A class of words, and combinatorial structures of Josephus permutations and a cyclic tournament

Toshihiro Watanabe
Department of Applied Mathematics Faculty of Engineering, Gifu University, Gifu, Japan 501-11

March 11, 1992

1 Introduction

Read-Corneil [11] and Klin-Poschel [6] reported that there had been no good condition for the graph isomorphism. Also, Ádám [1] presented a characterization problem of directed graphs with a cyclic property. Some papers (cf.[10]) discussed the Ádám's problem by studying the automorphism groups of graphs.

The Josephus permutations $J_{n}^{N}(j):=j n(\bmod N)$ are special permutations in the set \mathcal{S}_{N} of permutations of degree N but have a long history since the first century A.D. (cf.[5, pages 121-128]).

This paper deals with combinatorial structures in a new class of words, called words of class \mathcal{D} (cf. Definition 2.1.1). The structures shall be applied to a characterization of the Josephus permutations in the set S_{N} of permutations of degree N and an isomorphism problem of a special graph, called a cyclic tournament.

In Theorem 1 in Chapter 2, $\S 1$, any word ω of class \mathcal{D} is uniquely represented by

$$
\omega=\mathcal{L}\left(S, S^{*}\right)(01)
$$

where S and S^{*} (cf. Definition 2.1.2) are dual substitutions.
Chapter $2, \S 2$ contains main results in this paper. This section gives a totally order, called ω-order, depending on each word ω of class \mathcal{D}. Theorem 2 gives a transformation of the order by the substitutions S and S^{*}, and determines the order. We shall give a relation between the transformation of the order and perfect shuffles (as for the definition and the history, see [3]).

Chapter 3 gives two applications of results in Chapter 2.
One in $\S 1$ is to characterize the Josephus permutations in \mathcal{S}_{N}. Each word of class \mathcal{D} is realized as the up-down symbol(cf.[4]) of each Josephus permutation. This can be regarded as an enumerative aspect of the well-known Euclidean algorithm.

Another one in $\S 2$ is to give a criterion wether any cyclic tournament is isomorphic to a given cyclic tournament or not. For this criterion, we shall use only words of class \mathcal{D} and even length.

Let us explain the mathematical terminology in this paper.
The terminology on words is used as in [7]. Unless we specify the set A^{*} of words, the terminology "words" are used as it in $\{0,1\}^{*}$. Set

$$
\omega=a_{0} a_{1} \ldots a_{n} ; \quad \omega^{\prime}=b_{0} b_{1} \ldots b_{m}, \quad a_{i}, b_{j} \in\{0,1\}, i, j=0,1, \ldots
$$

The intersection number $<\omega \mid \omega^{\prime}>$ of ω and ω^{\prime} is

$$
<\omega\left|\omega^{\prime}\right\rangle=\sum_{i, j}<a_{i}\left|b_{j}\right\rangle
$$

where $\left\langle a_{i} \mid b_{j}\right\rangle=\delta_{a_{i} b_{j}}$ (Kroneker delta).
The subword $\omega_{i, j}$ of ω is

$$
\omega_{i, j}=a_{i} a_{i+1} \ldots a_{j} .
$$

For the particular $\omega_{0, j}$, set

$$
\omega_{j}=\omega_{0, j} .
$$

The dual word ω^{*} of ω is

$$
\omega^{*}=\overline{a_{n}} \overline{a_{n-1}} \ldots \overline{a_{0}},
$$

where $\overline{a_{i}}$ is not a_{i} in $\{0,1\}$

2 A class of words and a binary relation on each word in the class

2.1 Combinatorial structures of a class of words

In this section, let us introduce a new class of words, called of class \mathcal{D} (cf. Definition 2.1.1). So each word of class \mathcal{D} shall be uniquely represented by a leaf in the binary tree (cf. Figure 1), which is generated by two simple substitutions (cf. Definition 2.1.2).

