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1 Introduction

We study permutation enumeration of the symmetric group, S,, and the hyperoctahedral
group, By, via the combinatorics of symmetric functions. Qur work is motivated by a
recent paper of F. Brenti [2]. Brenti studies the unimodality of the polynomials obtained
by enumerating sets of permutations of S, with respect to the number of excedances. He
shows that the resulting polynomials for various classes, including conjugacy classes, are both
unimodal and symmetric. By defining a homomorphism on the ring of symmetric functions,
Brenti shows that the polynomials obtained by enumerating with respect to excedances
over conjugacy classes of S, arise naturally. Our work discusses the effects of applying this
homomorphism on the various bases of the ring of symmetric functions from a combinatorial
point of view. We use combinatorial definitions of the transition matrices between the various
bases of the ring of symmetric functions to give combinatorial proofs to Brenti’s results. The
combinatorial proofs enable us to extend his results. For example, by defining a second
homomorphism, we give g-analogues of Brenti’s results. Here, we would like to give an idea
of the types of involutions and combinatorial interpretations contained in our work. We will
give two examples of our interpretations, after which we will state some of our other results,

without proof. We have also derived analogous results for permutation enumeration of B,
and we will discuss these briefly.

2 Permutation Enumeration of S,

2.1 Notation

We use Macdonald’s notation [5] for symmetric functions. For ) a partition of n, my denotes
the monomial symmetric functions; px denotes the power symmetric functions; e, denotes
the elementary symmetric functions; hy denotes the homogeneous symmetric functions; sy
denotes the Schur functions; and fx denotes the forgotten symmetric functions.

Let ¢ = 04020, be a permutation of S,, given in one-line notation. Then we
have three permutation statistics. If o; > ¢, then i is an ezcedance of 0. We denote by
€(0) = |{i : 0; > i}| (the number of excedances of 0). If o; > 0441, then i is a descent of o.
We denote by d(0) = |{i : 0i > 0i41}| (the number of descents of ). An inversion occurs

% > 0; for i < j. We denote the number of inversions of ¢ by inv(e) = T x(0: > 0;).

' -!{efr;, Wwe use the notation that for a statement A, x(A) = 1 if A is true and x(A4) = 0 if A
18 false.
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Brenti also finds an expression for the leading coefficient of £(m,) and £(f,). Note that (ii)
shows that ¥yes, (r) £ is unimodal and symmetric, which answered a question of Stanley.

A Combinatorial Interpretation of n!¢(h,) and a q-analogue

Brenti established his results by mostly algebraic means. We have been able to give
combinatorial proofs of all his results using the combinatorial interpretations for the entries
of the transition matrices between bases of symmetric functions. As an example, we give a
combinatorial interpretation to (i) , after which we will give a g-analogue of the result.

Before we can give our interpretation, we need to define combinatorial objects called
p-brick tabloids of shape A. We introduce them here by way of an example; details can be
found in [3].

For p a partition of n, we create bricks of length equal to the length of the parts of 4.
For example, if u = (1,1, 1,2), then we have the following p-bricks:

L] [] L 1]

Let A = (2,3). Then the u-brick tabloids of shape \ are:

,DE] H|. L
Ll O CICcd

Basically, in constructing a p-brick tabloid, two rules must be followed:

1. p-bricks can not overlap, and

2. each brick must lie within a single row.

In our combinatorial interpretations, we will be concerned with the number of p-brick

tabloids of shape A, denoted by B, ». In the example above, B1,1,1,2),(2,3 = 3. We denote by
B, the set of all u-brick tabloids of shape .

Now we will give a bijective proof of the expression Brenti derives for nl§(h,), providing

a set of objects which describe the polynomial. Our proof depends on the fact that we can
express hy combinatorially in terms of e, as given in [3]:

ha = Z(_l)n‘l(“)B#.»\ €u )
pn

where B, , denotes the number of  brick tabloids of shape A.

Multiplying the special case of (2) where A = (n) by n! and applying the homomorphism
% both sides we have

nlf(hn) = D (-1)"B,mnl&(e,)
pn
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Clearly, (5) holds. Examining the left hand side of (5), we see by the second summation
shows that the objects are u-brick tabloids of shape (n). The multinomial coefficient fills
each brick with a different sequence of integers from the set {1,2,...,n}. By convention, we
choose the integers to be decreasing in each brick. The term (z — 1)"~¥) gives a weight of
either an +x or a +1 to each of n — I(u) cells, where the cells weighted by by x have sign +1
and the cells weighted +1 have sign -1 . The remaining I(u) cells have weight +1 and sign
+1; we use the convention that the last cell in each brick shall carry this weight and sign.

