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) Abstract

We present a bijection between the set of factors of given length
of Sturmian words and some set of triples of nonnegative integers.
This bijection and its inverse are both computable in linear time. Its
applications are : a bijective proof of Mignosi’s formula for counting
Sturmian words, a linear probabilistic algorithm for generating finite
Sturmian word at random, and, using similar techniques, a linear on-
line algorithm for computing the longest Sturmian prefix of a given
word.

The construction of the bijection relies on concepts from combina-
torial geometry.

1 Introduction

A doubly-infinite sequence w = ©  W_w_jwowywy - -+ over the alphabet
{0,1} is called Sturmian if there exist real numbers a,fwith0<a,f<1
such that

wy = [a(n+1) + B]  [an + 8] (1)

for all integers n. Sturmian words have a long history and appear un-
der a great variety of denominations. A clear exposition of early work
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1, and A. A. Markov is given in the book by
d by Hedlund and Morse

in their development of symbolic dynamics (9, 10, 11). The same objects

are known as “characteristic” sequences, «eutting” sequences, “Beatty” se-

! «nonhomogeneous spectra”, «pjilliard” trajectories and others.

9 ‘s a large literature about properties of these sequences (see for
). From a combinatorial

example Series [21], Fraenkel et al. 7, Stolarsky (22]
dered by Rauzy (16, 17, 18], Brown (4],

‘nt of view, they have been consi

Ito, Yasutomi {12} in particular in relation with iterated morphisms, and by

géébold [20], Mignosi [14]. Sturmian words appeal in ergodic theory [15],

in computer graphics [3], and in crystallography [13]. Dulucq and Gouyou-

Beauchamps (5] considered the set of all finite words that are factors of some
y C, of this set 1s a

Sturmian word. They proved that the complement, sa
conjectured that C is i nherently ambiguous.

context-free language, and they
To show this, they in fact conjectured a formula for the number of factors of
generating series of these numbers is

Jength m of Sturmian words. Since the
1, the Chomsky-Schiitzenberger theorem would prove inherent

see Flajolet [6] for @ systematic exposition). This formula was
proved later by Mignosi [14] and will be obtained in the present paper as an

ollary of our main result.
to present 2 bijection between the set S of

d some set T of triples (@, P q)

by J. Bernoulli, Christoffe
Venkov [23]. The term «Gturmian” has been use

easy cor

The aim of this paper is
factors of length m of Sturmian words an
of nonnegative ntegers bounded by m. This bijection and its inverse are
both computable in linear time. The derivation of the bijection involves
the analysis of the partition of lines induced by the lattice points and some
clementary concepts of combinatorial geometry.

The bijection has ceveral interesting applications. First we obtain a
straightforward proof of Mignosi’s enumeration formula for factors of Stur-
A second consequence is an algorithm for random generation
h which may have some application in com-
babilistic algorithm in the sense that

mian words.
of Sturmian words of given lengt
puter graphics. More precisely it is a pro

it successfully terminates only in the average. A third application is of inter-
est in pattern recognition: we give a a linear time algorithm to compute the

longest prefix of a word that is Sturmian. s in constan

It is on-line and test
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a Sturmian word. Our algorithm i
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—
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2 Results
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(a,p,q) is a {0, 1}-sequence because « is | b
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Theorem 1 Th
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Observe th )
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also com ime. The fact that i
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The proof i
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Proposition 1 The number of factors of length m of Sturmian words 18

given by the sum o

L+ 3om— i+ DA, (6)
1

s the number of natural integers

where ¢ is the Fuler function, ie., $(n) 1
less than 1 and coprime to -

The authors of the present paper gave another proof in [1]. In view of
tion becomes straightforward. Indeed, the

the theorem above this proposi
in set the 7.

formula (6) counts precisely the n
The next application concerns random generati
For this it suffices in view of Theorem 1 to generate triples (a,Ps q) in the set
T with uniform distribution. This is done by the following algorithm.

