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1 Introduction

The bibliography on combinatorial games is quite large. A. S. Fraenkel has compiled a list of 430
published papers on this subject [10]. The typical combinatorial game is a 2-player game with perfect
information, no chance moves and outcome restricted to (lose, win), (tie, tie) and (draw, draw) for
the two players who move alternately.

In the present paper, though, we are interested in perfect information 1-player games without
chance, with a possibly infinite set of positions, where in each position a finite number of moves are
possible, each leading to some position. If no move is possible, then the game has ended and we refer
to such a position as terminal.

It is for this class of games that the concept of strong convergence, defined below, is relevant. As
a canonical example we introduce the chip-firing game of Bjorner, Lovisz and Shor (see [4]).

The game board is a graph, and a position is a distribution of chips on the nodes. For example:

Every node with at least as many chips as outgoing edges represents a possible move, which consists
of moving one chip along each outgoing edge to the adjacent nodes. In the position above there

are two moves possible: either we play node z or node y. The positions obtained in this way are
respectively

In each of these

positions only one move is possible. Playing this one move gives, in both cases, the
Position
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so it is a terminal position and the game ends. From this g.amfabltt.sho:lodf
et of positions is in this case the set of all dlStI.'l ution

those where no node has enough chips; .the set
des of the graph, hence finite. No

Here no move is possible,
be clear what we are talking about: the s
1 : inal positions are
the chips on the nodes; the termm‘z.t .
of moves is for every position in bijection to a subset of the no
information is hidden and no chance 1s involved.
Clearly, a combinatorial game in our sense can
the game graph, whose nodes are the positions in t "
such that (p,¢) is an edge if there is a move from p to‘q. el
game above had the special property that whatever choices we made, W
position. This is the key issue here.

be represented, with no loss of information, by
he game and whose edges represent the‘ moves,
he example of a run in the chlp-ﬁr.mg
reached the same terminal

Deﬁn’tt’ton. A ame 18 Sa.ld to have the St1 Ong CO'I“JCTgeTLCC p1 OpCT ty ]f glVen a.ny Sta;I t]ng pOSlthIl
g ;] i)
el thel evely pla-y Seq uence can be COI]hlIllled llldeﬁlll tely, or every play Seq uence w lll COIlveIge to the

same terminal position in the same number of moves.
It is trivial that strong convergence implies the following property.

if, gi iti different
Definition. A game is said to have the polygon property if, given any posmor;1 whgrgetvivsni ; .
oves, T z;nd y, are legal, either there are two play sequences of the same ler;gt an Cis whifh e
mand’y respect’ively that result in the same position, or there are two such play sequen
T

be continued forever.
7 in the
The ‘polygon’ that is referred to in the name ‘polygon property’ 1s the .pollygz;l :‘1};;;;2 ;xtlmng
game graph that the two play sequences, if finite, build up. Thus, we may equivalently

convergence as a property of directed graphs.
Indeed, the strongly convergent games can b

property.

e characterized as the games that have the polygon

. . o oo
Theorem. (Polygon Property Theorem, Eriksson [5]) A game s strongly convergent if an
only if it has the polygon property.

3 ) h' h
The idea is of course not brand new. Newman [12], 1942, shows da th;:orem of c(;)nﬂu:x:)c:g;nv;i rllcgs
1 i i i t any two outgoing edges trom a node ar ]

t if a finite directed graph is such tha : =
s?ys t};?r cl)f ?iirected paths with common endpoint, then every connected compor:;nt ha.sda1 :r;l;;qla,
(s)in?c pIn a paper on ring theory by Bergman [1], 1978, this is re}flerfied to as :he ) i;mhme(;ndiscussmg

