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1 Introduction

In the last two decades there has been a growing interest for the study of
formal calculus of operators and Umbral Calculus. One of the main objec-
tives has been the construction of rigorous theories where the formal methods
used since the past century may be explained in a unified way. Such theories
may also be considered as foundations for several topics, such as combinato-
rial enumeration, polynomial sequences, combinatorial identities, diiference
equations and special functions.

The work of Rota and his collaborators in the seventies has had a deci-
sive role in the renewal of the interest on the Umbral Calculus. See Rota,
Kahaner, and Odlyzko [8], and Roman and Rota [7]. There are now several
approaches to the construction of theories of Umbral Calculi. The common
ingredients are formal power series, polynomial sequences, linear functionals,
formal differential operators, Hopf algebras, and several kinds of duality. See
for example Garsia and Joni [3], Cigler [2], Joyal [5], Roman [6], Barnabei,
Brini, and Nicoletti [I], and Ueno [10].

In this paper we present a theory of Umbral Calculi based on the study
of algebras of multiindexed infinite matrices over a field. These are large
algebraic structures which contain isomorphic images of algebras of formal
Laurent series and groups of linear operators on spaces of formal series.



an algebraic analogues of the Laplace and Borel transforms
S^t nn sDa.cesof formal series, we construct transformations on spaces

The images under such transformations of certain alge-
^^\M. niins of multimatrices constitute our sets of umbral operators.

lach was sketched in our paper [12], where we studied first some
S^f linear operators on spaces of formal Laurent series^ provided with

S^nite inner product, and then, using duality and the Borel transform
some groups of umbral operators and several results about poly-

ofbinomial type in several variables. One advantage of this
[il'tbat we can separate the study of the core of the theory, which

lffof algebraic structures of general interest such as algebras and

linear operators on spaces of formal Laurent series, from the study
SS^instances of the Umbral Calculi. In this way we can identify the

ideas and results, and compare their consequences in different
[he Umbral Calculus. In particular, we consider the usual bino-

^liCalculus and the Newtonian Umbral Calculus, where divided
a basic role. The Newtonian Calculus has been studied by

lirschhorn and Raphael [4], and Verde-Star [13].
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Let R be a commutative ring with unity. A multiindexed matrix A, or
multimatrix, over R is an array [a^n} of elements of R, where k and n run
over all the multiindices. Addition of multimatrices is defined in the obvious
way, but multiplication is not weU defined for all pairs of multimatrices.
In some cases there appear infinite sums of elements of R and we would
need conditions to assure convergence. We prefer to work with rings of
multimatrices for which all the sums needed to perform multiplication of
multimatrices are finite.

We define the set C. of lower multimatrices as the collection of all multi-
matrices A = [ak,n] for which the set {k - n : ak, n ^ 0} is minorized in Zr.
The greatest lower bound of such set is denoted by v(A)'and called the index
of A, or the vertex of the support of A.

It is clear that ti is closed under addition. For multiplication we have
the following. If A = [a^] and B = [bk,n] are in C then the matrix product
AB = [ck,n] is defined as usual by

Cfc,n = ^afc,m&m, n. (2. 2)

Note that this sum is always finite, since the summand may be nonzero only
when m belongs to the order interval [n + v(B), k - v(A)]. From this we see
that AB is also in £ and u(AB) ^ u(A) + v(B).

The ring L contains several classes of multimatrices that have certain
regularities in their structure. An important example is the ring F of Toeplitz
multimatrices which consist of elements A = [ak,n] such that ak+m, n+m = Qfc,
for all multiindices k, n and m. This means that A is constant along the
'diagonals'.

The ring F may be identified with the set S of all formal Laurent series
of the form f{z) = ^ /nZ", where the coefficients are in R and

'n - y"l yn2z~ = z^z'^
rnr n Zr,

and such that there exists some multiindex v(/) such that /n = 0 whenever
n ^ v(f). The map that sends f(z) to the multimatrix S/ = [a^n], where
Qfc.n = /fc-n, is a ring isomorphism. It is the regular representation of the
formal Laurent series in fi. Note that Sj a{z} = f{z)a(z) for any series a(z)
in S.

If we consider the coefficients of a formal Laurent series as an infinite
column vector' then the elements of C. act by multiplication on the left on
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S. We shall identify the multimatrices with their corresponding operators
on S.

For any multimatrix Am £ and any multiindex m we identify the m-th
column of A with the series

fm (z) = Y^Qn, m 
Zn- (2. 3)

(2. 4)
Then we can write

Uz) =Azm, me Zr.

Let us note that, for the multimatrix Sa we have Sa zn = zna(z).
The rows of a multimatrix B may be considered as reversed formal Lau-

rent series as follows. If fc is a multiindex the k-t\\ row of B corresponds
to

9k(z)=^h, n2n\ (2. 5)
n

where n* = -n-e and e=(l, !,..., !). Therefore the entries of the product
C = BA are given by

Ck. m = ^h, nan, m = Kes(^ /">), (2. 6)

where

Res(h) = coefF. of z~e in h (2. 7)

is the residue of A, for any series h. This is the motivation to define the
indefinite inner product

(a(2), fc(2-)) = Res a(z)6(z), a, fc £ <?. (2. 8)

We define an involution * in the ring of multimatrices C as follows. If
A = [a<;, n] then

A*=[a^., fc. ], k, nelr. (2. 9)

The map A -» A* is obtained by reflection with respect to the 'diagonal'
determined by the equation k = n*, and it sends rows to columns and vicev-
ersa.