Algorithm 1
(1) Repeat
Generate uniforml

until (a,p,9) isin T;

(2) Compute B(a,p,9)-
Step 1 1s the usual rejection algorithm @ We generate triples (a@,P q) in

{0,1,...,m}3 uniformly and reject those which are not in T. Since the
size of T 18 asymptotically equal to m3/n? the expected number of samplings
is asymptotically 72, and therefore is independent of m. Thus we have.

rs of length m of Sturmia

y a triple (a,P:9) € {0,...,m}

n words

Algorithm 1 generates facto
0

Proposition 2
in linear expected time.
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More precisely We shall prove the following result.
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Figure 1: The duality transform.

The (m,y)—plane and (a, j)-plane are called the primal and dual plane, 1€
spectively: The segment (6, €] 18 then represented in the dual plane by the
segment {£ £] (see Figure 1).

We define the upper closure of & subset X of the plane to be the set of
points (Z, y) of the topological closure of X such that (z,¥— ¢) € X for every
sufficiently small positive € We define then the upper closure of a set of lines

by duality.
For a straight line £ with equation (8),
factor given by (7). This defines a mappin
S induces 2 natural partition of L whose
ranges over S. The following proposition 1€

set P defined by
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(10)
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d consequently by
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8]
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the line ¢, i.e., c(f) = Card(zI(}Ote the number of lattice P Tanges over P. For
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ment of the square HI:Sffrm the partition A is repres ;
={(¢,8) |0, <1 }er'ltzd by the azrange-
square L* = induced by t
z,y) such that 1£<’ namely the m(m +1)/2 {in heddual
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The following propo
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d by the mapping S

efine the same Sturmi
belong to the upper c
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losure of the

Proposition 5 Tw
if £ and A

ie. S = s if and only
same face of the partition A-

‘tion 4 and the discussion above 0
ar the function S is constant on ecach cell of the partition A.

ote still by S the extension of S to A. The restriction of StoF
S. The encoding of the Sturmian words by the

done by selecting a distinguished edge in the

Proof. Follows from Propos

In particul

We den

is a bijection from F onto
faces of the partition A will be
upper boundary of each face.

n 6 The upper (lower.
two edges.

) boundary of a face of the partition A

Propositio

contains one oT
e on the contrary that the upper boundary of some face
Let p; be the

of three consecutive edges €1,€2 and es.
e; for 1 = 1,2,3. The configuration 1%

hat the edges are indexed in decreasing
y the lattice points pi ar€ indexed i
the lines (pap2) and (p2p1) define
according to Proposition 4,
atains no lattice point B

Proof. Assum

ns a sequence
point of lines in

3. We assume t
d consequent!

contai
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decreasing first coordinate. BY assumnption
the same Sturmian m-factor, and consequently,
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belong to th R S DaDy —
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s . .
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a

. For e € £ we denote by é

in e, and we den e by e t.he common lattic :

e ?1{) wup e (inf ) the straight line th iy e

e =]infe,supe[. Next wer bound) of the slopes of th ZGUAE € vhiose slope

3ncreasing sequence of,irec;ll .that the Farey SeQuenCee }_llnes in e. Clearly

inators do not exceed rreducible fractions between 0 n of order n is the

and rotate it round then' .If, we draw a ray through thanii 1_WhOSe denom-

position along the axis origin in the eonpter-clogkwise ; att}ce point (0,0)

such that ¢/p is a F. z, 1t wfll pass in turn through irection from initial
arey fraction (see [8, chap IlIIIg each lattice point (p, g)

: page 29]). ’

Proposition
7 Lete€ &
and let y = az + B be the ks (fl’b) be the coordinates of th ]
the equation of the line i equation of the lin e
o ¢ lineinfe € }. The esupe € L and y = o'z i €,
o a and o are rationals d " e
(3§ 0<a<m pandl£a’ <agl
o' and o are ¢ .
4 _ onsecutive t
253 IZT/_— [ga]: B = [aa] — aa erms of the Farey serie Fnax
, : . max(m—a,a) -
e Sturmian m-factor S(e) is B(a,p,q) a)
'yPyq)-