i 11 this same object a ‘Church-Rosser system’, whe
Faigle, Goecke and Schrader [9], ca . e’y e
iti j i i When all maximal decompositio !
tion of finite combinatorial structures. : : o
der(:énlfe)gmtlllortlhe system is said to have the ‘Jordan-Dedekind property’, and they s}i;)v:l;hz) A
;:llows ifgthere are always meeting paths of length two. 'I}‘lhere dse.er{rils':o :rea II)x}cl)s pz:}(l:;eleewe o
] ibili infinite paths and infinite ; v

t of our theorem. The possibility of in pat] i |

::ll\lllillfler;a?grthoof all finite maximal paths, is natural and is, in our op;mon, th'e cor:ect gsel;(t:r:l‘;ge ol
i 1 technique for proving stron '
he Polygon Property Theorem gives us a genera . ving o
it sgysethat}{l% is enough to prove the existence of polygonsi.l Agalcrll t‘he chip ﬁn:llf yg:}r:; ir;rplayable
i i t of each other, and since any no

i mple. Since the moves are independen r, . e

Sl::t?(f)rl: ZX:odI:a z # y is played is still playable afterwards (since the number of chips on ¥
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have decreased when z was played), we have that the play sequences zy and yz constitute a polygon
whenever both z and y are playable. If there are sufficiently many chips, then there will always be
some node that is playable, and hence we get the case of infinite games though the polygons are of
finite length.

The aim of this paper is to point’out the multitude of strongly convergent games (and combina-
torial processes that can be regarded as strongly convergent games; see below) and how to use the
Polygon Property Theorem to prove that games are strongly convergent. The games considered are
the bubble-sort game, the shelling game, the chromatic game, the k-snake game and Schiitzenberger’s
jeu de taquin. We give special attention to the latter two, which were already known to be strongly
convergent for algebraic reasons, though the Polygon Property Theorem gives another and simpler
proof. These games are played on tableaux of squares, but we also introduce versions on tableaux
of circles and of triangles. In common for all these games is that, unless the ground object (the list
of numbers, the simplicial complex, the graph, or the tableau) is infinite, one will always reach a
terminal position. An important example of a strongly convergent game where infinite play sequences
do occur is Mozes’s numbers game. We do not discuss this game here, since it has been thoroughly
treated in other papers (Eriksson [6, 5, 8, 7]).

Just a couple of words on the role played by greedy algorithms in connection with strongly con-
vergent games. Greedy algorithms solve combinatorial optimization problems greedily, i.e. without
backtracking. Playing a strongly convergent game can be viewed as executing an algorithm that
results in a certain terminal position ¢ for any given input p, i.e. the result is well-defined despite an
apparent freedom of choice in the course of the algorithm. Conversely, every algorithm of this kind
can be regarded as a strongly convergent game. For instance, Kruskal’s greedy algorithm for finding
a minimal spanning tree in a weighted graph is in a sense a strongly convergent game: In every step,
a legal move is to choose any edge of minimal weight such that it does not form any circuit with
previously chosen edges. Of course, since a terminal position is a spanning tree, every play sequence
to a terminal position will be of the same length, namely the number of nodes in the weighted graph
minus one. The terminal positions are equivalent in the sense that they have the same weight.

2 The bubble-sort game

Bubble-sort is a very natural algorithm that sorts a list of n real numbers in O(n?) steps. It works
by repeatedly running through the list and switching pairs of adjacent numbers in the list where a
larger number comes before a smaller. The name comes from the small numbers ‘bubbling up’ to
the front of the the list.

We shall see how this may be regarded as a combinatorial game. A position is here a list
(a1,as,...,a,) of real numbers. A legal move is transposition of two adjacent numbers, say a; and

Git1, if they are in the wrong order, i.e. if a; > a;y;. Label this move by i. If the initial list is
(5,17,5,3) then the game graph will look as follows.

