A class of words, and combinatorial structures of Josephus permutations and a cyclic tournament

Toshihiro Watanabe Department of Applied Mathematics Faculty of Engineering, Gifu University, Gifu, Japan 501-11

March 11, 1992

1 Introduction

Read-Corneil [11] and Klin-Poschel [6] reported that there had been no good condition for the graph isomorphism. Also, Ádám [1] presented a characterization problem of directed graphs with a cyclic property. Some papers (cf.[10]) discussed the Ádám's problem by studying the automorphism groups of graphs.

The Josephus permutations $J_n^N(j) := jn \pmod{N}$ are special permutations in the set S_N of permutations of degree N but have a long history since the first century A.D. (cf.[5, pages 121-128]).

This paper deals with combinatorial structures in a new class of words, called words of class \mathcal{D} (cf. Definition 2.1.1). The structures shall be applied to a characterization of the Josephus permutations in the set S_N of permutations of degree N and an isomorphism problem of a special graph, called a cyclic tournament.

In Theorem 1 in Chapter 2, §1, any word ω of class \mathcal{D} is uniquely represented by

$$\omega = \mathcal{L}(S, S^*)(01),$$

where S and $S^*(cf.$ Definition 2.1.2) are dual substitutions.

Chapter 2,§2 contains main results in this paper. This section gives a totally order, called ω -order, depending on each word ω of class \mathcal{D} . Theorem 2 gives a transformation of the order by the substitutions S and S^* , and determines the order. We shall give a relation between the transformation of the order and perfect shuffles (as for the definition and the history, see [3]).

Chapter 3 gives two applications of results in Chapter 2.

One in §1 is to characterize the Josephus permutations in S_N . Each word of class \mathcal{D} is realized as the up-down symbol(cf.[4]) of each Josephus permutation. This can be regarded as an enumerative aspect of the well-known Euclidean algorithm.

Another one in §2 is to give a criterion wether any cyclic tournament is isomorphic to a given cyclic tournament or not. For this criterion, we shall use only words of class \mathcal{D} and even length.

Let us explain the mathematical terminology in this paper.

The terminology on words is used as in [7]. Unless we specify the set A^* of words, the terminology "words" are used as it in $\{0,1\}^*$. Set

$$\omega = a_0 a_1 \dots a_n; \quad \omega' = b_0 b_1 \dots b_m, \quad a_i, b_i \in \{0, 1\}, i, j = 0, 1, \dots$$

The intersection number $< \omega \mid \omega' >$ of ω and ω' is

$$<\omega \mid \omega'> = \sum_{i,j} < a_i \mid b_j >,$$

where $\langle a_i | b_j \rangle = \delta_{a_i b_j}$ (Kroneker delta).

The subword $\omega_{i,j}$ of ω is

$$\omega_{i,j} = a_i a_{i+1} \dots a_j.$$

For the particular $\omega_{0,j}$, set

$$\omega_j = \omega_{0,j}.$$

The dual word ω^* of ω is

$$\omega^* = \overline{a_n} \, \overline{a_{n-1}} \dots \overline{a_0},$$

where $\overline{a_i}$ is not a_i in $\{0, 1\}$

2 A class of words and a binary relation on each word in the class

2.1 Combinatorial structures of a class of words

In this section, let us introduce a new class of words, called of class $\mathcal{D}(cf.$ Definition 2.1.1). So each word of class \mathcal{D} shall be uniquely represented by a leaf in the binary tree (cf. Figure 1), which is generated by two simple substitutions (cf. Definition 2.1.2).

Definition 2.1.1 Let ω be the word

$$\omega = a_0 a_1 \dots a_n.$$

The word ω is called of class \mathcal{D} if ω satisfies the following:

- (i) $a_0 = 0, a_n = 1$ and $a_i = a_{n-i}, i = 1, 2, ..., n-1;$
- (ii) there exists ϵ in the set $\{0, 1\}$ such that for any i and j, $0 \le i \le j \le n$,

$$<\omega_{i,j} \mid 1> = <\omega_{j-i} \mid 1> +\epsilon.$$

$$(2.1.1)$$

Each of the above conditions (i) and (ii) gives the following properties of words.

