le complémentaire (7°(i) =n+1— n(¢)) ou 'inverse (x=1(i) = j si et seulement si 7(j) = 1) Le
chemin conduisant & cette preuve est composé de quatre arbres de génération dont deux seulement
sont identiques et passe par la famille S,(2413,41352) considérée dans ce travail (voir figure 6).
Une analyse des régles de construction de ces quatre arbres nous permet d’obtenir des formules
analogues & celles obtenues ici et donnant les distributions de ces permutations suivant divers

parametres.
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Abstract

A bijecti
Ab J;eocr 1tv}:aeproofbof the hook length formula is presented. This is the famous expres
=il dnu(;n er o.f standard Young tableaux of a given shape. A variant o? th-
vander mur;tie; et':immefxfl;t proves that the formula can be written as an a.lternating
omial coeflicients that enumerate i
el nia certain tableaux. An inte i
ese as describing rat races suggests a bijection that proves the formulrapmtatlon

Key words. Young tableau, hook length, Vandermonde, bijection

1 Introduction

The well-known hook length formula by Frame, Robinso
[ : ; n and Thrall i
:ﬁéfye:!;;rflss;?n vi(;lr the;hnumber of standard Young tableaux of [;]ggll\:,:; iﬁfs:rinf:ly
e Comer,,i,n : l(;rle he hoo.k—lengt.h h"'j is the number of squares in the hook with’
i quare 7, j (u‘smg Latin filagrammatic conventions). No really attracti
al explanation of this formula is known. The proof presented in thiys no::Cu;Z:

a rewriting of the formula as an alt i . .
A= (2,2,3) we get ernating sum of multinomial coefficients. For the shape

(2-1)(3-72!)(5-4-1) = (2,;,3) B (1,;,3) + (0,;,4) B (2,1,4) H (1,1,5) - (0,2,5)

21 = 210 - 140 + 35 - 106 + 42 - 21

II re we . . .
m rpl‘ the multlnomlal COefﬁCientS as enumerating mor: gen ra.l l ux 11 d
€ W te et e € tab ea calle:

rat races and we defin i i
e an involution n i
o : L . on rat races whose fixed pOlIltS are precisely the
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In order to obtain a direct bijective proof of the hook length formula, we also construct
an involution that proves the equivalence of the hook length formula and the alternating
sum expression. The bijection given by Franzblau and Zeilberger (2] is more explicit but
also more intricate, so we believe that our proof might be preferable. The alternating sum
was used by Linial [6] in a short (nonbijective) proof of the hook length formula. One
should also mention the elegant probabilistic proof by Greene, Nijenhuis and Wilf [5].

2 The hook length formula rewritten

,Am), with 0 < Ay < A < ...and Mt +An=n,is
left justified with ); cells in the i-th row. The hook
length hi; of cell (4, 4) is defined as the number of cells to the right of it plus the number of
cells above it plus one. A standard Young tableau is a filling of the diagram with the numbers
1,...,n, increasing from left to right and from bottom to top. It is convenient to have a
notation for the shifted shape p defined by p1 = A1, B2 = A+l pm =An+m— 1, for
which one has 0 < pg < p2 <. We use the notation m = (71, .. ,Tm) for a permutation

of {1,...,m} and mia for the identity permutation.
Some of the multinomial coefficients in the formula below may have negative parameters

in them, and then their value is zero by definition.

formula can be written as an alternating

A Ferrers board of shape X = (A1, ..

an array of n cells arranged in m rows,

Proposition 1 The expression in the hook length
sum of multinomial coefficients:

n! n
i - “zs:m sgn(m) ()\ P ﬂ_). (1)

Proof: The first hook length in row i is pi, so the product of all hook lengths in that

row is like p;! with some factors skipped. It is easy to see that

n! n!
Hhij - n#" lI>IJ(}‘1 .u'])

and the familiar expression [T(x: — p;) is the determinant of the matrix named after Van-
dermonde, with entries ai; = ui~'. We can replace the powers ui™! by factorial powers
(i) g-1) = pilpi = - (mi—3+ 2) and leave the value of the determinant unchanged, for
to each column we have only added some multiples of other columns. For example, m =3

gives
1 om oM 1 m m(m—1)
(2 — 1) (pa — ) (pa — p2) = | 1 p2 p =11 pa pa(p2—1)
1 pa 43 1 ps pa(ps—1)