(5175 3)

2 \3
55173 (51735)
{3 |2
(55317 53175
2 5 1
(53517 35175

N ;/3
B5517)
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We could have guessed the terminal position in advance; it is only in the unique sorted list that
no moves are legal. We could also have told beforehand that every play sequence to the terminal
position would be of the same length; for every move, the number of pairs (ai,a;) such that a; stands
to the left of a; while a; > aj, will decrease by one. In fact, this is a well-known quantity: the
inversion number of the multiset permutation (a1, a2, - -, a,). Anyway, by this simple combinatorial
argument we have shown that the bubble-sort game is strongly convergent (and also that the case of
infinite games never occurs).

But it is also nice to see the Polygon Property Theorem work in this simple context. To prove
strong convergence using this method we need to show that if two moves, i < j, are legal, then there
exists a polygon built up from two play sequences starting with 7 and j respectively. Suppose first
that i < j — 1. Then it is clear that the moves i and j can be performed independently, i.e. we have

a polygon such as

(53175)
3 1
53517 35175)

3
35511

In the other case, when i =j — 1, the moves are not independent. Instead, we always get a polygon

such as
(51753
}/ \i
(55173 517 35)
3 V2
65317 53175
& 3
(53517

Thus we have shown the polygon property and hence strong convergence of the bubble-sort game.
Note that, unfortunately, this method does not directly give us the information that the game is

never infinite.

3 The shelling game

The shelling game is played on a pure d-dimensional simplicial complex A. A shelling of A is a linear
order Fy, Fy, ..., Fm of the facets, such that the intersection of any facet F;, 1> 1, with the union of
its predecessors is a nonempty union of maximal proper faces, i.e. faces of dimension d — 1.

Let a shelling step mean the addition of a facet F;, i > 1, to the union

U ¥ FRURU...UF,

such that F; N U; can be expressed as G UGia U ... U Gy for some k, where the Gi; are (d — 1)-
dimensional faces. Then Fi, F,....,Fpisa shelling of A if and only if adding the facets Fy,...  Fm
in turn are proper shelling steps.

Topologically, a shelling describes the construction of A by starting with some facet F, and
stepwise attaching facets to the currently constructed complex so that the intersection is a (d — 1)-

ball or a (d — 1)-sphere.
In the shelling game, the first move picks any facet to begin with, and then the legal moves are the

possible shelling steps. This game is like a solitaire: the player’s goal is to shell the entire complex
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it suffices to show that whenever two different shelling steps, F' and F', are possible, there exist
two sequences of shelling steps, one beginning with F, the other with F', that ends with the same

subcomplex of A shelled.

4 The chromatic game

Let P(G) be the chromatic polynomial (in some indeterminate \) of a simple graph G. P(G) can be
computed recursively by

P(G) = P(G\ ¢) — P(G/e)

where P(G\ €) and P(G/e) results from respectively deletion and contraction of an arbitrary edge e.
We can remove any multiple edges that arise after a contraction so that the graphs are always simple.
The basecase of the recursion is the edgeless graph; n isolated nodes have chromatic polynomial A™.

For combinatorial reasons this yields a unique polynomial, independent of the choices of edges,
because if the chromatic polynomial is evaluated with

) = the number of colors available,

the result is the number of possible colorings of the nodes such that no two neighbors get the same
color. Hence it is tempting to formulate the procedure as a strongly convergent game. But what
should constitute a position in this game? The correct objects are multisets of labeled graphs.

Definition. The chromatic game is a game version of the computation of the chromatic polynomial.
A position in the game is a multiset of graphs where the nodes are marked by disjoint subsets of
integers. A move consists of choosing a graph G; from the current multiset, choosing an edge e € G
and replacing Gi by Gi \ e and Gi/e, where the node resulting from contraction of e is marked with
the union of the marks of the two nodes of e. The game is over when all graphs in the multiset are

edgeless.
Theorem. The chromatic game is strongly convergent.