Proposition 2.1.1 Let ω be any word to satisfy the condition (i) of class \mathcal{D} . Then ω is the primitive word.

Proposition 2.1.2 Let ω be any word to satisfy the condition (ii) of class \mathcal{D} . Set

$$\omega = 0^{k_0} 1^{l_0} 0^{k_1} 1^{l_1} \cdots, \qquad k_i, l_i > 0, i, j = 0, 1, \dots$$

Then:

....

(i). If
$$k_0 \ge 2$$
, $k_i = k_0 - 1$ or k_0 , and $l_j = 1$;

(ii). If
$$k_0 = 1$$
, $k_i = 1$ and, $l_j = l_0$ or $l_0 + 1$, $i, j = 0, 1, ...,$

Corollary Let ω be the word in Proposition 2.1.2. Then :

If
$$k_0 \ge 2$$
, ω is in $\{0,01\}^*$.
If $k_0 = 1$, ω is in $\{1,01\}^*$.

Let us introduce two sbstitutions S and S^* , which are fundamental operations in this paper.

Definition 2.1.2 The substitutions S and S^* are defined on $\{0,1\}^*$ as follows:

S:	$0 \rightarrow 0$	C* ·	$\int 0 \rightarrow 01$
	$1 \rightarrow 01$,	5.	$\left\{ \begin{array}{l} 0 \to 01 \\ 1 \to 1. \end{array} \right.$

The inverse substitutions of S and S^* are denoted by S^{-1} and $S^{*^{-1}}$, respectively.

The operations S and S^* are each other's dual substitutions in the following sense.

Proposition 2.1.3 Let ω and ω' be any words. Then:

(i).
$$(S(\omega))^* = S^*(\omega^*) \text{ and } (S^*(\omega))^* = S(\omega^*);$$

(ii). $\langle S(\omega) | \omega' \rangle = \langle \omega | S^*(\omega') \rangle.$

The following lemma is the key to combinatorial structures on words of class \mathcal{D} .

Lemma 2.1.4 Let ω be a word to satisfy the condition (ii) of class \mathcal{D} . Let i, j and ϵ in (2.1.1) be any fixed. Set the subscripts i' and j' of $S^{(*)}(\omega)$ corresponding to i and j such that

$$S^{(*)}(\omega_{ij}) = S^{(*)}(\omega)_{i'j'}, \qquad (2.1.2)$$

where $S^{(*)}$ is S or S^* .

Then we have the following:

$$(1) < S^{(*)}(\omega)_{i'j'} | 1 \rangle = < S^{(*)}(\omega)_{j'-i'} | 1 \rangle + \epsilon;$$

$$(2) < S^{(*)}(\omega)_{i',j'+1} | 1 \rangle = < S^{(*)}(\omega)_{j'+1-i'} | 1 \rangle$$

$$if a_{j+1} = \begin{cases} 1 & for \ S^{(*)} = S \\ 0 & for \ S^{(*)} = S^{*} \end{cases};$$

$$(3) < S^{(*)}(\omega)_{i'+1,j'} | 1 \rangle = < S^{(*)}(\omega)_{j'-i'-1} | 1 \rangle + 1$$

$$if a_{i} = \begin{cases} 1 & for \ S^{(*)} = S \\ 0 & for \ S^{(*)} = S^{*} \end{cases};$$

$$(4) < S^{(*)}(\omega)_{i'+1,j'+1} | 1 \rangle = < S^{(*)}(\omega)_{j'-i'} | 1 \rangle + \epsilon$$

$$if a_{i} = a_{j+1} = \begin{cases} 1 & for \ S^{(*)} = S \\ 0 & for \ S^{(*)} = S^{*} \end{cases}.$$

Remark. Let $S^{(*)}$ be S^{-1} or $S^{*^{-1}}$ in Lemma 2.1.4. If only (2.1.2) and $S^{(*)}(\omega)$ are defined, the equation (1) in Lemma 2.1.4 holds.

