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1 Introduction

Read-Corneil [11] and Klin-Poschel [6] reported that there had been no good condition for
the graph isomorphism. Also, Adadm [1] presented a characterization problem of directed
graphs with a cyclic property. Some papers (cf.[10]) discussed the Adam’s problem by
studying the automorphism groups of graphs.

The Josephus permutations JY(j) := jn (mod N) are special permutations in the
set Sy of permutations of degree N but have a long history since the first century A.D.
(cf.[5, pages 121-128]).

This paper deals with combinatorial structures in a new class of words, called words of
class D (cf. Definition 2.1.1). The structures shall be applied to a characterization of the
Josephus permutations in the set Sy of permutations of degree N and an isomorphism
problem of a special graph, called a cyclic tournament.

In Theorem 1 in Chapter 2, §1, any word w of class D is uniquely represented by

w = L(5,57)(01),

where S and S*(cf. Definition 2.1.2) are dual substitutions.

Chapter 2,82 contains main results in this paper. This section gives a totally order,
called w-order, depending on each word w of class D. Theorem 2 gives a transformation
of the order by the substitutions S and S*, and determines the order. We shall give a
relation between the transformation of the order and perfect shuffles (as for the definition
and the history, see [3]).

Chapter 3 gives two applications of results in Chapter 2.

One in §1 is to characterize the Josephus permutations in Sy. Each word of class
D is realized as the up-down symbol(cf.[4]) of each Josephus permutation. This can be
regarded as an enumerative aspect of the well-known Euclidean algorithm.

Another one in §2 is to give a criterion wether any cyclic tournament is isomorphic to
a given cyclic tournament or not. For this criterion, we shall use only words of class D
and even length.

135



136

Let us explain the mathematical terminology in this paper.
The terminology on words is used as in [7]. Unless we specify the set A* of words, the
terminology "words” are used as it in {0,1}*. Set

w=aa...a,; w’=b0b1...bm, a;,bj € {0,1},i,j=0,1,...
The intersection number < w | W' > of w and ' is
<wl|w' >=) <a|b; >,
i

where < a; | b; >= ba;b; (Kroneker delta).
The subword w; jofwis
Wij = 08447 ... a;.
For the particular wy ;, set
Wj = Wy j.

The dual word w* of w is

* —

W =0, 0,7 ...09,

where @; is not q; in {0,1}

2 A class of words and a binary relation on each
word in the class

2.1 Combinatorial structures of a class of words

In this section, let us introduce a new class of words, called of class D(cf. Definition
2.1.1). So each word of class D shall be uniquely represented by a leaf in the binary tree
(cf. Figure 1), which is generated by two simple substitutions (cf. Definition 2.1.2).

Definition 2.1.1 Let w be the word
W= apqa...a,.
The word w is called of class D if w satisfies the following:
(!) a=0,a,=1landa;=a,;,i=1,2,...n— 1
(11) there ezists € in the set {0,1}such that for anyi andj, 0<i<j<n,
<wij|1>=<wj_;|1> +e. (2.1.1)
Each of the above conditions (i) and (ii) gives the following properties of words.

Proposition 2.1.1 Let w be any word to satisfy the condition (i) of class D. Then w is
the primitive word.
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Proposition 2.1.2 Let w be any word to satisfy the condition (ii) of class D. Set
w = Qkoglogkrgh... ki,l; >0,4,5=0,1,....
Then:

(3). If ky>2, ki=ko—1orky,andl; =1,
(¢). If ko=1, ki=1 and, li=lorly+1, ,7=0,1,....
Corollary Let w be the word in Proposition 2.1.2. Then :
If  ke>2, wisin{0,01}"
If ko=1, wisin{1,01}".

Let us introduce two sbstitutions S and S*, which are fundamental operations in this
paper.

Definition 2.1.2 The subsitutitons S and S* are defined on {0,1}* as follows:

0—0 . [o-o01
B {1qm, S {1~L

The inverse substitutions of S and S* are denoted by S~land $*7, respectively.
The operations S and S* are each other’s dual substitutions in the following sense.

Proposition 2.1.3 Letw and ' be any words. Then:
(). (S(w))" = S5*(w*) and (S*(w))" = S(w*);
(). <SW)|o >=<w]|S*W)>.
The following lemma is the key to combinatorial structures on words of class D.