Definition 2.1.1 Let ω be the word

$$
\omega=a_{0} a_{1} \ldots a_{n} .
$$

The word ω is called of class \mathcal{D} if ω satisfies the following:
(i) $a_{0}=0, a_{n}=1$ and $a_{i}=a_{n-i}, i=1,2, \ldots n-1$;
(ii) there exists ϵ in the set $\{0,1\}$ such that for any i and $j, \quad 0 \leq i \leq j \leq n$,

$$
\begin{equation*}
\left\langle\omega_{i, j}\right| 1>=<\omega_{j-i} \mid 1>+\epsilon . \tag{2.1.1}
\end{equation*}
$$

Each of the above conditions (i) and (ii) gives the following properties of words.
Proposition 2.1.1 Let ω be any word to satisfy the condition (i) of class \mathcal{D}. Then ω is the primitive word.

Proposition 2.1.2 Let ω be any word to satisfy the condition (ii) of class \mathcal{D}. Set

$$
\omega=0^{k_{0}} 1^{l_{0}} 0^{k_{1}} 1^{l_{1}} \cdots, \quad k_{i}, l_{j}>0, i, j=0,1, \ldots
$$

Then:

$$
\begin{aligned}
& \text { (i). If } k_{0} \geq 2, \quad k_{i}=k_{0}-1 \text { or } k_{0}, \text { and } l_{j}=1 ; \\
& \text { (ii). }
\end{aligned}
$$

Corollary Let ω be the word in Proposition 2.1.2. Then :

$$
\begin{array}{ll}
\text { If } & k_{0} \geq 2, \\
\text { If } & \omega \text { is in }\{0,01\}^{*} \\
k_{0}=1, & \omega \text { is in }\{1,01\}^{*} .
\end{array}
$$

Let us introduce two sbstitutions S and S^{*}, which are fundamental operations in this paper.

Definition 2.1.2 The subsitutitons S and $S^{* *}$ are defined on $\{0,1\}^{*}$ as follows:

$$
S: \quad\left\{\begin{array}{l}
0 \rightarrow 0 \\
1 \rightarrow 01,
\end{array} \quad S^{*}: \quad\left\{\begin{array}{l}
0 \rightarrow 01 \\
1 \rightarrow 1
\end{array}\right.\right.
$$

The inverse substitutions of S and S^{*} are denoted by S^{-1} and S^{*-1}, respectively.
The operations S and S^{*} are each other's dual substitutions in the following sense.
Proposition 2.1.3 Let ω and ω^{\prime} be any words. Then:
(i). $\quad(S(\omega))^{*}=S^{*}\left(\omega^{*}\right)$ and $\left(S^{* *}(\omega)\right)^{*}=S\left(\omega^{*}\right) ;$
(ii). $\quad<S(\omega)\left|\omega^{\prime}\right\rangle=<\omega\left|S^{*}\left(\omega^{\prime}\right)\right\rangle$.

The following lemma is the key to combinatorial structures on words of class \mathcal{D}.
Lemma 2.1.4 Let ω be a word to satisfy the condition (ii) of class \mathcal{D}. Let i, j and ϵ in (2.1.1) be any fixed. Set the subscripts i^{\prime} and j^{\prime} of $S^{(*)}(\omega)$ corresponding to i and j such that

$$
\begin{equation*}
S^{(*)}\left(\omega_{i j}\right)=S^{(*)}(\omega)_{i^{\prime} j^{\prime}}, \tag{2.1.2}
\end{equation*}
$$

where $S^{(*)}$ is S or S^{*}.