Example.

The following theorem is a main result in this section, which characterizes the set of all words of class \mathcal{D} in $\{0,1\}^*$.

Theorem 1 The word ω is of class \mathcal{D} if and only if the word ω has the representation

$$\omega = \mathcal{L}(S, S^*)(01), \tag{1.1.3}$$

where $\mathcal{L}(S, S^*)$ is a word in $\{S, S^*\}^*$. Then, the representation (1.1.3) is unique.

Figure 1

Corollary Let ω be the word of class \mathcal{D} with (1.1.3). Then the dual word ω^* is given by

$$\omega^* = \mathcal{L}(S^*, S)(01).$$

Hence the dual word ω^* is of class \mathcal{D} .

2.2 A binary relation on each word of class \mathcal{D}

In this section, let us introduce a binary relation on each set of subscripts depending on each word of class \mathcal{D} . The binary relation becomes a totally order and gives a crucial rule in Chapter 3. By the substitutions S and S^* , the transformation of the relation shall be given in Lemma 2.2.2 and Theorem 2.

In this section, let ω be any fixed word of class \mathcal{D} such that

$$\omega = a_0 a_1 \cdots a_n.$$

To each $a_j, j = 0, 1, ..., n$ in the word ω , let an element < j > uniquely correspond. Set

 $P = \{ <0>, <1>, \ldots, <n> \}.$

Let us introduce a binary relation in the set P.

Definition 2.2.1 The set P is called the ω -ordered set with the binary relation \prec_{ω} (shortly, ω -ordered set) if any $\langle i \rangle$ and $\langle j \rangle$ in the set P have the relation

 $<i > \succ_{\omega} < j > \text{ or } <i > \prec_{\omega} < j >$

, and the relation for $\langle i \rangle$ and $\langle j \rangle$, $0 \leq i < j \leq n$, is given by the following:

We use the mathematical term "ordered " in Definition 2.2.1 by the following.

Proposition 2.2.1 Let P be the ω -ordered set. Then P is a totally ordered set.

The following gives a transformation of the order by the substitutions S and S^* , and is the key to determine the order of elements in the set P.

Lemma 2.2.2 Fix any subscripts *i* and *j* of the subword $\omega_{i,j}$ of ω . Let the subscripts *i'* and *j'* of the word $S^{(*)}(\omega)$ correspond to the subscripts *i* and *j* such that

$$S^{(*)}(\omega)_{i',j'} = S^{(*)}(\omega_{i,j}),$$

where $S^{(*)}$ is the substitution S or S^* .

Then we have the following:

 $\begin{array}{rcl} (1) & < i' > & \stackrel{\succ_{S(*)}(\omega)}{(\prec_{S(*)}(\omega))} & < j'+1 > & if & < i > & \stackrel{\succ_{\omega}}{(\prec_{\omega})} & < j+1 >, \ respectively ; \\ (2) & < i' > & \stackrel{\succ_{S(*)}(\omega)}{(\prec_{S(*)}(\omega))} & < j'+2 > & if \quad a_{j+1} & = & \begin{cases} 1 & for \ S^{(*)} = S \\ 0 & for \ S^{(*)} = S^{*} \end{array} ; \\ (3) & < i'+1 > & \stackrel{\prec_{S(*)}(\omega)}{(\prec_{S(*)}(\omega))} & < j'+1 > & if \quad a_{i} & = & \begin{cases} 1 & for \ S^{(*)} = S \\ 0 & for \ S^{(*)} = S \\ 0 & for \ S^{(*)} = S \\ 0 & for \ S^{(*)} = S^{*} \end{array} ; \\ (4) & < i'+1 > & \stackrel{\succ_{S(*)}(\omega)}{(\prec_{S(*)}(\omega))} & < j'+2 > \end{cases} \end{array}$

$$if a_i = a_{j+1} = \begin{cases} 1 & \text{for } S^{(*)} = S \\ 0 & \text{for } S^{(*)} = S^* \end{cases} \text{ and } \langle i \rangle \xrightarrow{\succ_{\omega}} \langle j+1 \rangle, \text{ respectively.} \end{cases}$$