It is easy to see that the set of formal Laurent series

^={/(^)=:E/n^:/0=l}
n>0

(2. 10)
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is a group under multiplication.
We define the set

S={9=(gi, g2, --., gr)eST :g, (z)/zi^'h, l^i^r}. (2. 11)

Then, for every g in Q and every multiindex n, gn(z)/zn is in -H, and
hence we can define an operator Tg on S as follows

T, W = ^f^gn{z) =fog{z) = f(g(z)). (2. 12)

Note that the rz-th column of Tg is Tg zn = gn{z}.
The representations of the composition operators Tg in C form a group

of multimatrices that we identify with Q. The operation in Q is substitution.
The ring C, also contains the matrix representations of linear differential
operators of infinite order, with coefBcients in S.

The basic relationship between multiplication and composition operators
IS

TgS^ = S^gTg, g eQ, a   <?, (2. 13)
and js verified by applying both sides to an arbitrary monomial zn.

For any / = (/i, /,,. .. ,/r) in Sr the Jacobian matrix Df = [£).-/. ] is a
square matrix of order r over S, and its determinant, denoted by Jf is'in S.

Now we present some of the basic results. The proofs are in [12].

Proposition 2. 1 For any g in G we have

DTg = RD^D and JT, = Sj. TgJ, (2. 14)

where D denotes the Jacobian matrix map from Sr to the matrices of order r
over S, Rog denotes multiplication on the right by Dg, and J is the Jacobian
determinant map from ST to S.

Proposition 2. 2 For any f in Sr we have Res (Jf) = 0, and if g is in Q
then Jg is in 'H.

Proposition 2. 3 For any g in Q we have

T;Sj, T, = I. (2. 15)



128

This identity is called the chaiige of variables theorem because it is equivalent
to the following result.

Proposition 2.4 If g is an element of Q and a and b are in S then

{a, b) = {aog^bog Jg}. (2. 16)

Several forms of the Lagrange inversion formula can be obtained from the
above propositions.

Let us define the set of multimatrices

M = {So,   C : a^(a} is invertible in R}. (2. 17)
It is clear that M is a, group under multiplication.

Define Mo as the subset of M of all multlmatrices Sa in M such that
v(a) = 0. A simple computation shows that Mo is a subgroup of M.

The group MG = {SaTg} is called the general ShefFer group of multima-
trices . From (2. 13) we see that MQ = QM.

The n-th column of SaTg is the series /n(-z') = ^{z}9n(z}. Therefore, for
any multiindex k we have the relation fn+k{z) = 3k(z)fn (z}. In particular,
if fc = e; = (0,... , 0, 1, 0,... , 0), where the 1 is in the i-th position, we get
/n+e. (-2') = 9i(z)fn (z) foT 1 ^ i ^r. These equations describe a recurrence

relation for the columns of S^Tg.
Let A be the multimatrix whose k-tb row is the reverse of the series

Jg/agk+e. Then

Jg{ag\-^}=^es{gn-k-eJg)=Sn, k. (2. 18)

Here we used Prop. 2. 2. Therefore A is the inverse of S^Tg.
Note that the rows of A also satisfy a recurrence relation similar to the one

satisfied by the columns of SaTg. This fact is a consequence of the equation
ASaTg = 7, and occurs in general for any pair of inverse multimatrices ; if
one of them satisfies a recurrence relation by columns, the other one must
satisfy a recurrence relation by rows, and vice versa.

Let g = (5i, 52»--. ;5r) be an element of Q such that each component
series g, is a polynomial and such that Jg = 1. Let h = (/»i, /ig,... , Ar)
be the inverse of g under substitution, that is, TgTh = I- The jacobian
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conjecture of Keller says that in this case the components of h would be
polynomials.

Since Jg .= \ Prop. 2.3 gives us T;^ = / and hence T; = T^. This
means that hi(z) = T^z, = r;2; and hence ̂ . (z) is the reversed series of the
row of Tg that corresponds to the multiindex

e;=(-l, -!,..., -!, -2, -l,..., -l),

where the -2 is in the i-th coordinate. Therefore, in order to prove the jaco-
bian conjecture one must show that each one of the rows of Tg corresponding
to multiindices e,*, 1 ^i ̂  r, has only a finite number of nonzero terms.

The multimatrix Tg satisfies a recurreiice relation by columns, described
by

TgZn+e'=g, {z)TgZn, n Zr, l^i^r. (2. 19)
Since the g. {z) are polynomials, each column of Tg corresponding to a mul-
tiindex n ^ 0 has only finitely many nonzero entries.