Then we have the following:

$$
\begin{gathered}
\text { (1) }<S^{(*)}(\omega)_{i^{\prime} j^{\prime}}\left|1>=<S^{(*)}(\omega)_{j^{\prime}-i^{\prime}}\right| 1>+\epsilon ; \\
(2)<S^{(*)}(\omega)_{i^{\prime}, j^{\prime}+1}\left|1>=<S^{(*)}(\omega)_{j^{\prime}+1-i^{\prime}}\right| 1> \\
\text { if } a_{j+1}= \begin{cases}1 & \text { for } S^{(*)}=S \\
0 & \text { for } S^{(*)}=S^{*}\end{cases} \\
(3)<S^{(*)}(\omega)_{i^{\prime}+1, j^{\prime}}\left|1>=<S^{(*)}(\omega)_{j^{\prime}-i^{\prime}-1}\right| 1>+1
\end{gathered}, \begin{gathered}
\text { if } a_{i}= \begin{cases}1 & \text { for } S^{(*)}=S \\
0 & \text { for } S^{(*)}=S^{* *}\end{cases} \\
(4)<S^{(*)}(\omega)_{i^{\prime}+1, j^{\prime}+1}\left|1>=<S^{(*)}(\omega)_{j^{\prime}-i^{\prime}}\right| 1>+\epsilon \\
\text { if } a_{i}=a_{j+1}= \begin{cases}1 & \text { for } S^{(*)}=S \\
0 & \text { for } S^{(*)}=S^{*} .\end{cases}
\end{gathered}
$$

Remark. Let $S^{(*)}$ be S^{-1} or $S^{*^{-1}}$ in Lemma 2.1.4. If only (2.1.2) and $S^{(*)}(\omega)$ are defined, the equation (1) in Lemma 2.1.4 holds.

Example.

$$
\begin{aligned}
& \omega=\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 ;
\end{array} \quad \text { word of class } \mathcal{D} \text {. } \\
& S(\omega)=\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 .
\end{array} \\
& S\left(\omega_{23}\right)=S(\omega)_{24} \quad<\omega_{23}\left|1>=<\omega_{1}\right| 1>+1 . \\
& <S(\omega)_{24}|1\rangle=\left\langle S(\omega)_{2} \mid 1\right\rangle+1 . \\
& \left\langle S(\omega)_{25} \mid 1\right\rangle=\left\langle S(\omega)_{3} \mid 1\right\rangle . \\
& <S(\omega)_{34}|1\rangle=\left\langle S(\omega)_{1} \mid 1\right\rangle+1 . \\
& <S(\omega)_{35}|1\rangle=\left\langle S(\omega)_{2} \mid 1\right\rangle+1 \text {. }
\end{aligned}
$$

The following theorem is a main result in this section, which characterizes the set of all words of class \mathcal{D} in $\{0,1\}^{*}$.

Theorem 1 The word ω is of class \mathcal{D} if and only if the word ω has the representation

$$
\begin{equation*}
\omega=\mathcal{L}\left(S, S^{*}\right)(01) \tag{1.1.3}
\end{equation*}
$$

where $\mathcal{L}\left(S, S^{\prime \prime}\right)$ is a word in $\left\{S, S^{*}\right\}^{*}$.
Then, the representation (1.1.3) is unique.

Figure 1

Corollary Let ω be the word of class \mathcal{D} with (1.1.3). Then the dual word ω^{*} is given by

$$
\omega^{*}=\mathcal{L}\left(S^{*}, S\right)(01)
$$

Hence the dual word ω^{*} is of class \mathcal{D}.

2.2 A binary relation on each word of class \mathcal{D}

In this section, let us introduce a binary relation on each set of subscripts depending on each word of class \mathcal{D}. The binary relation becomes a totally order and gives a crucial rule in Chapter 3. By the substitutions S and S^{*}, the transformation of the relation shall be given in Lemma 2.2.2 and Theorem 2.

In this section, let ω be any fixed word of class \mathcal{D} such that

$$
\omega=a_{0} a_{1} \cdots a_{n}
$$

To each $a_{j}, j=0,1, \ldots, n$ in the word ω, let an element $\langle j\rangle$ uniquely correspond. Set

$$
P=\{\langle 0\rangle,<1\rangle, \ldots,<n\rangle\}
$$

Let us introduce a binary relation in the set P.
Definition 2.2.1 The set P is called the ω-ordered set with the binary relation \prec_{ω} (shortly, ω-ordered set) if any $\langle i\rangle$ and $\langle j\rangle$ in the set P have the relation

$$
\left.<i>\succ_{\omega}<j>\text { or }<i>\prec_{\omega}<j\right\rangle
$$

, and the relation for $\langle i\rangle$ and $<j>, 0 \leq i<j \leq n$, is given by the following:

$$
\begin{aligned}
& \left.<i>\succ_{\omega}<j>\quad \Longleftrightarrow \quad<\omega_{i, j-1}\left|1>=<\omega_{j-i-1}\right| 1\right\rangle ; \\
& <i>\prec_{\omega}<j>
\end{aligned}
$$