PROOF We shall verify the polygon property of the game. Suppose we have a position where two
different moves are legal, i.e. we have a multiset M of labeled graphs and two edges a and b that are

each in some graph in the multiset.
There are three cases to consider.
e Case 1: a and b are in different graphs in M. Then it is obvious that a and b can be played
independently, giving a polygon of length 2.

o Case 2: a and b are in the same graph G, but @ and b are not two edges in a triangle in G. Let
Q be the multiset
(M\{GY)U{G\a\b,G\a/b,G/a \ b,G/a/b}
which is the position reached after first playing a and then playing b in both resulting graphs.
Since, in this case, the contractions and deletions commute (G\a\b=G\ b\aetc.), Q is also
the position reached by first playing b and then playing a in both resulting graphs. Thus we
have a polygon of length 3.

e Case 3: a and b are two edges in a triangle of G with third edge c. Let @ be the multiset
(M\{GhHU {G\a\b»G\a/b/qG\a/b\c,G'/a\b,G/a/b}
which is the position reached after first playing a, then playing b in both resulting graphs, and
finally playing c on G \ a/b. See the picture below.
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The combinatorial interpretation of the terminal position is as an inclusion/exclusion formula for
the number of proper colorings. The graph with N nodes denotes the AN different colorings possible
without restrictions. Every graph with N — 1 nodes, i.e. with some node doubly marked, e.g. be,
corresponds to subtraction of the AV~ colorings where b and ¢ are colored alike, despite there being
an edge beteween b and c. Continue in the usual manner of inclusion/exclusion.

5 The k-snake game

A tableau is the graphical representation of an integer partition (n = ™M1 + mg + ma + -+, Where
my > mg 2> m3 2 --+) that one gets by letting each part m; be represented as a row of m; squares.
Thus,

is a tableau with 14 squares representing 5+4+4+3+1+1. A k-snakeisa contiguous strip with k squares
that live in the rightmost boundary of the tableau, such that if it is removed, then what is remaining
is still a tableau.

The k-snake game for some fixed integer k is played on a tableau by repeatedly removing k-snakes.
If there are several k-snakes at any time, one has to choose one of them to be removed. The game
ends when there are no k-snakes left. An example with k = 3 is shown below.

5t

Originally, this game comes from representation theory, where it is known to have a unique
terminal position, called the k-core, and hence it is strongly convergent. We refer to the book by
James and Kerber [11].

Here, we show a rather elegant way to verify the polygon property. Suppose that in some tableau
there are two different k-snakes, A and B. If they have no squares in common they can be removed
independently of each other, in which case we have a polygon of length 2.

If the snakes do have some common Squares, we must have something like in the picture below:
The lower snake, B, must continue with one square directly to the left of the part C common with A,
because otherwise it would have a square below the common part and then it would be be illegal to
remove A. Analogously, A must continue with one square directly above the common part C. Hence,
the tableau that remains when the union of A and B is removed contains a copy of C, say D, on the
boundary, placed one square up and to the left of C. If A is played first, it is now legal to play the
snake that consists of D and the remaining part of B. If, on the other hand, B is played first, it is
then legal to play the snake that consists of D and the remaining part of A. All these are of coursé
k-snakes.

> terminal position
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|
Let a and ¢ be two i
3 possible moves i it : ;
Eq;@ = to dthe left of (and thus below) c. If no :qzalizsil:lzlc;vz: btwg (:llfferent SO AeS, BUclL 1h3t g
, independently, yieldi y both moves, then
I / such that ad yielding a polygon of length 2. Otherwise there is so , a and ¢ can be played
f is moved both when a and ¢ are played mie szl f closest 10 \and ¢
Again, the rule is that no holes may arise in the east /west and north-east /south-west directions, ¢ < ]
and the boundary is defined in accordance with this. <
Since the k-snake games on glued tableaux are strongly convergent, due to the equivalence above, @ <L
the k-snake games on circles and triangles are also strongly convergent. I
A
6 Jeu de Taquin X
| s

Schiitzenberger [14] introduced a game played on skew partial tableaux which he called jeu de taquin.
A partial tableau is a tableau, such as the in the k-snake game, with a number in each square such
that rows and columns are increasing. A skew partial tableau is what you get when you remove a