Proof. Clai
. ims 1),2)
b= aa+ A wi »2), and 3) are obvi :
with 0 < B < 1. Fi vious. Claim 4) foll
1. Finally claim 5) is obta)inedofvrvosnflr;)}in tlll)e relation
e observation

that S(e)
= S(¢) where ¢ i
around the point é. is any sufficiently small clockwise rot
gl e rotation of su
=g¢g/pand o = ¢ e
u S o = /
se the line in e whose slop(i /15 An alternative way to compute ( .
pute S(e) is to

w_q+dqd

QU = —

p+p



a distinguished edge €

N\

~ /
é sup e edge €

primal plane dual plane

Figure 4: Distinguished edges

e O(log m) time (8, chap.

e made in tim
f B; indeed one

from a can b
ctical implementation 0

The computation of o
lifies the pra

111). The use of o' simp

gets
Un = Lalln+ ﬂ"_\
for all 1 = 0y =va Thus, in practice, 2 call to a system routine (usualy

called «drawline”) suffices.
i : ective on the set of edges

The mapping S is not 1n)
distinguish a special edge among all edges (in fact at
Gturmian m-factor.

Proposition 5) associated to some
ch the first coordinate of € is minimal or equivale
{ distinguished elements

€. We therefore shall
most 2 according to

We distinguish the
ntly the edge

edge e for whi
of minimal slope in the dual plane- Let & be theset ©
of €.
q) associated to the edges of

dentify the set of triples (@, Ps
here the set 7 appears:

Proposition 8 The mapping € (a,ps9) which associate
e =] inf e,50P e| the triple (a,p,9) such that

a is the first coordinate of the lattice point é

q/p (with p and q coprime) 18 the slope of sup e
is a bijection from €' onto the set T
Proof. An edge € i distinguished if and only if € is the rightmost edge
(in the dual plane) of the upper boundary of some face of A. In the prim
plane this means that exists a lattice point in P on the line sup € whose firs
coordinate is greater than the first coordinate of € (see Figure 4). Straigh‘;('J

forward calculations give then the result.

It remains to i

¢'. Here is the place W
s to each edge

Ihe a.fﬁ p { .

4 R 1t1
ecognition of Sturmian m-fact
- ors

In this secti
ion we c ’
Sturmian. onsider the problem of testing wheth
ether a giVen word }

is

Let S =7
- = V1Vs...V,, be an
the integer SGQuence"(:leﬁnedyb;O’ 1}-word of length m and let u

0y -y Um be

u":1’1+v2+...+v

this 1 «
( T}llse t;{/lzrdspe-(:trum” of s in the sense of [2])
sisa St : ; :
such that S(0) = s lertnzan m-factor if and only if there exi .
.ﬁ. The wotd s is a Stu .and B be the slope and the intexlSts @lnele L
——— rmian m-factor if and only if theercef ¢ of the line
system of linear

U <
<on+fB<u,+1 n=12
9Ly m
’ (11)

admits a soluti
on. Obser
to the above li ve that each letter i
inear system er in the word s adds t
: wo constraints

Using Megi
giddo’s algorit
gorithm [19, chap 15] the existence of a soluti
ution to (11)

can be deci 3
cided in hi .
inear time i
Howe ime in th
ver we e number P
can do much better in our cas of constraints i.e., in time O(m)
e. 5

Propositi
on 9 Given a :
computed on-line in time ';:;‘; mt'{O, L% il maimal Sinroda fi
ortional to its siz T iy i o
€.

Proof. For each .

the polygon (in t}?':usrprz(‘:an If)f?ﬁx we maintain the minimal
1 _mCrementaly transf o hr,les) of all lines defining thi repres?ntation of
sl‘iramts defined by a n orm this polygon by adding tgh is Sturmian factor.
S".lce, according to P o le,tt_er and by removing the sue two geometric con-
B oot b o G roposition 6, the size of the cu perfluous constraints.
o compute the posi(:?oS tant number of operations. E:i:]nt polygon is 3 or 4
thus involves only the n of a lat.tice point with respect tl OPeratl.on requires
computation of the sign of an inte;rallgttlce line and
al determinant. 0
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