We use the mathematical term "ordered "in Definition 2.2.1 by the following.
Proposition 2.2.1 Let P be the ω-ordered set. Then P is a totally ordered set.
The following gives a transformation of the order by the substitutions S and S^{*}, and is the key to determine the order of elements in the set P.

Lemma 2.2.2 Fix any subscripts i and j of the subword $\omega_{i, j}$ of ω. Let the subscripts i^{\prime} and j^{\prime} of the word $S^{(*)}(\omega)$ correspond to the subscripts i and j such that

$$
S^{(*)}(\omega)_{i^{\prime}, j^{\prime}}=S^{(*)}\left(\omega_{i, j}\right)
$$

where $S^{(*)}$ is the substitution S or S^{*}.
Then we have the following:
(1) $<i^{\prime}>\underset{\left(\zeta_{S^{(*)}(\omega)}\right)}{\succ_{S^{(*)}(\omega)}}<j^{\prime}+1>\quad$ if $<i>\underset{\left(\prec_{\omega}\right)}{\succ_{\omega}}<j+1>$, respectively;
$\begin{array}{lllll}\text { (2) }<i^{\prime}> & \succ_{S^{(*)}(\omega)} & <j^{\prime}+2> & \text { if } & a_{j+1} \\ \text { (3) }<i^{\prime}+1> & \prec_{S^{(*)}(\omega)} & <j^{\prime}+1> & \text { if } & a_{i}\end{array}=\left\{\begin{array}{ll}1 & \text { for } S^{(*)}=S \\ 0 & \text { for } S^{(*)}=S^{*}\end{array} ; ~\left\{\begin{array}{ll}1 & \text { for } S^{(*)}=S \\ 0 & \text { for } S^{(*)}=S^{* *}\end{array} ;\right.\right.$
(4) $\left.\left\langle i^{\prime}+1\right\rangle \underset{\left(\prec_{\left.S^{(}\right)(\omega)}\right)}{\succ_{S^{(\theta)}(\omega)}} \quad<j^{\prime}+2\right\rangle$

$$
\text { if } a_{i}=a_{j+1}=\left\{\begin{array}{ll}
1 & \text { for } S^{(*)}=S \\
0 & \text { for } S^{(*)}=S^{*}
\end{array} \text { and }\left\langle i>\quad \begin{array}{l}
\succ_{\omega} \\
\left(\prec_{\omega}\right)
\end{array}<j+1\right\rangle\right. \text {, respectively. }
$$

The iteration $S^{*^{m}} S(m \geq 0)$ of substitutions is the following:

$$
S^{s^{m}} S:\left\{\begin{array}{l}
0 \rightarrow \overbrace{01 \cdots 1}^{m+1} \\
1 \rightarrow \underbrace{01 \cdots 1}_{m+2}
\end{array}\right.
$$

Set

$$
S^{m m} S(\omega)=b_{0} b_{1} \cdots b_{N}
$$

The transformation of the ω-order by the substitution $S^{* m} S$ perfectly shuffles the order as follows:

Corollary In the word $S^{w^{m}} S(\omega)$, let the letters a_{i} and a_{j+1} in the word ω be transformed into

$$
\begin{aligned}
& S^{* m} S\left(a_{i}\right)=b_{i^{\prime}} b_{i^{\prime}+1} \cdots b_{i^{\prime \prime}} \\
& \text { and } \\
& S^{* m} S\left(a_{j+1}\right)=b_{j^{\prime}} b_{j^{\prime}+1} \cdots b_{j^{\prime \prime \prime}}
\end{aligned}
$$