From the definition of the determinant we get

n! n! n
— > sgn(7) U(P«')(«.-—l) = “Z Sgn(ﬂ)m = Y sgn(r) <A+7rid—7r)’

n Hi reSm €Sm TESm
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which is the formula that we wanted to prove
. D

Dividing the j-t ’ :
,( | ), WhigCh Ey]thh collfmnhof I(p.-)(j_l)l by (5 — 1)! we get the binomial determinant
) e 1
i main theorem of Gessel and Viennot [4] is the number of certain

noncrossing lattice paths. This int ion i
aths. erpretation is closely connect i
authors of [4] note with regret the absence of a bijecti):'e prz)lsif (ffd it onn et races. The

E(M_”")z1!2!"'(""1)"(/1‘1)’.

3 Rat races

A rat race is an event th
| at takes place on the real li
points, on . : eal line. The rats have se :
namel’ e unit apart at coord‘mates 0,1,...,m—1, and they also finish at szarati Star_tlng
e Si’e/llaliz, -y pm. The distances add up to n, for ¥ (u; — i + D=5 /\paia e points,
h T of the rats moves one unit to the right. After n ti o i TRy
reached their final position. n time steps, all rats have
The rat i :
X ¢ O;ZC:V ;s c:)mgletel.y specified by recording which rat did move in each time st
T . :
numbers 1,...,n Zn: '(;ht}llls 15 to fill in the Ferrers board of the shifted shape Vs‘/iiﬁ
to one rat.’F;).r’the rat ‘:tlarti:i;t?rs fr(t)llln ifs reginniny; of theslphaben, Hach:zow blélongs
; rom the origin, there will b
rat starting f S . y ill be no letters, only nu
o efc roTnlllel has. a Tow beginning with A, the rat starting from 2’has i rovf/nlljzr; 'I.‘he
e indicates‘ " w}f)irc?lji?tlon :)f a iell on the axis is a unit interval, and the numbefinngllg
ime step that interval i 1 ¢
thff:umbers are left to right increasing i
standard )
e diagonalrs. ;0;28 tableau’ of shape A corresponds to a rat race with decreasing south
et ;ats moment’s thought should convince you that this means a nontgou hi -
i by never occupy the same coordinate at the same time. S o
= arehm 1jective correspondence with Young tableaux + 5o nontonching rat
or the b ’
it digitsenzf;lttif thte rat crowd, all rat's wear yellow T-shirts that carry the row inde
(12 . ) éleds art' of a no.ntouchmg race, these numbers form the permutati "
i ca,n ’be 'a, nd rat z has a distance of \; to run. In a general rat race, the st t'lon
ny permutation 7, and then rat  has to run the distance )\ +’, arting
1 T — Ty

The number of rat

races corresponding to a certai i i

of unordered partitions of shape A + mq —g w, that l';saln Sf‘artserm‘ltatlon 718 the number
’ A4

416 416 Tid—7) "
A5
2[5 2[5
137'—)2123? 2Bl  [A[B[1
did 2[3[4]6]7] [A[3]4]617]
Ry vy’ _ oaa
1l 3 1h2 " s O T e s

Figure 1: A st
standard Young tableau, a nontouching rat race and two general rat race
S.
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Proposition 2 The number of standard Young tableauzs of a given shape A is given by

£ 003 m-s)

TE€ESm

Proof: We are going to define an involution on the set of rat races that maps every race
to a race with a startpermutation of opposite parity, except for nontouching races, which
are left fixed. Consider a touching race with startpermutation and let 7 and j be the

first two rats to occupy the same position, at time t, say. Now imagine the same race

but with rats ¢ and j wearing each other’s T-shirt from the start, as a token of friendship
hat time, and when the crowd

and in anticipation of the coming-together at time t. At t
looks the other way, they change back into their own T-shirts with correct numbers on
them. To the crowd this would look like a different race, a race with a transposition in
the startpermutation relative to the previous race (cf. figure 1). We already know that

nontouching rat races are in bijective correspondence with standard Young tableaux, so
a

the proof is complete.

