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Extended abstract

This is the first of a series of papers on experimental algebraic combinatorics. In these
papers, I plan to illustrate the use of computer algebra for the investigation of algebraic
structures such as finitely presented groups or algebras, group algebras, Lie algebras. The
first kind of problem we will consider is the search for idempotents in a group algebra. In
this abstract, we will mainly illustrate, with the group S, the kind of questions that we
are going to address in general. These questions and observations are often motivated by
classical representation theory or by the results obtained in [6] and in a series of papers on
the decomposition of the descent algebra of finite Coxeter groups (see [3], [4], (8], 9], [10],
and [11]), but they also give indications that deeper problems are being addressed.

Denote C[W] the group algebra of a finite group W of order N. We are going to
investigate idempotents e € C[W]. Let

e= Z Ay W
be such an idempotent. Then e? = e corresponds to a set of N quadratic equations
Ay = Z Ay Oy,
U v=w
one for each w € W, in the N unknowns a,,. One can theoreticly solve these equations to
find all idempotents of C[W]. In the case W = S3, let
e=a1(1,2,3]+a2[1,3,2] + a3 [2,1,3] + a4 [2,3,1] + a5 [3,1,2] + ag (3,2,1], (1)

then e? = ¢ is equivalent to

ay =a1® + a2’ + a3® + 2 a4 a5 + ag?,

az =2ay a3 + a3 ag + a3 a5 + a4 ag + as ag,

a3 =2ay a3 + az ag + az as + a4 ag + as ag, .
a4=2a1a4+a2a3+a2a6+a3a6+a52, ®)
as =2ay as + az a3 + az ag + a3 ag + a4?,

ag =2a; as + az a4 + az as + a3z aq + az as,



1/3, —z—y+1/3, 2-1/6, A—1/6, ~A—1/6, y— 1/6)
as the ( ) ) )
denote any element of the group ajge::aae) will 1/3, z+y—1/3, —z+1/6, A—1/6, ~A —1/6, —y +1/6

£ W’ we can . ThuS (al,a21a3’ 4 ) ( ) - 7‘,/._ ) - y T = 3 )’
1f we order the elel.rnents (') the resulting ordered basis. ermutations. In the sequel 2 (7
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a pearing mn ) tions in this manner.
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where
: d solutions
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Using the grobner basis approach to SOV g to irreducible characters o 23
sing

dempotents that correspon The idempotents in (6) and (7) come in groups of four because any idempotent e generally
6.1/6,1/6 1/6, 1/6, 1/6), (3) gives rise to four idempotents e, €(e), 1 — e, and 1 — ¢(e), where € is the automorphism
X3 = (1/ g d of the group algebra corresponding to the multiplication of each permutation by its sign.

giving well known i

XZl = (2/33 03 07 —1/37 ‘1/3’ 0),

Hence it suffices to explicitly construct the first one via (4) and (5).
X = (1/6, -—1/6, __1/6’ 1/6, 1/6, "1/6)7
ot e Problem 1 Find all idempotents of the group algebra C[W] of a finite group W.
d their idempotent linear compositio
an
(1,0,0,0,0,0),

Our interest in such idempotents is motivated by the fact that they correspond to

projections
(0,0,0,0,0,0), - e : C[W]—» C[W]e,
1 35 ) . . qe . . . .
(1/3,0, 0,1/3,1/ 6. —1/6, ~1/6), where 7, is multiplication on the right by e. Clearly, the ideal H, := C[W]e is a left
6, —1/6, -1/6, -1/6, W-module. The character X, of this representation of W, considered as an element of the
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o 240, -1=0, (4) In view of the well known decomposition of the group algebra in term of irreducible rep-
2(az +as t+ag)t+1= 0, resentations V)
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with the f)’s given by the hook formula, (8) implies some of the equations of systems

(4) and (5), since the only possible characters that can appear are those that are linear
and 3ay — 1= Ov

(5) combinations
a2+a3+06=0’ Xe = ays Xy3 + a1 X271 + a3 X3,
3(as + as)+1= 0, , 3 _ngy—1=0, i of the irreducible characters of S3 with the constraints that 0 < ay < fy, i.e.
9062+9(13a6+9a3 e

a3 € {0, 1},
Thus we obtain the two families, ) oz € {0,1,2},
(1/2 —z—y+1/2, Ty B, =y W J az € {071}'

(1/2, o ty—1/2 - &= —y), 4
(1/2, g — L2y 0y =By B —y),

(1/2, —r—y+1/2, T A, A, y),

For instance (8) implies that the value of

1
o = 6(013 +2a2; + a3),




ne of the values k/6, withk=0,-- ,6.

in (2), has to be equal to ©
group algebra.
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0 otherwise,
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keK
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Problem 3 Are there always fundamental families of idempotents? If so find all of ¢
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where ri(g) is the remainder of ¢* modulo ¢n(q), the nth cyclotomic polynomial, and

maj(o) is the major index of o
maj(o) = Z{z | 0i > oig1}-
It is shown in [6] theorem 2.3 that for the §;’s defined by
malg) =8 +ma+...npq,
one has the following Lie idempotents
S+cim+...cenyg, (17)

for all values of the cx’s (since the n;’s are in Ns). In the case n = 4, (14) gives a one
parameter family of Lie idempotents

7"4(‘1) = 'l]i (17 —q, '—1, —-q, _1) q,9, 17 _17 —4q, _lv q,9, 17 —q, 11 ‘17 q,9, 17 —-q, 17 —q, -1 )
(18)
It is easy to verify that 64(1,—¢,1,—¢q) = 74(g). Thus we conclude that all idempotents
of (12) are Lie idempotents. It is interesting to observe that (12) gives a strictly larger
family of Lie idempotents than those given by (15).

Problem 4 For a given idempotent e, what is the dimension of N7
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