Then if in the ω-order,

$$
<i>\underset{\left(\prec_{\omega}\right)}{\succ_{\omega}}<j+1>
$$

in the $S^{*^{m}} S(\omega)$-order, we have, respectively, the following:

$$
\begin{array}{rcl}
<i^{\prime}+k> & \succ_{S^{(*)}(\omega)} & <j^{\prime}+k> \\
& \left(\prec_{S^{(*)}(\omega)}\right) & \\
& \left.\succ_{S^{(*)}(\omega)}\right) & <i^{\prime}+k+1> \\
& \left(\prec_{S^{(*)}(\omega)}\right) & \\
& \succ_{S^{(*)}(\omega)} & <j^{\prime}+k+1>, \quad k=0,1, \ldots, \min \left\{i^{\prime \prime}, j^{\prime \prime}\right\}-1 .
\end{array}
$$

Using Lemma 2.2.2, we shall give a realization of the ω-ordered set P.
There exists the one-one correspondence between each word μ and the right boundary of each standard Young diagram (as for the definition of the Young diagram, see [8]) as the following example.

Example.

$$
\mu=00101 \Longleftrightarrow \begin{array}{|l|l|l|}
\hline & & \\
\hline & & 1 \\
\hline 0 & 0
\end{array}
$$

We note that in the corresponding Young diagram $\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{l}\right), \lambda_{1}$ is $\langle\omega \mid 0\rangle$.

For the Young diagram, let us label on the successive segments in the right boundary with the numbers $\langle\mu \mid 0\rangle,<\mu|0>-1, \ldots,-<\mu| 1\rangle+1$, starting at the rightmost vertical segment.

Example.

Since the ω-ordered set P is a totally order by Proposition 2.2.1, let us realize the set P on the set

$$
Q=\{-\langle\omega \mid 1\rangle+1,-<\omega|1\rangle+2, \ldots,<\omega|0\rangle\}
$$

by the mapping ρ_{ω}

$$
\rho_{\omega}:\{0,1, \ldots, n\} \longrightarrow Q
$$

(cf.[2]).
Then the substitutions S and S^{*} transform the values of ρ_{ω} as follows:
Theorem 2 For $i=0,1, \ldots, n$,

$$
\begin{gathered}
S:\binom{a_{i}}{\rho_{\omega}(i)} \rightarrow \begin{cases}\left(\begin{array}{cc}
0 & \text { for } a_{i}=0 \\
\rho_{\omega}(i)+<S(\omega) \mid 1> \\
0 & 1 \\
\rho_{\omega}(i)+<S(\omega) \mid 1> & \rho_{\omega}(i)
\end{array}\right) & \text { for } a_{i}=1\end{cases} \\
S^{* *}:\binom{a_{i}}{\rho_{\omega}(i)} \rightarrow \begin{cases}\left(\begin{array}{cc}
0 & \text { for } a_{i}=0 \\
\rho_{\omega}(i) & \rho_{\omega}(i)-<S^{*}(\omega) \mid 1> \\
1 \\
\rho_{\omega}(i)
\end{array}\right) & \text { for } a_{i}=1\end{cases}
\end{gathered}
$$

Using Lemma 2.2.2, we determine the mapping ρ_{ω} as follows:

Corollary 1

$$
\rho_{\omega}(0)=\langle\omega \mid 0\rangle
$$

and for $i=0,1, \ldots, n-1$,

$$
\rho_{\omega}(i+1)-\rho_{\omega}(i)=\left\{\begin{array}{ll}
-<\omega \mid 1> & \text { if } a_{i} a_{i+1}=00 \text { or } 01, \\
<\omega \mid 0> & \text { if } a_{i} a_{i+1}=11 \text { or } 10
\end{array} .\right.
$$

Corollary 2

$$
\rho_{\omega}(i) \equiv(i+1)<\omega \mid 0>\quad(\bmod <\omega \mid 01>), \quad i=0,1, \ldots n .
$$

3 Combinatorial strucures of Josephus permutations and a cyclic tournament

In this chapter, we shall use the words of class \mathcal{D} to characterize Josephus permutations in the set of permutations and a special cyclic tournament in the set of cyclic tournaments.