4 An involution of mixed tableaux

It is not obvious how to translate the algebraic manipulations used to prove (1) into a
counting argument. In order to lend itself to such a combinatorial interpretation, the

formula has to be rewritten in a form not using division.

MHw—m=§;wm%LJ;4)nw )

i>) € 1
As we shall see, both sides of this equation count certain mized tableauz of the following
bers. One row contains no letters,

kind. The shape is p and the entries are letters and num
namely an A, another row an A and a B etc, so for every k < m

another row one letter,
k letters of the alphabet. The remaining n cells of the

there is a row containing the first

tableau contain the numbers 1,...,n in any order.
A mixed tableau is a rat race if, in each row, letters precede numbers and both come

in increasing order. The total number of mixed tableaux is I] u;! times the number of rat

races, for each row can be arbitrarily permuted. Thus,

( " ) H;t,-! = # mixed tableaux of type 7 = M,

A+ ma—7/) 7
4 4
AlB[5]9 ‘___A59B HA B
Al1{2]|7{11 211 7(11]A A
AlIBIC[3]6[8]10] ClA[3[8]6][B]10] ClA Bl |

Figure 2: A rat race, a mixed tableau and the corresponding letter pattern
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so the i . G o
e identity that needs a bx]egtlve proof is the one in the following proposition

Propositi ] valit]
P on 3 There is an involution on the set of mized tableauz that proves the identity

t T[(u = ) = 3 sen(r) My "

>3 7€Sm

5 . :
where My is the number of mized tableauz with m; — 1 letters in the i-th row

Proof: As i i i
vy altlh;ei gl:::;h}:;on will depend only on the letter pattern, the number entries are
i ’Ir‘rlllenow on. We start out by describing the tableaux that are left
sty s .Etc ;e arl(le all of type iq, so there is no letter in the first row, one
eyl . Furt ermore, the letter pattern in each row must be le ; l

ed below. The definition is chosen so as to ensure that the number ofg;zz,gaai

patterns in the i-th row will be (
' b = i) s = pi2) - (s
the number of fixed points of our involution will beci))me éfn(zl) a;tld) B b
. 1 J

Con . .- . . >j
Censsf;rw tel':1 1/}h arr(l)c\;v wAlth f,u.- unit cel.ls positioned on the reaijaxis between 0 and ;. The
N iJS e ;Z;}:r orr:; ;he.]-th seg.ment, tbe leftmost cell of the segmentli.s the
illegsal e lgl;‘:it L 1c')rlzontal line crossing a cell means that it is considered
tart by crossing out all cells to the left of x,, leavi 1
P . 11, leaving p; — pq legal positions 1
Y Cgros SA(; ;t}lfﬁecfg(;: l(:}xthal‘l empty cells in the first gallery. If a gillelr)y cellrils f)(::rcxﬁ:;ixrte
e ﬁl e ?nsifead. In any case, that leaves p; — p, legal cells for B etc Iﬁ
Eeners empt]y e t‘he ]'-th letter, write it into any of the y; — u; legal cells and c;oss
e fl]:t galle‘ry. If a gallery cell is occupied by A, cross the k-th
g 0} e lette:. e ltst occupled‘ by {lr, cross the r-th niche instead etc. Evidently
e ;:a erns obtained in this way is (p; — pri1)(pi — priza) -+ (i — )’
e T (a;c 1on1 is that ff)r a legal pattern with k& — 1 letters, the numbler.
i ku_;, ; Iett— = Axy 1ndepen.dent of the row index :. For an arbitrary
e B L ers may be legal, while letter Ax occupies one of the \; crossed
T m— CZOS Sc:(lll}glfslth\verelzgal or ?rossed ce%ls, but the simplest case for us is
tableaux, but we start by deﬁniné it forr:h:ls;n:::%tla:d atr;bllré;lzlxumon o the set o all mbxed

nich i :
gg,llerg (:lg‘lg.llell1 che

v] ..
LELTT '
i o [ 2' l [ #3I I IIMI ] L:‘)‘l crossed cells, p; — p; legal cells for A