A“el pla.ylng both a alld c the]e must be some actlve Square b to t:he Ilgllt Of a alld to trhe Ieft Of
C V‘/e Clalm that the palr Of pla.y SequenCeS acb and Cab COllStltute a pOlVgOXl

smaller partial tableau from the upper left corner of a larger one.
o |
active squares b =
nanes e iamall
m %L FTA The movement of squares
A= when playing cab
T
Every such skew partial tableau is a position in the game. An active square is a void square that
has a neighbor in the skew tableau both directly to the right and directly below. A move consists of c<h |
choosing an active square and then moving there the neighbor square with the least number. Then b1 Theiio —
we get a hole in the tableau, which we fill in the same fashion with the neighbor square with the ¢ GL i when playing ach
least number. If there is only one neighbor to the right and below, then this is the one. If there is A A
no neighbor, then we are at the lower right boundary and the process stops. Clearly this results in L
} | a new skew partial tableau. A terminal position is when there are no more active squares, i.e. when o)
T

no void squares exist in the upper left corner, which is exactly when we have an ordinary partial

tableau. One move is shown below. W ;
e claim that th : .
e paths of moving squares will always have a pattern as above, so that
, 80 that every

i .
| square is moved equally i
| N ; i ::QG-] - up_arr?)ws 1}; 1: ::EI ;wo pfla,y sequences. Let an arrow path be a contiguous path of left
; FRE i:.e Pirvinctuiiidtnn Aeix;l i(:l :‘(}uares, as in tl(;e figures. An arrow path A’ is said to ru: tc;
: b . ooiher = , ery row visited by both paths, there is on isi
o - ‘ g of. eve,ry square visited by A’ on this row. B ; ituti e‘square gl
S e : y substituting ‘column’ for ‘row’
i , we get an analogous definition for when A’ runs above A
. 1 e |
As was the case for the k-snake game, the unique terminal position has algebraic meaning, as aﬂ:!:ma.. Let a be an active square and A its correspondi
the partial tableau obtained by taking the row word, i.e. the word obtained by reading the rows A @ is played and let B be its correspondi i) Sl Wi
R ponding arrow path. If b is above a, then B runs above A

left-to-right from the bottom row to the top row, as input to the Robinson-Schensted algorithm. ly, if b is to the left of a, then B runs to the left of A
of A.

The interested reader should consult the book by Sagan [13]. It should be pointed out that if one - PROOF The first
starts with proving strong convergence like we do here, then it is quite simple to derive the theory of end of an up.j sl St'atement follows from observing that no square can b 3
the Robinson-Schensted algorithm and Knuth equivalence of permutations as corollaries, thus giving p-arrow in A and at the beginning of a left-arrow in B e at the same time at the
i a slightly new approach to the subject. i .

We shall as usual prove that the terminal position is unique by showing strong convergence using j
’ the polygon property. The polygons will in this game be of length either 2 or 3. : h@‘
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ower right square would be placed above

This is impossible since the integer that was initially in thel Active sites are void spaces with numbered neighbors both to th
rs both to the right (east) and to th
e lower-left

(and hence be less than) the number in the square it was initially to the right of (and hence greater (south-west). Holes are filled with th
than). The second statement follows analogously. u] start positions above, the termi;al t e.ltt?ast of ;he numbers to the right and the lower-left. For th
2 positions will be -left. Ior the
Now return to the situation where a below b below ¢ are squares such that a and c are active
d c are played. Let f be the closest square that is moved both if a is AL

and b is active after both a an
played and if ¢ is played. Then it must be so that playing a would slide

would slide f upwards. Hence the situation in the vicinity of fis
S

’
17}
8
As one can see, th i
, these games terminate before the upper left corner is filled. In fact, for th
. , for the circle

f ( ] game, p 1tion lll al ays ha IO y
S ld ] S ] 1, ]llle m t e
‘Ile le]]lll]lal osit on w W ve W (){ VO! circle: Oi € gth dlﬂell]lg b 1 w
y h

f leftwards while playing ¢

where the g’s denote squares with numbers great Bl oy

tableau may be considered have infinite content. flatifle RATIE LIE TOWS will differ by 2. .

