Plane trees and Shabat polynomials

Jean Bét’i‘éma, Alexander Zvonkin
LaBRI, Université Bordeaux I

Unité associée CNRS 1304
351, cours de la Libération, 33405 Talence cedex FRANCE

Abstract
In his unpublished paper [G] Alexandre Grothendieck has
indicated that there exist profound relations between the theory of
number fields and that of maps on two-dimensional surfaces. This
theme was later explored by George Shabat (Moscow) and his
students (see [ASh-1], [ASh-2], [Sh-1], [Sh-2], [ShV], [VSh]).

For the simplest class of maps, that of plane trees, this
theory leads to a very interesting class of polynomials which
generalize Chebyshev polynomials and which we call Shabat
plynomials. Our work consisted in compiling a catalog of Shabat
plynomials for all plane trees up to 8 edges (see [BPZ]), as well as
for some infinite series of plame trees. In the process, some
conjectures were disproved, some other conjectures appeared, and
some new methods of computation of Shabat polynomials were
developed.

The volume of the catalog does not allow us to reproduce it
here. It is available as an internal publication of LaBRI. This paper
could be regarded as a kind of introduction to it.

1. Critical points and critical values of complex
polynomials
Consider a polynomial P(z) with complex coefficients. It maps a
complex plane onto another one. Take a point w € C and consider
its inverse image Pl(w)={z|P(z)=w }.
P
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Fig.1. Inverse image of a point

In general, this set consists of n separate points, i.e.
solutions of the equation P(z) = w, where n is the degree of the
Polynomial P (See Fig.1). But for some specific values of w this
€quation could have multiple roots, the inverse image of w thus
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4. Geometry of plane trees
Linear transformation z — cxz + d mentioned in section 2 may
change the size of a tree and its position on z-plane, but it does
not change its geometric form. This fact, in combination with Main
Theorem, leads to a remarkable consequence:
Every plane tree has a unique and canonical
geometric form.

On the next page the reader will find several pictures

representing the rtrue geometric form of the corresponding plane

trees. This page represents an excerpt from the catalog [BPZ]. Our
main software tool was MAPLE-V.

5. Calculation of Shabat polynomials
Let the type <o ,p> = 0P, 05O BI,BZ,...,Bq> of a tree be given;

we also set [cy.¢,] = [0,1]. Then in order to find the
corresponding Shabat polynomial we need to find n+2 complex
numbers A, aj,ay,...,a,, bl,bz,...,bq such that we have

simultaneously
P(2) = Mz-2))%1(z-2,)%2 ... (z-2)%

and

P2) - 1 = Mz-b)P1(z-b,)P2 .. (z-b )R,

In addition, all the values a; and bj should be different. The

€qualities between coefficients provide us with n  algebraic
€quations (the main term being the same). Two more "degrees of
freedom” remain at our disposal, and we may use them in the way
We find it convenient. We may fix the positions of any two points,
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Xmini O,  ——
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12 <422;311111>

Xmaxi 3_____—
ymaxi 3
14 <332;311111>

{

17 <5111;32111>

13 <422;221111>

or make some other choice that places a tree in an unambiguous
position on complex plane.

This method, taken literally, is far too complicated. Many
improvements of various levels of generality are given in [BPZ]. See
also section "Examples".

6. Fields of definition, Galois groups

Let A  be the field of algebraic numbers, i.e. the field of all
(complex) roots of polynomials with rational coefficients. The
Galois group T = Gal(AIQ) is the group of automorphisms of the
field A which do not move the elements of Q. This group acts on
the roots of polynomials with rational coefficients by permuting
(some of) them. For a specific irreducible polynomial f the Galois
group of f is the factor-group of I by the subgroup of those
automorphisms that do not move elements of not only @Q but also
of its extension by roots of f. For an irreducible polynomial of
degree n it is some subgroup of the symmetric group S, = that
acts transitively on the roots of f.

The previous section makes it clear that coefficients of
Shabat polynomials could always be made algebraic numbers (if
only we have not used our "two degrees of freedom” not properly
to make some of the equations transcendental). They belong to
some number field, i.e. finite extension of the field @ of rational
numbers by roots of some irreducible polynomial f. The reader
should not confuse Shabat polynomial with this latter polynomial:
we repeat once more that we need polynomial f to determine an
algebraic number field to which the coefficients of Shabat
polynomial P belong.

Action of Galois group T, besides rational numbers, also
conserves all algebraic relations with rational coefficients. Thus,
acting on coefficients of a Shabat polynomial, I transforms it
into other Shabat polynomials. Therefore, the action of T on
plane trees is defined. The main goal of the theory is to understand
the combinatorial and geometric nature of this action. For
example, from the previous section it is clear that the type <o,p>
is an invariant of this action: trees belonging to the same orbit
have the same type. A set of the trees of the same type is called a
family. Each family is either an orbit of Galois group action, or a
union of several orbits.

As another combinatorial invariant we could mention the
order of the symmetry of a tree;-recall that plane tree may have
only cyclic group of symmetries.

The notion of a field of definition of a map or a tree is rather
Complicated and involves the Galois cohomology theory (see
[Sh-2]). But in case of a tree it is just the smallest number field to
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This family contains three trees of diameter 4, corresponding to
the following cyclic orders of vertex degrees around the center:
(m,m,n,k), (m,m,k,n), (m,n,m,k).
Making the similar calculations, we get
D(f) = - 432m3n2k2(m+n)(m+k)(m+n+k)3(2m+n)2(2m+n+k)2,

where f is a polynomial generating the field of definition of the
orbit.

The discriminant is negative; so this time it could not be a
square. Let us ask another question: when is the field of definition

3
a purely cubic field, i.e. a field of the form Q(Va) with some

integer a? It is known that to have such a field, the discriminant of
f must be equal to

D(f) = - 3x(complete square).

Thus, the product m(m+n)(m+k)(m+n+k) must be a square. To
make it a square it is sufficient to have, for example,
m = x2, m+n = y2, m+k = 22, m+n+k = (2.

These equations are not independent: we have
x2+t2 = y2422 = 2m+n+k.
Thus, the number of edges 2m+n+k must have rwo different
representations as a sum of two squares.
In the whole history of number theory it is difficult to find a
more classic problem than that of representation of a number as a
sum of two squares. The main result was announced by Pierre
Fermat in a letter to Marin Mersenne (1642): every prime of the
form 4k+1 has a unique representation as a sum of two squares;
all the primes of the form 4k+3 do not have such a
representation. It could be readily seen that a product of two
different numbers representable as a sum of two squares has a
non-unique representation (an elegant proof of this statement
belongs to Lewis Carroll). Infinite series of examples could be
constructed in this way. For example, take number of edges equal

to 5%13 = 65. Then, 65 = 1+64 = 16+49, and we may take m=1,
n=15, k=48.

8. General conjecture concerning discriminants
The problem of computing the discriminant of a field of definition
of a "Grothendieck dessin" (or a closely connected quantity, the
discriminant of an irreducible polynomial whose roots generate
the field), and the problem of understanding its combinatorial
Nature (if any), were always considered as very important. Shabat
In his letter [Sh-3] called it "the most interesting problem in the
domain for the time being". He.has also remarked that for all
known examples the number of edges of a tree is always among the
factors of the discriminant, and wrote: "The others are quite
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