 3 for n= 0(3)
£ < , for n=1(3)
3, for n=2(3).

Via the map r — (n + 1) — r, we convert this rank information from @n to O, to
conclude

4l if n=1(3)

-1 if = 9(3).

3

o if n=0(3)
£

To finish this argument, we reason in the following manner: for each equivalence
class of n modulo 3, the bounds for k and ¢ will enable us to find rank-selected lower
order ideal configurations containing F and contained in F , respectively. As before,
we will apply equation (5) to obtain expressions for the Mobius function of these two
lower order ideal configurations, apply a parity and sign argument, and then the rank
selection Lemma 2.8 to derive the required result.

By definition of k and ¢, we have k > £ — 1. We first consider the case n = 0(3).
We have

k>0-1>2_,

and from before

implying

For convenience, let ¢* = %" Then we have

O.([¢* - 1)) C F C 0.([¢*)),

where the first containment follows from the definition of ¢ and the second from the
definition of k. Note that £* is always even, so by equation (5) we have

#O[€" = 1)) = p(F) + [F(£)]. (10)
Letting P = O, [€*], T = O,(€*) \ F(£*) in equation (5) gives

H(On[€]) = u(F) = |Oa(€7) \ F ()] (11)



If u(F) > 0, then equation (10) and the maximality of |u(F)| imply F(£*) = 0. Hence
k = £* — 1, implying

F o= 04 —1]
= On”.zs_n,l _l]v

contradicting the rank selection Lemma 2.8. If #(F) < 0, then equation (11) plus the
maximality of |u(F)| imply O,(¢*) = F(€*). Thus k = ¢*, implying

F = 0,4¢]
= Oﬂ”.z?n_”a

as desired.

The cases n = 1(3) and n = 2(3) proceed similarly to that of n = 0(3). The bounds
for k and I, plus the definitions of k and [ allow us to narrow down k to one of two
(or three, if n = 2(3)) possibilities. As before, we complete the argument by applying
Proposition 2.11 and the rank-selection Lemma 2.8. We thus conclude the extremal
configuration occuring in Lemma 2.8 coincides with the extremal configuration for
Theorem 1. O

3 Interval of Ranks

In this section we are interested in maximizing |u(F)|, where F runs over all intervals
of ranks in O, (i.e. F of the form O,[t, j]). Recall by (10, Corollary 3.3] that if P is
a finite poset whose chain complex can be lexicographically shelled and R C ranks of
P, then

#(P(R)) = (-1)""*  number of maximal chains with descent set R}.

In particular, if we let 3,(R) denote |u(O,(R))|, then for O, we have

Bn(R) = {number of permutations in the hyperoctahedral group B,
with descent set R}.

Thus, the question at hand is equivalent to maximizing the number of permutations
in the hyperoctahedral group B, with descent set [¢,7]. The data for O, strongly
supports the following

119



120

Conjecture 3.1 For fizedn >0, n # 2, B.(R) achicves a unique mazrimum when

R=[255), |241)]

For n = 2, the mazima occur when

R=[1,1] or [2,2].

To prove Conjecture 3.1, first we fix n > 0 and form a triangular array of the
Balt, j]’s. Its k* row consists of the values

Bullyn —k+1],Bul2,n — k+2],...,8,[k,n], k=1,... n.

We look at each row of this array (equivalently, we fix the length r of the interval of
descent) and find the maximum value of 8,4, + r]. We have almost completed the
proof of

Conjecture 3.2 For fized 0 <r < n — 1, the sequence
Ball, 14 7], Bu[2,24 7], ..., Bu[n —r,n]
is almost strictly unimodal. Its mazima occur at

Bo[|2n=2rtl |, | Zndrtl ] for n#£2(3) or r#0
Ball 222, [ 2222 |] = Bal| 224, |224]] for n=2(3) and r = 0.

(Here by almost strictly unimodal we mean a sequence that is strictly unimodal or is
of the form

a1 < a2 <...< @ = Qg1 > Qg2 > ... > ay.)

We next look at the subsequence corresponding to the maxima in each row that
we found in Conjecture 3.2. The maximum of this subsequence will give the overall
maximum in the main Conjecture 3.1. For completeness, we state this last

Conjecture 3.3 For fized n > 0, the sequence

Bal0, Bl L2525 125211, Ball 257, L 252 1), Bull 2520, [2%2)], -, Bull, ]

is strictly unimodal with mazimum

Bull 252, [#52]].

We expect the proof of Conjecture 3.3 to utilize the same basic techniques as in the
proof of Conjecture 3.2.



4 Future Research

A natural question to ask is what sort of posets P will the extremal configuration
which maximizes |u(F)| over all lower order ideals F in P correspond to a rank-
selected lower order ideal. We conjecture this is the case for Eulerian posets whose
adjacent ranks are biregular and the (cardinality of its) ranks form a unimodal se-
quence.

We are in the process of forming the conjecture for the family of arbitrary rank
selections. Once this case is complete, our research will address analogous questions
for Ln(g), the lattice of subspaces, and I,,(q), the poset of isotropic subspaces.
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