If we consider Tg as a, function defined on Zr x Zr which is the solution of
a recurrence relation is several variables, with certain boundary conditions,
then our problem consists in proving that the presence of a large region of
Z x Zr where the solution vanishes implies that the solution also vanishes
on a relatively small, but unbounded region, contained in a set of r rows.

From the above discussion it is quite clear that the problem reduces
to showing that certain coefficients in some 'nonpositive' powers of g =
(51i^2,... , ^r) must be zero.

In this partial difference approach to thejacobian conjecture the main dif-
ficulty is to translate the hypothesis Jg = 1 into properties of the recurrence
relations.

3 Borel transforms and Umbral Calculi

In this section we consider Zr with its usual partial order, corresponding to
the cone Nr.

Let * denote an involution on Zr. A generalized Borel transform is a map
B defined on some subset of the ring S of formal Laurent series by

Bzn = bn. zn', n   Zr, (3. 1)
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and extended by linearity, where the coefEcients bk are elements of the ring
R. Each choice of the involution * and the family of coefficients bk determines
a particular instance of the transform B. There are two kinds of transforms,
the regular transforms and the truncated transforms. For the first kind the
coefficients bk are invertible elements in R for all the multiindices k, and B
is an invertible operator. In the truncated case 6^ is invertible for A;   Nr
and bk=OfoT k ^N . In this case B may only have a one sided inverse.

We will use the involution n* = -n -efor n   Zr. If 6fc = 1 for all k then
B :S -* S' where S' is the ring of reversed formal Laurent series of the form

°(^)= E
n>v(a)

On 2' (3. 2)

and B is aa isomorphism of rings.
Let £? be a truncated Borel transform. Then B : S ->V where V is the

usual space of polynomials in the variables z^, z-^,... , z^ with coefficients in
R. Since bk is invertible for fc   Nr we can define the map B' :P ->S as
follows

B'zn=b^zn\ n6Nr. (3. 3)
Note that B'B = 7 on "P, that is, B' is a left inverse of B. The map B
induces a transformation A -> A#, called the operator transform, from C^
considered as a ring of operators on <?, to the set of linear operators on 7?,
and defined as follows

A* = BA9 B'. (3. 4)

The operator transform is an antihomomorphism of rings, due to the presence
of the involution * of jC in (3.4).

Let 3:1, x-i,. .., Xr be commuting indeterminates that also commute with
the variables z,-. We define the formal power series in x and z

K(x, z)= ^ b^xnzn.
neNr

(3. 5)

K(x, z) is called the kernel function of the operator transform. It is sym-
metric in x and 2-, and may be seen as a formal series in x with polynomial
coefBcients in 2, or the other way around.5 UA l/Al^.- UUAAS-/A. W UJ UAV/U.AAU.

Proposition 3. 1 If A is an element of the ring C then

A, K(x, z)=AfK{x, z), (3. 6)
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where the subindices of the operators indicate the variable with respect to
which they are acting.

The proof is a direct computation.
Suppose now that the ring R is the set of complex numbers. If bk = l/k\

for k   Nr, where k\ = k^\---kr\, and bk= Ofor k ^ Nr. This is the
Borel transform that we use in [12], it is related to the usual umbral calculus
of families of polynomials of binomial type. The kernel function is exz. The
operator transform has the following properties

(S,n)*=Dn, and (Dn)#=S, n, n^O. (3. 7)
Therefore it sends multiplication operators into linear differential operators
with constant coefficients and vice versa.

The image of the set of multiplication operators Sa such that v(a) ̂  0 is
the set of shift invariant operators, which are of the form

a(D)=^a^n, a <?, u(a)^0.
n>0

(3. 8)

The group of composition operators {Tg : g G. Q} is mapped onto the
group of normalized umbral operators {Ug =Tf : g ^. Q}. These have the
following property

U;la(D)Ug = a o g(D), a   <?, v(a) ^0, ^   ̂ .
Each g in the group Q determines a family of polynomials

Pk(z) = U;12k, k ^ 0,

(3. 9)

(3. 10)
called the basic polynomial family of g. It is a family of binomial type. In
[12] we obtained several explicit expressions for the pk. For exemple,

p^z)=n\B(gn'(z)Jg{z)), n > o. (3. 11)
The image under the operator transform of the group M. G is the group of
normalized Sheffer operators.

Let us consider now the case where 6^ = IforA;^ 0 and bk = 0 for
k ^Nr. For the sake of simplicity we consider the one variable case, that is,
r = 1. Here the kernel function is

K^z)=^xnzn^
n>0

(3. 12)
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and (S^* = L , D* = R, are the left and right shift operators on the space of
polynomials, defined by Lzk = ^^-l if fc ̂  1 and Lz° = 0, Rzk == (fc + l)2fc+1
for all fc > 0.

For any number x and any polynomial p we have

LK(x, L)p{z)= P(a-l-p(^)
x - z

(3. 13)

This last expression is a divided difference of p. It is a symmetric polynomial
in x and z. The reader is referred to [13], where we studied the polynomial se-
quences generated by the umbral operators in this case, using the generating
function approach .
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