Now we study the play sequence cab. Then th)e arrow path A of a will run to the left of the arrow . diagrams a..nd glued tableaux with l(z,,ftztal’)lizzuwo}il-otle secret is that the transfomation between circle

path C of c. The arrow path Bof b will run above A. But B will also run to the left of C until it is bt?tween triangle diagrams and glued tableaux W't)},lple 1+2+---+r, as well as the transformation

forced to do otherwise by A, that is, until it reaches the square to the left of (the new place of) f. with the Lt of jeu de taquin. In other words 1]: eff . ta.bleau ol pre 2+4+4---42r, commute

There, after playing ca, it will look like the game will give the same result as first pl A t.he diagram to a tableau and playin
everything to the left. playing jeu de taquin on the diagram and then pushing

na
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ON THE NUMBER OF COLUMN CONVEX POLYOMINOES
WITH GIVEN PERIMETER AND NUMBER OF COLUMNS
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Setaliste Joakima Rakovca 17, 51 000 Rijeka, Croatia

Dragutin SVRTAN
Department of Mathematics, University of Zagreb, Bijenicka c. 30
41000 Zagreb, Croatia

Abstract. In Part I for the perimeter and number of columns generating function for column
convex polyominoes a remarkably simple algebraic expression is obtained and also, for the first
time, explicit formulas for the numbers, stated in the title, are found and are given as certain triple
sums. A correspondence between the polyominoes and the encoding class of Motzkin words, which
is not a bijective one, is used and it lead us to a system of four quadratic equations. By a series
of manipulations and a "magic” substitution the system is reduced to a biquadratic equation. The
method of proof can be widely generalized yielding interesting results not only for Motzkin paths
but also for Dyck paths with arbitrary steps. In Part II an extension of Temperley’s methodology,
as an alternative to difference methods, is developed, including a complete solution, which includes
area, perimeters, contacts, and sources, of the Temperley’s Model @ on square lattice as well as
unidirectionally convex-polyomino problem on the hexagonal lattice.

PART I — Language technique
1. Introduction

The perimeter generating function for column-convex polyominoes was first found by Delest [3],
and then, in a different way, by Brak, Enting and Guttman [1], who relied on an earlier paper of
Temperley [11]. In both papers [3] and [1] a degree four algebraic equation satisfied by that generating
function is also given. Following the approach of Brak et al., Lin [6] has obtained, the more general,
column-convex polyominoes perimeter and number of columns generating function.

Let F(a,b) (resp. G(a,b)) be the power series such that the coefficient of ab? in F (notation
(F,a°b")) is the number of column-convex polyominoes with vertical perimeter < 2v (resp. = 2v) and
with exactly ¢ columns (i.e. horizontal perimeter equal to 2¢). Our main results imply the following
algebraic equation and the consequent theorem:

ab(l — F)*
(1= 021 — 2F)[(1 = 3F) —a(l = F)’

THEOREM A i) The number of column-conver polyominoes having vertical perimeter < 2v and
ezactly ¢ columns (i.e. horizontal perimeter = 2¢) is given by

(F,ab) = % Z (=1)*(k + 1)(;1:'1) (i j 1) (2c +jj - 1) (2(ic_+ji)_—kk> (1.2)

i,5,k>0

F =

G(a,b) = (1 — b)F(a,b) (1.1)

) The number of column-convez polyominoes having perimeter 2p and ezactly ¢ columns is given by

(G, aCbp—-c) i (F, acbp—c) _ <F, acbp—c—-l)

i Zg k+c+j+k p—ct+i—1 c 2¢+7—=1\[2(c+i—k)-1
e 2c+i+7j 2 i+ 1 J i—j—2k

(1.3)
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