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1 Introduction

The enumeration theory of planar maps was settled by W.T. Tutte in the sixties, mainly in four
seminal articles [19, 20, 21, 22], called the census papers. He obtained very elegant formulas for
the number of planar rooted maps with a fixed number of arcs, with given degrees for the vertices,
and for various subfamilies of planar rooted maps; among them are bipartite maps, non separable,
3-connected ones, and triangulations of different kinds. The method he used to obtain these results
consists in three steps:

e First give some recursion formulas for the number of maps of a certain family, using some
combinatorial constructions like splitting faces or vertices, removal or contraction of arcs.

e Then transform into an equation for the generating power series the recursion formulas ob-
tained. This generating power series depend often on 2 or more variables (denote it by F(z,y)),

and the equation consists of a polynomial in F(z,y) and F(z,a) (for a constant a) equate to
0.

e Solve this equation using the so called “quadratic method” [7, 23], also described simply in
[11].

Recently a new interest is given to this theory. Mainly because maps appear in various fields of
mathematics [17] and theoretical physics. For instance topology needs effective computation of
some numerical constants of surfaces [12]. Grothiendieck’s celebrated “Esquisse d’un Programme”
enhances the deep connection between combinatorial theory of maps, Riemann surfaces and number
field theory; the word “ Dessins d’enfants ” is used to describe these impressive developments [2].
In theoretical physics some models of interactions use deeply graphs embedded in surfaces and need
results in enumeration of these ob jects [5, 13, 16].
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2 Planar maps

nto three disjoint subsets V, A, F,

A planar map is a partition of the sphere X 1

e V is a set of points called vertices

rcs called arcs homeomorphic to

e Ais a set of disjoint open & 10, 1[ whose end points are vertices

o Fis a set of disjoint simply connected domains called faces, each face is homeomorphic to an

open disc.

The definition given here implies the connectedness of the graph with vertex set V and edge set
corresponding to the arcs of A. A cellis either a vertex, an arc or a face. Two cells are incident if
one is contained in the boundary of the other. An arc s called a loop if its end points coincide it
is a link otherwise. An isthmus is an arc incident twice to the same face. Note that two arcs may
have the same endpoints. The degree of a vertex is the number of arcs incident with it. So is the
degree of a face.
A map is rooted if an oriented arc €o is distinguished as the root arc, the vertex origin of the root

arc is called the root vertex.
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Figure 1: A planar rooted map with 4 vertices
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4 Maps by number of arcs

The enumeration of rooted planar maps with m arcs was obtained by W.T. Tutte [22] using a

bijective proof, let us recall his proof.

Theorem 4.1 There ezists a bijection B between rooted planar maps having m arcs and rooted

planar maps with m vertices all of degree 4.

f vertices V set of arcs A and set of faces F. To build S(M),
first associate to each arc a € A four darts (a, 1), (a,2), (a,3), (a,4), each one being associated to
the incidence between the arc, the two vertices it joins and the two faces it separates. Let v',v" be
the vertices at the ends of a and let f', f" the faces incident with a. The dart (a,1) corresponds to
o, f!, (a,2) to v'f" , (a,3) to ", f' and (a,4) to v”, f". The darts (a,1),(a,3) are in the same face
incident to a and so are (a,2) and (a,4). The darts (a, 1),(a,2) are in a neighborhood of »" and

(a,3),(a,4)in 2 neighborhood of v".

Let M be a planar map, with set o

Build a planar map M’ having the darts of M as vertices in the following way:
e Each dart is of degree 3,
(a,2), (a,1) to (a,3), (a,2) to (a,4), (a,3) to (a,4)-

,(a,3) to (d, 2) and (a,4) to (e,t), where b is
d is incident to v” and f" and e

e Arcs connect (a,1) to

o Other arcs connect (a,1) to (b,z), (a,2) to (¢, y)
the other arc incident to v’ and f’, ¢ is incident to v’ and f",

is incident to v" and f".
n

The map M’ obtained in that way has ; Card(A) arcs, and as many faces as M has ares faces and
vertices. To each vertex v of M, corresponds a face of M’ of degree twice the degree of v, to each
face f of M a face of degree twice the degree of f and to each arc of M afm;eyof M’ of degree 4.

Xtk
The last step in the bijection consists in contracting the faces of M’ of degree 4 into points. These
become the vertices of a new map S(M) all having degree 4, it is also possible to choose a convention
in order to determine the root of S(M) from that of M(see Figures 2 and 3).

The reverse bijection is simple to obtain composing the reverse of the elementary operations

performed above.

Corollary 4.2 The number of rooted planar maps with m arcs is:
9 3m (2m - 1)!
ml(m + 2)!
Proof Use formula of Theorem 3.3 with k = m — 1, and Vi, n; = 2.

Remark Another bijective proof was given using well labeled trees [10], this proof generalizes to

bipartite maps [1]

Figure 3: ...

and maps with vertices of degree 4




5 Various kinds of maps

In this section we give as example the enumeration of non-separable planar maps as given by Tutte
[22].

A map is separable if its arc set A can be partitioned into two subsets A; and A such that there
exists exactly one vertex incident to an arc of A; and an arc of A;. Note that a map with more
than one arc and containing a loop is separable (consider the partition consisting of the loop in one
subset and the other arcs in the other subset).

In order to enumerate non separable maps one has to consider derived maps. The derived D(M)
map of M is constructed as follows (see Figure 4.):

o Between the two ends of each arc a of M put a vertex, the center ¢(a) of a
e In any face f of M put a new vertex, the center ¢(f ) of f
e Join by an arc ¢(f) to all the vertices laying in the boundary of f including the centers of the

arcs incident with f. The center of an isthmus will be joined twice to the center of the face in
which it lies.

Any map M’ satisfying the following conditions is the derived map of a map M:

1. The set of vertices can be colored in three colors V4, Va, V3 such that the end points of each
arc are in different classes.

2. Each element of V; has degree 4.

3. Fach face is incident with three edges.

To reconstruct M from M consider only the vertices of Vq and for any vertex vg in V, draw an arc
between the two vertices of V; which are neighbors of vs.

A lune in the derived map D(M) of a map M is a simple closed curve consisting of two arcs having
the same endpoints v1 and vs respectively in V; and V3. A vertex vy of M is a cut vertex in M
if and only if vy is the endpoint of a lune in D(M). Thus a map is non separable if and only if
its derived map has no lunes. The inside of a lune is the domain bounded by the lune and not
containing the root. To any map M on associates the non separable core Mo by deleting all lunes
in D(M), obtaining the derived map D(Mo) and applying the inverse transform in order to obtain

Mo.

The maps inside the lunes are the derived maps of maps Mi,i = 1,l. the map M can be
reconstructed from Mo and the M;,i=1,1. we thus get:

Proposition 5.1 The formal power series M(z) = Y=o Gm&™ enumerating planar rooted maps
by arcs and Mys(z) = % o bmz™ enumerating planar non separable rooted maps by arcs satisfy

the following equation:
M(z) = Mas(2(1 + M(2))")

138
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Figure 4: The derived map of the map in figure 1

Theor
em 5.2 The number of non separable maps with m edges is;

| m!(2m — 1)!

To prove this theore
m, first remark that the seri
ries M(z) satisfies the i
parametric equations:
1
M(z)= 5(3 —u)(u—1)

Giving b i B
g by denoting v = 1 + v and F(z) = z(1 + M(z))%

1
Mrs(F(2)) = =2 (v)(v +2)
and v = 25 Th i :
Gtv) e result is then obtained, applying Lagrange’s formula

A bijective
proof of the formula on non-separable maps is still an open probl
oblem.
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