Next we define an involution on objects in @,. For our involution, we check from the left

of the tableau until we find the leftmost occurrence of one of the two conditions described
below and perform the corresponding operation.

1. If there is a decrease between the last element of one brick and the first element in the

next brick, we join the two bricks together and change the sign of the last cell of the
first brick from +1 to -1.

2. If we see a -1 as a sign on a cell we cut the brick after that cell into two bricks and we
change the sign of the cell from -1 to +1.

An example of the involution is given in Figure 2.2. The sign associated with an object is
reversed by changing a +1 into a -1 and vice versa; hence the involution is sign reversing.

And, because we do not change the entries otherwise, the involution preserves the number
of x’s in the tableau.

[o[8]s[+] [*Ts] [7[e]5]e]2]
x -1 x 1

11 x -1 x x 1

ol 8] [s]] [a]e] [Te[5 4] 2]

x 1 x 1 -1 1 X -1 x x 1

The fixed points of our involution will consist of those p-brick tableaux of shape (n) which

1. have weights of x on all the cells except the last cell in each brick. (The last cells are
weighted with +1),

2. have sign +1 (there are no longer any cells with negative signs), and

3. have fillings such that the elements increase between bricks and decrease within bricks.

The following is an example of a fixed point:

g

o] 3] [11[o] 7]4] [eTe[5[=]q]

1 x xx 1 x x x x 1
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from right to left, first the 1’s, then the 2’s, and so on. We then take the inverse of the
permutation, o~ 1(r):

r=19213812133
o(r)=4116310925187
cMr)=9741 83 111065 2

By the way we have constructed the permutation o~1(r), we have sequences of decreasing
integers which fit into the u-bricks:

[9]7]4]1] 11]10] 6] 5] 2]

By a theorem of Carlitz,

n _ inv(r)
= XY ¢,
[ K1, [2y - -y J reR(14,20,...0)

and by the way we constructed o(r), it is easy to see that

tnu(e ) = inv(o(r)) = inslr) + ( h ) + ( b ) b ( ;s ) .

Hence, we can interpret the right hand side of (8) as Yoco,, Sgn(0)w(0). Let v; denote the

integer in cell ¢;. With one exception, the objects in O, are the same as the objects in Oy,

The difference is that each cell of 0 € O,y has an additional weight of gP where p denotes
the number of integers which appear to the right of the cell which are smaller than vj.

The involution we use on the objects in Oy is the same as that used in our interpretation

of nlf(h). Note that we do not rearrange the fillings of the pu-bricks, and so consequently

the q weight is not changed. Thus the fixed points will count the permutations of S, with
respect to the statistic z?)g#(@), m]

2.3 Other Results

Our work also involves combinatorial proofs of the following.

A Combinatorial Interpretation of n!é(h,) and a g-analogue

We must define a new permutation statistic which will be used in our interpretation of
nl§(hy). This statistic involves both a permutation and a partition.

Let )\ = (A1, A2,...,A) be a partition of n and let ¢ = 0105+ 0, be a permutation
of n, written in one line notation. For the permutation statistic,
of lengths ALz

t+ 1 occur within

we break o into pieces
-y M. We then count only the descents, ; > 0i4; such that both i and

one of these pieces, and we denote the sum by dx(c). For example, if
7=86274315and A= (1,3,4), then we break ¢ into pieces [8](6 2 7][4 3 1 5]. In this
%45¢, d\(0) = 3. Note in this example the descents of o occurring at positions 1 and 5 are

106 counted because positions 1 and 2 and positions 5 and 6 do not occur within a single
have the following theorems.
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Before we give the expression, we give some definitions and notation. Consider a Ferrers’
diagram of shape A. A rim hook of Xis a sequence of cells, h, along the north-east boundary
of the diagram such that any two consecutive cells in A share an edge and such that the
removal of the cells in k leaves a legal diagram. We define a k-border rim hook tabloid of

shape v, H, = (hy, hy, ..., k), as a filling of the Ferrers’ diagram of shape v with rim hooks
hl,hg, _r ,hk such that

1. hy is a rim hook of the Ferrers’ diagram of shape v, and for 1 < i < k, h; must be a
rim hook of the Ferrers’ diagram of shape v — (hy,...,hi_;) where v — (b1, hicy)
denotes the diagram of shape v with the cells of hooks hi,...,hi_; removed.

2. h; starts above h; for i < j in the sense that if the first s

quare of h; (reading from top
to bottom) is (41, ;) and the first square of hy is (12, 72),

then 1 —J1> 1y — Ja-
An example of a 4-border rim hook tabloid of shape (12,33,4,62) is given below.