3.1 Josephus permutations

In this section, we shall give a characterization of Josephus permutations by the distribution of the ascents and descents. The characterization shall give a one-one correspondence between each Josephus permutation and each word of class \mathcal{D}.

Definition 3.1.1 (cf.[4]) Let us denote the ascents and descents in the permutation $\sigma \in$ \mathcal{S}_{N} as follows:

$$
\left\{\begin{array}{l}
a_{i}=1 \text { for } \sigma(i)<\sigma(i+1)(\text { ascent }), \\
a_{i}=0 \text { for } \sigma(i)>\sigma(i+1)(\text { descent })
\end{array} \quad i=1,2, \ldots, N-1\right.
$$

The word

$$
\omega=0 a_{1} \cdots a_{N-1}
$$

is called the up-down symbol of the permutation σ.
Theorem 3 Any permutation $\sigma \in \mathcal{S}_{N}$ is the Josephus permutation $J_{n, N}$ if and only if the up-down symbol ω of σ is a word of class \mathcal{D} and

$$
<\omega|0\rangle=n
$$

Corollary If the word ω of class \mathcal{D} is the up-down symbol of the Josephus permutation $J_{n, N}$, the dual word ω^{*} is the up-down symbol of $J_{N-n, N}$.

As well-known, the Euclidean algorithm gives the finite continued fraction. The Euclidean algorithm for integers n and $N, N>n>0$ is the following:

$$
\begin{aligned}
N & =b_{0} n+c_{0},\left(n>c_{0}\right) \\
n & =b_{1} c_{0}+c_{1},\left(c_{0}>c_{1}\right)
\end{aligned}
$$

Then the set of numbers $b_{0}, c_{0}, b_{1}, c_{1}, \ldots$ characterizes the sequence of cardinalities

$$
A_{j}=|\{(k+1) n \quad(\bmod N) ; j N<(k+1) n \leq(j+1) N\}|, \quad k, j=0,1, \ldots .
$$

In the case of the coprime integers n and N, this sequence is uniquely given by the updown symbol of $J_{n, N}$. If this sequence shall be regarded as an enumerative aspect of the Euclidean algorithm or a continued fraction, our word of class \mathcal{D} gives it.

Example.

$$
\begin{aligned}
& \left.\begin{array}{c}
J_{3,7} \\
\omega
\end{array}=\begin{array}{lllllllllllll}
& 3 & , & 6 & , & 2 & & 5 & 1 & , & 4 & & 7
\end{array}\right) .
\end{aligned}
$$

3.2 A cyclic tournament

In this section, the words of class \mathcal{D} shall be used for characterizing cyclic tournaments isomorphic to a given cyclic tournament.

A (round-robin) tournament Γ consists of vertexes $0,1, \ldots, t$ such that each pair of distinct vertexes i and j is joined by one and only one of the oriented arcs \vec{j} or $\overrightarrow{j i}$. If the arc \vec{j} is in Γ, then we say that i dominates j (symbolically, $i \rightarrow j$). Two tournaments are isomorphic if there exists a one-one dominance-preserving correspondence between their vertexes. If the transposition $(0,1, \ldots, t)$ is a dominance-preserving permutation of the vertexes of a given tournament Γ, Γ is called a cyclic tournament. Then the number of vertexes is odd, that is $t=2 M$. Let the vertexes in Γ be labelled the numbers $\{0,1, \ldots, 2 M\}$ denoted by $V(\Gamma)$. It is clear that all arcs in any cyclic tournament Γ are completely determined by arcs between the vertex 0 and the vertexes $k, k=$ $1,3, \ldots, 2 k-1, \ldots, 2 M-1$ (cf.[9]).