Lemma 2.1.4 Let w be a word to satisfy the condition (i) of class D. Leti,j and € in
(2.1.1) be any fized. Set the subscripts i’ and j' of S™)(w) corresponding to i and j such
that

P (wij) = SO (w)iy, (2.1.2)

where S™ is S or S*.
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Then we have the following:

(1) < S(*)(w)i’j' l 1 >=<< S(*)(LU)]'I_"I l 1 > +€,
(2) <S8 jrer | 1 >=< SO (w)jryyi [1>

. _J1 forS® =35
Zfaj+1 = 0 fOT S(*) =9

(3) < S(“‘)(w),-:ﬂg-: I 1>=<« S(*)(w)j:_.-r_l I 1>+41

o _ |1 forS®=5
1fa'—{0 for S®) = g*

(4) < S(*)(w),-:+1,jr+1 I 1l >=< S(*)(w)j:_,-: I 1> +e

L _J1 forS® =35
zfai =041 = 0 fOT S(*) = S*.

Remark. Let S be S~! or $*™" in Lemma 2.1.4. If only (2.1.2) and S™(w) are defined,
the equation (1) in Lemma 2.1.4 holds.

Example.
0123456
w= 001010 1 word of class D.
0123456 7809
S(w)=0001001001.
S(w23) S(w)24 < Wwag I 1>=<w I 1> +1.

< S(w)24 I 1> < S(w)2 l 1> +1.

<S(w)25|1> <S(w)3|l>.

<Sw)s|1> <Sw)|1>+1.

<Sw)ss|1> < S(w)s [1>+1.

The following theorem is a main result in this section, which cha.ractenzes the set of

all words of class D in {0,1}*.
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Theorem 1 The word w is of class D if and only if the word w has the representation
w = L(S,S")(01), (1-L.8)

where L£(S,S*) is a word in {S, S*}*.
Then, the representation (1.1.3) is unique.

o m\s"

001

0001 \%11 00101 0111
y:

00100101 01011011

Figure 1

Corollary Let w be the word of class D with (1.1.8). Then the dual word w* is given
by
w* = L(S*,S)(01).

Hence the dual word w* is of class D.

2.2 A binary relation on each word of class D

In this section, let us introduce a binary relation on each set of subscripts depending on
each word of class D. The binary relation becomes a totally order and gives a crucial rule
in Chapter 3. By the substitutions S and S*, the transformation of the relation shall be

given in Lemma 2.2.2 and Theorem 2.
In this section, let w be any fixed word of class D such that

W= aga - - Qy.

To each a;,5 = 0,1,...,n in the word w, let an element < j > uniquely correspond.

Set
P={<0><1>,...,<n>}.
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Let us introduce a binary relation in the set P.

Definition 2.2.1 The set P is called the w-ordered set with the binary relation <w
(shortly, w-ordered set) if any < i > and < J > in the set P have the relation

<i>»>,<ji> or <i><,<ji>
,and the relation for < i > and < J>0<i<j<n,is gwen by the following:

<> >, <j> < <Wij-1|1> = <wjiq|1>;
<i> <, <j> < <wij-1]1> = <wj i1 |1>+1.

We use the mathematical term ” ordered ” in Definition 2.2.1 by the following.
Proposition 2.2.1 Let P be the w-ordered set . Then P is a totally ordered set.

The following gives a transformation of the order by the substitutions S and § *, and is
the key to determine the order of elements in the set P.

Lemma 2.2.2 Fiz any subscripts ¢ and j of the subword wij of w. Let the subscripts ¢’
and j' of the word S®)(w) correspond to the subscripts i and j such that

S(*)(W)"I’jl = S(*)(w,‘«,),

where S®) is the substitution S or S*.
Then we have the following:

1) <> ® <J+1>  if <i> e < J+ 1>, respectively;

(R5e)w)) (<) ”
; . ; 1 forS® =8
2 <> msow) <J+2>  if apy = 0 forS® =g* >
. . . 1 forS® =5
(8) <i+1> <@ <i+1> i g - 0 forS® =g+
; > 5(4)(w) -,
4) <i’+1> <j+2>
@ (Kseoy) <7

. 1 forS® =g ) > . .
ifa; =a;4; = { 0 ;or S = g and <i> (<o) <+ 1>, respectively.

