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(k) Extended Abstract
2
ann'i W . In their fundamental paper [3] Kazhdan and Lusztig defined, for every Coxeter group
b =2 P (q)k ()’q n—k-1 n-= . q(l) W, a family of polynomials, indexed by pairs of elements of W, which have become
i " m no 2yq" __,y_q___;} - (‘)" known as the Kazhdan-Lusztig polynomials of W (see, e.g., [2], Chap. 7). These
k)1_2qk 29 2 ~_vg" 1-y4 D polynomials are intimately related to the Bruhat order of W and to the algebraic
1=24 Jok+ mo e = o .
q(z (@) T 1-a m=k i - geometry of Schubert varieties, and have proven to be of fundamental importance
k Y4 } in representation theory.

In order to prove the existence of these polynomials Kazhdan and Lusztig de-
fined another family of polynomials (see [3], §2) which are intimately related to the

) (qu 1 multiplicative structure of the Hecke algebra associated to W. These polynomials
m=1 (@)m keohike are now known as the R-polynomials of W (see, e.g., [2], §7.5) and their impor-
tance stems mainly from the fact that their knowledge is equivalent to that of the
Kazhdan-Lusztig polynomials.

Given a set T' we will let S(T") be the set of all bijections 7 : T — T, and
Sa ¥ S([n)). o € S(T) and T ¥ {t;,...,1,}< C P then we write o = 01305
to mean that o(t;) = o;, fori = 1,...,r. If ¢ € S, then we will also write ¢ in
disjoint cycle form (see, e.g., [5], p.17) and we will usually omit to write the 1-cycles
of 0. For example, if 0 = 365492187 then we also write ¢ = (9,7,1,3,5)(2,6).
Given 0,7 € S, we let o7 ¥ g0 7 (composition of functions) so that, for example,
(1,2)(2,3) = (1,2, 3).

We will follow [5], Chap. 3, for notation and terminology concerning partially
ordered sets. In particular, we say that a finite graded poset P with 0 and 1 is
Bulerian if p(z,y) = (—1)/¥)-A2) for all z,y € P, v <y, where p: P — N is the
rank function of P. Recall (see, e.g., (5], §3.14, p. 138, or [6], §2, p. 190) that to any

Eulerian poset P as above there are associated two polynomials, denoted f(P;q)
and g(P; g), defined inductively as follows:

m+1 i -
: _2y_(j)_k__l(_—)— L og a\l-d 1T e

. i :o2yq 24—
ml 24 +i - ')Jr 2 1-yd 1-v4
(k+m+
+

) if |[P| = 1 then f(P;q) % g(P;q) &' 1;
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i) if P has rank n+1>1and f(P;q) = Lixo k;g' then

12 .
o(P;q) 2 (ki — ki) (1)
=0
(where k_1 & o)
iii) if P has rank n+ 1> 1 then
¥ X g([0,a)9) (2~ 1y, (2)
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The preceding recurrence has several advantages over the one given by (4), both
of a theoretical as well as practical nature. The main one is that (8) does not
“branch off” into two cases as (4) does. This allows one to use (8) repeatedly and
thus explicitly solve the recurrence. While this is theoretically possible also with (4),
the details are much simpler using (8). The second one is that the recurrence (8) does
not change the second permutation. This is extremely useful in induction arguments,
and is used the proofs of Theorems 1.9 and 1.6. The third one is that the recurrence
(8) is much faster from a computational point of view. We have implemented both
recursions (4) and (8) on a computer (using MAPLE) and have been able to verify
this. For example, computing the R-polynomial of any pair of permutations in Sy
takes (running MAPLE V on a Sun SparcStation SLC) less than 65 seconds using
(8) while it takes more than 5 minutes to compute Ry g5 21(g) using (4). These
MAPLE programs (which will run also on older versions of MAPLE) are available
from the author upon request.
We then apply our main result to the explicit computation of Kazhdan-Lusztig
and R-polynomials. More precisely, we first derive a combinatorial formula for the
R-polynomials by “solving” the recurrence relation (8).

Let 0,7 € S,, 0 < 7. An R-chain from ¢ to 7 is a chain ¢ = oo <oy <...<
o, = 7 such that:

i) d(oi,7) < d(0i-y, 7);
ii) (0:)(0i-1)™" € C(0iy);

foralli =1,... ,r. We denote by R(o,7) the set of all R-chains from o to 7. Given

any chain C = (09 < 0y < ... < 0,) in S, we define its R-length to be
I(C) & Y (k((0:)(0i0) ) — 1).
=1

For example, C' = (1234 < 4132 < 4312 < 4321) is an R-chain from 1234 to 4321
and its R-lengthis [p(C) =241+ 1= 4.

Theorem 1.5 Let 0,7 € S,, 0 < 7. Then

Yn)=I(o) ~1p(C)
Ra—,r(q) = Z q 2 (9= l)lk(c). )
CER(a,r)

We also single out some families of pairs of elements of S, for which the correspond-
ing R-polynomial has a simple closed form.

Theorem 1.6 Leto € S, and w € C(o). Then

Rowo(q) = (¢ = )71 (g — g + 1)(we),

We denote by Sy the poset obtained by partially ordering Sy with

(strong) Bruhat
order.
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Corollary 1.10 The product of two R-polynomials (respectively, Kazhdan-Lusztig
polynomials) is again an R-polynomial (respectively a Kazhdan- Lusztig polynomial).

For example, Rissssu12(q) Ri2s321(9) = Risaasersnnares(q) = P

Rs136274,7316152(q), Pr23s,3012(9) Pisazs 3as12(q) = Pr23457869 341278056 (¢) = Pi52378649 374180526 (q)
= Pyr1823694,783011562(q), etc... .

Note that, in particular, our results imply that if the interval between two per-
mutations in Bruhat order is a lattice then the corresponding R-polynomial is just

a power of ¢ — 1, and the corresponding Kazhdan-Lusztig polynomial is the g-
polynomial of the dual interval.
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