Let |hi|, 1 < i < k, denote the length of hook h;, i.e. the numb

er of cells that h; occupies.
Define the sign of a hook A; as

sgn(hy) = (~1y-"

where r(h;) denotes the number of rows that h; occu

pies. We define the sign of a k-border
rim hook tabloid H, as

sgn(H,) = [T sgn(h)

Let v correspond to the shape v — (h1,...,h). We define

sh(H,) = el
Ve

Note that sh(H,) may correspond to disjoint pieces as in the figure below.

H=(h,h,,h,h,)
[~ Sgrohg

; the figure, the shaded cells correspond to sh(H,) and the unshaded cells correspond to
H0€ shape vgr- Denote by BE the set of all k-border rim hook tabloids of shape v.
the proposition to follow, the shape of the r-border rim hook tabloid will correspond

Hthe shape /() for \ a partition. We define A — sh(Ha(x) to be the Ferrers’ diagram of
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We define the following linear érder T.
1<p2<r---<prn<p:---<p-n<p--<p-2<p-1 (9)

Define © to be a partial order such that i = 7 and which otherwise is the usual linear order
on integers:

l=-1<g2=-2<g:--<gn=-n (10)
Essentially, © acts to consider negative and positive as equivalent. Then, for ¢ € B, let
0 = 0103 0y, Where o; € {£1,42,...,4n}, be a permutation in one-line notation. For

such a permutation, we define the number of descents of o by

dB(O’) = l{l L0y >r U,'_H,l <1< Tl}l
where ony1 =n+ 1 (see [6]).

For g € By, let 0 = (01,01, * - 01,,)) (02,02, - - - O2@) "+ * (Ok Ok,  * - Ok, ) be the permuta-
tion in cycle notation. Then, for such a permutation, a decedance occurs at the 4t position
in the i* cycle if ai; >r 05y, for 1 < j <I(i) or if Oy >T Oiy, for § = (7). If k denotes the
number of cycles of o, we define the number of decedances of o to be

k
des(0) = Y- [I{ 2 05y >r 04501, 1 € 5 < Ui} + X(o0) >t 00)]

i=1
Next, we define an inversion statistic which is the same as the S, inversion statistic,
except that the partial order is that defined by (10). A B,- inversion occurs if o; >¢ o; for
i < j. We denote the number of inversions of o by

invp(o) = Y x(0: >e 0;)

i<j

In the representation theory of By, the characteristic map sends the class functions into
®k=0 Ak (x)®An—k(X), denoted Ap, (z, T) (see [7]). We denote Ap = @,50 Ap,. There are ten
bases of Ag, (z, Z) all of which are given in A-Ting notation with the exception of the analogue
of the power symmetric functions. For a pair of partitions, (A, 1), such that |A| + |u| = n,
the analogue of the Schur functions is sy (X + X)su(X — X), the analogue of the power sym-
metric functions is pa(2)pu(Z), the analogues of the homogeneous and the elementary sym-
metric functions are ha(X + X)h,(X - X), ha(X + X)eu (X — X), ex(X + X)hu (X — X),
eNX + X )eu(X — X), and the analogues of the monomial and forgotten symmetric functions
o+ Xm0 = X0, ma(X + L =X, 50X + Xmu(X ), and (X + )
A = X).

As in the case of Sn, studying permutation enumeration of B, requires the use of the

fmnsition matrices between these bases of Ap,(z,Z). Most of the transition matrices are

S comprised of pairs of the transition matrices as defined between the bases of An(z).

: °‘t';lever, the matrices between PA(Z)p.(Z) and the other bases are more interesting, and

?e cases, it was necessary to develop the combinatorial definitions of these matrices
Wliselves [1].
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prove that the (__1)‘”‘

By altering the homomorphism. ¢, we give @
we dgﬁne C:Ap— Qlz) as follows:

!

fx f“

(6] alllel )
an

q( o (1 _ m)k—l E :B(x - 1)"—1) (13)
TlerX +X)) = 2k k]!

&5 (-2 == £)k?) (14) |
HeX-XN= 2+ (k]!

Then we prove

Theorem 3.2 Letn € P and let { : Ag — Q|z] be the ring homomorphism defined by (13)
and (14). Then :

2"[77']!6(}1;%)( +X) =Y 2 (g)g™va (@)
0€Bn
and ) |
2"[n]'<(hu(x —7)) = z-: (_x)dB(U)qlnuB(a)
o€Bn
where B, = {0105+ 0, : 0; € {i,—i}}.

We give an expression for ";’;—1—:}?(]),\ (z)p.(Z)) which involves the B,-descent and Bj-inversion
statistics as well as statistics which correspond to the lengths of the last strictly decreasing

sequences of elements in cycles of ¢ € B, which are induced by the fixed pair of partitions
(A, 1). We also give an analogue of Theorem 2.5.
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