The iteration $S^{*^m}S$ $(m \ge 0)$ of substitutions is the following:

$$S^{*^{m}}S: \begin{cases} 0 \rightarrow \overbrace{01\cdots 1}^{m+1} \\ 1 \rightarrow \underbrace{01\cdots 1}_{m+2}. \end{cases}$$

Set

$$S^{*^{m}}S(\omega)=b_{0}b_{1}\cdots b_{N}.$$

141

The transformation of the ω -order by the substitution $S^{*^m}S$ perfectly shuffles the order as follows:

Corollary In the word $S^{*^m}S(\omega)$, let the letters a_i and a_{j+1} in the word ω be transformed into

$$S^{**}S(a_i) = b_{i'}b_{i'+1}\cdots b_{i''}$$

and

$$S^{*^m}S(a_{j+1}) = b_{j'}b_{j'+1}\cdots b_{j''}.$$

Then if in the ω -order,

$$\langle i \rangle \xrightarrow{\succ_{\omega}} \langle (\prec_{\omega}) \rangle \langle j+1 \rangle,$$

in the $S^{*^m}S(\omega)$ -order, we have, respectively, the following:

$$\begin{array}{ll} < i'+k > & \stackrel{\succ_{S^{(\ast)}(\omega)}}{(\prec_{S^{(\ast)}(\omega)})} & < j'+k > \\ & \stackrel{\succ_{S^{(\ast)}(\omega)}}{(\prec_{S^{(\ast)}(\omega)})} & < i'+k+1 > \\ & \stackrel{\succ_{S^{(\ast)}(\omega)}}{(\prec_{S^{(\ast)}(\omega)})} & < j'+k+1 >, \quad k=0,1,\ldots,\min\{i'',j''\}-1. \end{array}$$

Using Lemma 2.2.2, we shall give a realization of the ω -ordered set P.

There exists the one-one correspondence between each word μ and the right boundary of each standard Young diagram (as for the definition of the Young diagram, see [8]) as the following example.

Example.

We note that in the corresponding Young diagram $(\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_l)$, λ_1 is $< \omega \mid 0 >$.

For the Young diagram, let us label on the successive segments in the right boundary with the numbers $< \mu \mid 0 >, < \mu \mid 0 > -1, \ldots, - < \mu \mid 1 > +1$, starting at the rightmost vertical segment.

Example.

Since the ω -ordered set P is a totally order by Proposition 2.2.1, let us realize the set P on the set

 $Q = \{ - < \omega \mid 1 > +1, - < \omega \mid 1 > +2, \dots, < \omega \mid 0 > \}$

by the mapping ρ_{ω}

$$ho_\omega: \{0,1,\ldots,n\} \longrightarrow Q$$

(cf.[2]).

Then the substitutions S and S^{*} transform the values of ρ_{ω} as follows:

Theorem 2 For i = 0, 1, ..., n,

$$S: \begin{pmatrix} a_i \\ \rho_{\omega}(i) \end{pmatrix} \longrightarrow \begin{cases} \begin{pmatrix} 0 \\ \rho_{\omega}(i) + \langle S(\omega) \mid 1 \rangle \end{pmatrix} & \text{for } a_i = 0, \\ 0 & 1 \\ \rho_{\omega}(i) + \langle S(\omega) \mid 1 \rangle & \rho_{\omega}(i) \end{pmatrix} & \text{for } a_i = 1. \end{cases}$$

$$S^*: \begin{pmatrix} a_i \\ \rho_{\omega}(i) \end{pmatrix} \longrightarrow \begin{cases} \begin{pmatrix} 0 & 1 \\ \rho_{\omega}(i) & \rho_{\omega}(i) - \langle S^*(\omega) \mid 1 \rangle \end{pmatrix} & \text{for } a_i = 0, \\ \begin{pmatrix} 1 \\ \rho_{\omega}(i) \end{pmatrix} & \text{for } a_i = 1. \end{cases}$$