Let Γ_{0} be a cyclic tournament with $V\left(\Gamma_{0}\right)=\{0,1, \ldots, 2 M\}$ such that $0 \rightarrow k, k=$ $1,3, \ldots, 2 k-1, \ldots, 2 M-1$.

Let Γ be any cyclic tournament with the vertex set $V(\Gamma)=\{0,1, \ldots, 2 M\}$. Divide the set $V(\Gamma)$ into the sequence of vertex blocks $\mathbb{B}_{j}, j=0,1, \ldots, L$ such that
(1). $p_{0}=0$ and $p_{L+1}=2 M$,
(2). $\mathbb{B}_{j}=\left\{p_{j}+1, p_{j}+2, \ldots, p_{j+1}\right\}$ and $\mathbb{B}_{L}=\left\{p_{L}+1, p_{j}+2, \ldots, p_{L+1}, 0\right\}$,
(3). if $0 \rightleftarrows p_{j}+1, \quad$ then $0 \rightleftarrows p$ for any p in \mathbb{B}_{j} and $0 \leftrightharpoons p_{j-1}+1, p_{j+1}+1$, respectively.

Set

$$
\begin{equation*}
\left|\mathbb{B}_{j}\right|-\left|\mathbb{B}_{0}\right|=a_{j}, \quad j=0,1, \ldots, L \tag{3.2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega=a_{0} a_{1} \cdots a_{L} . \tag{3.2.2}
\end{equation*}
$$

Then we have

Theorem 4 Any cyclic tournament Γ is isomorphic to the given cyclic tournament Γ_{0} if and only if the sequence ω by (3.2.1) and (3.2.2) is a word of class \mathcal{D} and even length. Set

$$
\tilde{\omega}=S^{w_{0}-1} S(\omega),
$$

where $b_{0}=\left|\mathbf{B}_{0}\right|$.
Then the isomorphism $\varphi: \Gamma \rightarrow \Gamma_{0}$ is given by the realization $\rho_{\tilde{\omega}}$ of the $\tilde{\omega}$-ordered set as follows.

$$
\text { if } 0 \rightarrow p_{0}+1, \quad \varphi(i) \equiv\left\{\begin{array}{ll}
\rho_{\tilde{\omega}}(i)(\bmod 2 M+1) & \text { if } 0 \rightarrow p_{0}+1 \\
-\rho_{\tilde{\omega}}(i)(\bmod 2 M+1) & \text { if } 0 \leftarrow p_{0}+1,
\end{array} \quad i=0,1, \ldots, 2 M .\right.
$$

References

[1] A.Ádám, Reseach problem 2-10, J. Combinatorial Theory 2 (1967) 393.
[2] G.Birkoff,Lattice Theory,3rd American Math. Soc.,Providence,R.I.,1967.
[3] P.Diaconis, R.L.Graham and W.K.Kantor, The mathematics of perfect shuffles, Advances in Applied Math.,4(1983) 175-196.
[4] H.O.Foulkes, Enumeration of permutations with prescribed up-down and inversion sequences, Discrete Math., 15(1976) 235-252.
[5] I.N.Herstein and I.Kaplanskey, Mattters Mathematical, Harper\& Row, New York,1974.
[6] M.H.Klin and R.Pöschel, The Konig problem, the isomorphism problem for cyclic graphs and the method of Schur rings, in: Colloq. Math. Soc. J.Bolyai 25, Algebraic Methods in Graph Theory, Szeged 1978, (NorthHolland, Amsterdam 1981) 405-434.
[7] M.Lothaire, Combinatorics on Words, Encyc. Math. 17 Addison-Wesley, Reading 1983.
[8] I.G.Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford 1979.
[9] J.W.Moon, Topics on Tournaments, Holt,Rinehart and Winston, New-York 1968.
[10] P.P.Pálfy, Isomorphism problem for relational structures with a cyclic automorphism, Europ. J. Combinatorics 8 (1987) 35-43.
[11] R.C.Read and D.G.Corneil, The graph isomorphism disease, J. Graph Theory 1(1977) 339-363.