LT L[,_bl_l [TTTTA [ TT] As crossed cells, u; — p2 legal cells for B
L lBuﬁ—! LITTJAT ] [ T] X3 crossed cells, p; — ps legal cells for C
LB T LIT JALT JCT] A4 crossed cells, p; — paq legal cells for D

Figure 3: The construction of a legal cell pattern
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Given any settled tableau such that there are two or more rows with the same number
of legal letters, say k — 1, choose the first possible such row and the next possible other
row with that number of legal letters. The involution consists in switching the contents of
the crossed cells of these two rows. Assuming the crossing procedure defined above, both
rows have \; cells that were crossed out from the beginning, both have Az — A; that were
crossed out as A was written, A3 — A, that were crossed in the next step etc, and every
crossed cell in the first row is matched with a cell in the other row of the same crossing
class, keeping the internal order of each class.

This transformation defines an involution of settled tableaux, leaving as fixed those
tableaux where no two rows have the same number of legal letters. It is obvious that if the
involution maps a tableau in M, to a tableau in My, the permutations ™ and 7' differ by
a transposition, so sgn 7 = — sgn x' and their contributions to (3) cancel. If no two rows
have the same number of legal letters, then the tableau must be legal, by the following
argument. There is exactly one row with no legal letters, one row with one legal letter etc.
On the other hand, the first row can accommodate no legal letter, the next row at most
one legal letter, the row below that at most two etc. Therefore the tableau is of type 7id
and thus legal.

It remains to be shown how to extend the involution to unsettled tableaux without
destroying these properties. For a row in an unsettled tableau with Ay, ..., Ap-r legal,
Ak, ..., A, in crossed cells and A, in a noncrossed cell, we define a settling procedure as
follows. Switch Ay and A,, so that Ak becomes legal and cross out the appropriate cells,
i.e. empty cells in the k-th gallery and niches corresponding to letters in that gallery. If
the row is still not settled, repeat by switching A1 and the first letter in a noncrossed
cell etc. After some switches a settled tableau results.

If, after this settling procedure, there are two or more rows with the same number of
legal letters, we can switch the contents of the crossed cells as described above. Finally,
an unsettling procedure takes place, consisting in the same switches of letter pairs as the
settling procedure, but this time in reverse order and on the other row. It is clear that

DECATITE  EAB D .

A legal

BoC [ﬁlﬁll—l@ [T1IE D:'LIHCLLQ] B legal
CeE

cettled settled
CesD CeE

B legal G

THEIID DEBILE ,,
(EAAD DERCIE

gal

A legal

this transformation defines an involution of mixed tableaux, leaving as fixed tableaux that

become legal after settlin i
bec g. But'the settling procedure never cha th
in illegal cells, so the tableau must have been legal to begin wit}rll.ges ’ m'lmber o lettertsl

5 The bijection

glo t;l}lle.twolpie.:vious sect}:ons we have presented two involutions on the set of mixed tableaux
involutions switch some entries between two selected 1 ;
£ YO S sl ected rows. After this process, each
etters that the other row used to h he si
permutation is changed. The fixed poi i i et e ot
; points of the first involution are the mixed i

rat races, the fixed points of t o m——

o " points of the other one are the legal letter patterns. A bijection proving
Hui! (# standard Young tableaux of shape \) = n! [](ui — u;) (4)
1 ' !

. >

btai . s
i)sf 0o nt:x}r(l.eddby ilepeat'ed a.lternatmg application of the involutions, starting in a fixed point
involutiol: an 'elndlr}gén a fixed point of the other kind. This is a simple case of the
principle of Garcia and Milne [3]. In our case, it i i
_ : : ; it is possible b
interesting to describe the resulting bijection more explicitly’, ’ © ut ot ver
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Figure 4: Settling, involuting and unsettling a pair of rows (legal letters circled)
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