Using Lemma 2.2.2, we determine the mapping ρ_{ω} as follows:

Corollary 1

$$\rho_{\omega}(0) = <\omega \mid 0>,$$

and for i = 0, 1, ..., n - 1,

$$\rho_{\omega}(i+1) - \rho_{\omega}(i) = \begin{cases} -<\omega \mid 1 > & \text{if } a_i a_{i+1} = 00 \text{ or } 01, \\ <\omega \mid 0 > & \text{if } a_i a_{i+1} = 11 \text{ or } 10 \end{cases}$$

Corollary 2

$$\rho_{\omega}(i) \equiv (i+1) < \omega \mid 0 > \pmod{<\omega \mid 01 >}, \quad i = 0, 1, \dots, n$$

3 Combinatorial strucures of Josephus permutations and a cyclic tournament

In this chapter, we shall use the words of class \mathcal{D} to characterize Josephus permutations in the set of permutations and a special cyclic tournament in the set of cyclic tournaments.

3.1 Josephus permutations

In this section, we shall give a characterization of Josephus permutations by the distribution of the ascents and descents. The characterization shall give a one-one correspondence between each Josephus permutation and each word of class \mathcal{D} .

Definition 3.1.1 (cf.[4]) Let us denote the ascents and descents in the permutation $\sigma \in S_N$ as follows:

$$\begin{vmatrix} a_i = 1 & \text{for } \sigma(i) < \sigma(i+1)(\text{ascent}), \\ a_i = 0 & \text{for } \sigma(i) > \sigma(i+1)(\text{descent}) \end{vmatrix} \qquad i = 1, 2, \dots, N-1.$$

The word

$$\omega = 0a_1 \cdots a_{N-1}$$

is called the up-down symbol of the permutation σ .

Theorem 3 Any permutation $\sigma \in S_N$ is the Josephus permutation $J_{n,N}$ if and only if the up-down symbol ω of σ is a word of class D and

$$<\omega \mid 0>=n$$

Corollary If the word ω of class \mathcal{D} is the up-down symbol of the Josephus permutation $J_{n,N}$, the dual word ω^* is the up-down symbol of $J_{N-n,N}$.

As well-known, the Euclidean algorithm gives the finite continued fraction. The Euclidean algorithm for integers n and N, N > n > 0 is the following:

$$N = b_0 n + c_0, (n > c_0)$$

$$n = b_1 c_0 + c_1, (c_0 > c_1)$$

:

Then the set of numbers $b_0, c_0, b_1, c_1, \ldots$ characterizes the sequence of cardinalities

.

. .

 $A_j = |\{(k+1)n \pmod{N}; jN < (k+1)n \le (j+1)N\}|, k, j = 0, 1, \dots$

In the case of the coprime integers n and N, this sequence is uniquely given by the updown symbol of $J_{n,N}$. If this sequence shall be regarded as an enumerative aspect of the Euclidean algorithm or a continued fraction, our word of class \mathcal{D} gives it.

Example.

3.2 A cyclic tournament

In this section, the words of class \mathcal{D} shall be used for characterizing cyclic tournaments isomorphic to a given cyclic tournament.

A (round-robin) tournament Γ consists of vertexes 0, 1,..., t such that each pair of distinct vertexes i and j is joined by one and only one of the oriented arcs ij or ji. If the arc ij is in Γ , then we say that i dominates j (symbolically, $i \rightarrow j$). Two tournaments are isomorphic if there exists a one-one dominance-preserving correspondence between their vertexes. If the transposition $(0, 1, \ldots, t)$ is a dominance-preserving permutation of the vertexes of a given tournament Γ , Γ is called a cyclic tournament. Then the number of vertexes is odd, that is t = 2M. Let the vertexes in Γ be labelled the numbers $\{0, 1, \ldots, 2M\}$ denoted by $V(\Gamma)$. It is clear that all arcs in any cyclic tournament Γ are completely determined by arcs between the vertex 0 and the vertexes k, $k = 1,3,\ldots, 2k-1,\ldots, 2M-1$ (cf.[9]).