The iteration S*™S (m > 0) of substitutions is the following:

m+1
— 01---1
— 01---1.
m+2

L . 0
§8: 1

Set
S‘mS(UJ) = bObl s 'bN.
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The transformation of the w-order by the substitution $*™S perfectly shuffles the order
as follows:

Corollary In the word S*™ S(w), let the letters a; and a;y; in the word w be trans-

formed into
S*mS(a,-) = bilbil+l cee b,-u

and

S*'".S'(a,-+1) = bjlbjl+1 = 38 bjll.

Then if in the w-order,
. >'w .
<1> L1413,
(<) 7

in the $*™ S(w)-order, we have,respectively, the following:

. > 5(s) :
<i4+k> 5(*)(w) <j+k>
(<se)w)) 7
*S(')(w) !
<?'+k+1>
('(S(')(w)) TR
TSOW k41>, k=01, ,min{d", j"} — 1.
(=se)w))

Using Lemma 2.2.2, we shall give a realization of the w-ordered set P.

There exists the one-one correspondence between each word  and the right boundary
of each standard Young diagram (as for the definition of the Young diagram, see [8]) as
the following example.

Example.

p=00101 <=

We note that in the corresponding Young diagram (\; > X > ... > At), A is
<w]|0>.
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For the Young diagram, let us label on the successive segments in the right boundary

with the numbers < 4 [0 >, < u|0> -1,... - < #| 1> +1, starting at the rightmost
vertical segment.

Example.

Since the w-ordered set P is a totally order by Proposition 2.2.1, let us realize the set
P on the set

Q={—<w|1>+1,—<w|1>+2,...,<w|0>}

by the mapping p,,
po:{0,1,...,n} — Q

(cf.[2]).

Then the substitutions S and S* transform the values of P as follows:

Theorem 2 Fori=0,1,...,n,

0 —
g @ — pu(i)+ < S(w)|1> ) fora; =0,
L\ 2u(D)+ < SWw) 1> p,(d) fora; =1.

4 O 1 )
e o J Pu(t) pu(i)— < S*(w)|1> ) for a; =0,

S N | —
pw(i) 1 . S
Pw(i) f i

Using Lemma 2.2.2, we determine the mapping p,, as follows:

Corollary 1
pu(0) =<w|0>,
and for: =0,1,...,n—1,

. ~_ ) —<w]|1> ifaa;y; =00o0r 01,
p‘,(z+1)—p‘,(z)—{<w|0> if a;a;4; = 11 or 10
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Corollary 2

Po(i)=(i+1)<w|0> (mod <w|01>), i=0,1,...n.

3 Combinatorial strucures of J osephus permutations
and a cyclic tournament

In this chapter, we shall use the words of class D to characterize J osephus permutations in
the set of permutations and a special cyclic tournament in the set of cyclic tournaments.

3.1 Josephus permutations

In this section, we shall give a characterization of J osephus permutations by the distribu-
tion of the ascents and descents. The characterization shall give a one-one correspondence
between each Josephus permutation and each word of class D.

Definition 3.1.1 (cf.[4]) Let us denote the ascents and descents in the permutation o €
Sn as follows:

a; =1 foro(i) < o(i+ 1)(ascent),
a; =0 foro(i) > o(i+ 1)(descent)

The word
w= 0(11'°°aN._1

is called the up-down symbol of the permutation o.

Theorem 3 Any permutation o0 € Sy is the Josephus permutation J, v if and only if
the up-down symbol w of o is a word of class D and

<w|0>=n

Corollary If the word w of class D is the up-down symbol of the Josephus permutation
Jn,n, the dual word w* is the up-down symbol of IN—n,N-

As well-known, the Euclidean algorithm gives the finite continued fraction. The Eu-
clidean algorithm for integers n and N, N > n > 0 is the following:

N bon + co, (n > ¢p)
n bico + c1,(co > 1)

Then the set of numbers by, ¢y, by, ¢y, . .. characterizes the sequence of cardinalities

Aj=|{(k+Dn (mod N); jN < (k+1)n<(G+1)N}|, kj=0,1,....
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In the case of the coprime integers n and N, this sequence is uniquely given by the up-
down symbol of J, . If this sequence shall be regarded as an enumerative aspect of the
Euclidean algorithm or a continued fraction , our word of class D gives it.

Example.
J3,7 = ( 3 y 6 ’ 2 y ) y 1 , 4 y 7)
w =0 1 0 1 0 1 1 )
J4,7 = ( 4 y 1 y 5 , 2 ; 6 y 3 y 7)
w* = 0 0 1 0 1 0 1 )

3.2 A cyclic tournament

In this section, the words of class D shall be used for characterizing cyclic tournaments
isomorphic to a given cyclic tournament.

A (round-robin) tournament I" consists of vertexes 0, 1,..., t such that each pair of
distinct vertexes i and j is joined by one and only one of the oriented arcs ij or 7i. If the
arc 1j isin T , then we say that ¢ dominates j (symbolically, i — j). Two tournaments
are isomorphic if there exists a one-one dominance-preserving correspondence between
their vertexes. If the transposition (0, Leun; %) 38 & dominance-preserving permutation
of the vertexes of a given tournament [, T is called a cyclic tournament. Then the
number of vertexes is odd , that is ¢ = 2M. Let the vertexes in I' be labelled the
numbers {0, 1,..., 2M} denoted by V(). It is clear that all arcs in any cyclic tournament
I’ are completely determined by arcs between the vertex 0 and the vertexes k , k =
13,...,2k—1,...,2M — 1 (cf.[9]).

Let I, be a cyclic tournament with V(o) = {0, 1,...,2M} such that 0 — k, k =
13,..,2k-1,...,2M - 1.

Let I' beany cyclic tournament with the vertex set V(T) ={0,1,...,2M}. Divide
the set V(T') into the sequence of vertex blocks Bj,j=0,1,..., L such that

(1) po=0 and pr4; =2M,
(2)' BJ = {pJ + lvpj =+ 27‘ . 7pj+1} and BL - {pL + lapj + 2a oo 7pL+1,0},

3). if 0—p;+1, then 0—=p forany pin B; and 0<Sp;_;+1,pjz1+1,
respectively.

Set
IBJI_IB()I:aJa .7=0’1a,L (3.21)

and

W =apay---ay. (322)
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Then we have

Theorem 4 Any cyclic tournament ' is isomorphic to the given cyclic tournament Ly if
and only if the sequence w by (3.2.1) and (3.2.2) is a word of class D and even length.
Set

o =8"""5w),
where by =| By |.

Then the isomorphism ¢ : T — Ty is given by the realization p; of the &-ordered set
as follows:

pa(i) (mod 2M +1)  if0 - py+1

—pa(i) (mod 2M +1) 4f0«— py+1, 1=0,1,...,2M.

i 0o pot1, w(i)E{

References

[1] A.Ad4m, Reseach problem 2-10, J. Combinatorial Theory 2 (1967) 393.
[2] G.Birkoff,Lattice Theory,3rd American Math. Soc.,Providence,R.1.,1967.

[3] P.Diaconis, R.L.Graham and W.K Kantor, The mathematics of perfect shuffles, Ad-
vances in Applied Math.,4(1983) 175-196.

[4] H.O.Foulkes, Enumeration of permutations with prescribed up-down and inversion
sequences, Discrete Math., 15(1976) 235-252.

[5] LN.Herstein and I.Kaplanskey, Mattters Mathematical, Harper& Row, New
York,1974.

[6] M.H.Klin and R.Péschel, The Konig problem, the isomorphism problem for cyclic
graphs and the method of Schur rings, in: Collog. Math. Soc. J.Bolyai 25, Algebraic
Methods in Graph Theory, Szeged 1978, (NorthHolland, Amsterdam 1981) 405-434.

[7) M.Lothaire, Combinatorics on Words, Encyc. Math. 17 Addison-Wesley, Reading
1983.

[8] 1.G.Macdonald, Symmetric Punctions and Hall Polynomials, Clarendon Press, Ox-
ford 1979.

[9] J.W.Moon, Topics on Tournaments, Holt,Rinehart and Winston, New-York 1968.

[10] P.P.Pélfy, Isomorphism problem for relational structures with a cyclic automorphism,
Europ. J. Combinatorics 8 (1987) 35-43.

[11] R.C.Read and D.G.Corneil, The graph isomorphism disease, J. Graph Theory
1(1977) 339-363.