Let Γ_0 be a cyclic tournament with $V(\Gamma_0) = \{0, 1, \dots, 2M\}$ such that $0 \to k, k = 1, 3, \dots, 2k - 1, \dots, 2M - 1$.

Let Γ be any cyclic tournament with the vertex set $V(\Gamma) = \{0, 1, \dots, 2M\}$. Divide the set $V(\Gamma)$ into the sequence of vertex blocks \mathbb{B}_j , $j = 0, 1, \dots, L$ such that

(1).
$$p_0 = 0$$
 and $p_{L+1} = 2M$,

(2).
$$\mathbf{B}_j = \{p_j + 1, p_j + 2, \dots, p_{j+1}\}$$
 and $\mathbf{B}_L = \{p_L + 1, p_j + 2, \dots, p_{L+1}, 0\},\$

(3). if $0 \rightleftharpoons p_j + 1$, then $0 \rightleftharpoons p$ for any p in \mathbb{B}_j and $0 \leftrightarrows p_{j-1} + 1, p_{j+1} + 1$, respectively.

Set

$$|\mathbf{B}_{j}| - |\mathbf{B}_{0}| = a_{j}, \quad j = 0, 1, \dots, L$$
 (3.2.1)

and

$$\omega = a_0 a_1 \cdots a_L. \tag{3.2.2}$$

Then we have

Theorem 4 Any cyclic tournament Γ is isomorphic to the given cyclic tournament Γ_0 if and only if the sequence ω by (3.2.1) and (3.2.2) is a word of class \mathcal{D} and even length. Set

$$\tilde{\omega} = S^{*^{b_0 - 1}} S(\omega),$$

where $b_0 = |\mathbf{B}_0|$.

Then the isomorphism $\varphi : \Gamma \to \Gamma_0$ is given by the realization $\rho_{\tilde{\omega}}$ of the $\tilde{\omega}$ -ordered set as follows:

$$if \quad 0 \to p_0 + 1, \quad \varphi(i) \equiv \begin{cases} \rho_{\tilde{\omega}}(i) \pmod{2M+1} & if \ 0 \to p_0 + 1\\ -\rho_{\tilde{\omega}}(i) \pmod{2M+1} & if \ 0 \leftarrow p_0 + 1, \end{cases} \quad i = 0, 1, \dots, 2M.$$

References

- [1] A.Ádám, Reseach problem 2-10, J. Combinatorial Theory 2 (1967) 393.
- [2] G.Birkoff, Lattice Theory, 3rd American Math. Soc., Providence, R.I., 1967.
- [3] P.Diaconis, R.L.Graham and W.K.Kantor, The mathematics of perfect shuffles, Advances in Applied Math., 4(1983) 175-196.
- [4] H.O.Foulkes, Enumeration of permutations with prescribed up-down and inversion sequences, Discrete Math., 15(1976) 235-252.
- [5] I.N.Herstein and I.Kaplanskey, Mattters Mathematical, Harper& Row, New York, 1974.
- [6] M.H.Klin and R.Pöschel, The Konig problem, the isomorphism problem for cyclic graphs and the method of Schur rings, in: Colloq. Math. Soc. J.Bolyai 25, Algebraic Methods in Graph Theory, Szeged 1978, (NorthHolland, Amsterdam 1981) 405-434.
- [7] M.Lothaire, Combinatorics on Words, Encyc. Math. 17 Addison-Wesley, Reading 1983.
- [8] I.G.Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford 1979.
- [9] J.W.Moon, Topics on Tournaments, Holt, Rinehart and Winston, New-York 1968.
- [10] P.P.Pálfy, Isomorphism problem for relational structures with a cyclic automorphism, Europ. J. Combinatorics 8 (1987) 35-43.
- [11] R.C.Read and D.G.Corneil, The graph isomorphism disease, J. Graph Theory 1(1977) 339-363.