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ON THE NUMBER OF COLUMN CONVEX POLYOMINOES
WITH GIVEN PERIMETER AND NUMBER OF COLUMNS

) Svjetlan FERETIC
Setaliste Joakima Rakovca 17, 51 000 Rijeka, Croatia

Dragutin SVRTAN
Department of Mathematics, University of Zagreb, Bijenicka c. 30
41000 Zagreb, Croatia

Abstract. In Part I for the perimeter and number of columns generating function for column
convex polyominoes a remarkably simple algebraic expression is obtained and also, for the first
time, explicit formulas for the numbers, stated in the title, are found and are given as certain triple
sums. A correspondence between the polyominoes and the encoding class of Motzkin words, which
is not a bijective one, is used and it lead us to a system of four quadratic equations. By a series
of manipulations and a "magic” substitution the system is reduced to a biquadratic equation. The
method of proof can be widely generalized yielding interesting results not only for Motzkin paths
but also for Dyck paths with arbitrary steps. In Part II an extension of Temperley’s methodology,
as an alternative to difference methods, is developed, including a complete solution, which includes
area, perimeters, contacts, and sources, of the Temperley’s Model @ on square lattice as well as
unidirectionally convex-polyomino problem on the hexagonal lattice.

PART I — Language technique
1. Introduction

The perimeter generating function for column-convex polyominoes was first found by Delest [3],
and then, in a different way, by Brak, Enting and Guttman [1], who relied on an earlier paper of
Temperley [11]. In both papers [3] and [1] a degree four algebraic equation satisfied by that generating
function is also given. Following the approach of Brak et al., Lin [6] has obtained, the more general,
column-convex polyominoes perimeter and number of columns generating function.

Let F(a,b) (resp. G(a,b)) be the power series such that the coefficient of ab? in F (notation
(F,a°b")) is the number of column-convex polyominoes with vertical perimeter < 2v (resp. = 2v) and
with exactly ¢ columns (i.e. horizontal perimeter equal to 2¢). Our main results imply the following
algebraic equation and the consequent theorem:

ab(l — F)*
(1= 021 — 2F)[(1 = 3F) —a(l = F)’

THEOREM A i) The number of column-conver polyominoes having vertical perimeter < 2v and
ezactly ¢ columns (i.e. horizontal perimeter = 2¢) is given by

(F,ab) = % Z (=1)*(k + 1)(;1:'1) (i j 1) (2c +jj - 1) (2(ic_+ji)_—kk> (1.2)

i,5,k>0

F =

G(a,b) = (1 — b)F(a,b) (1.1)

) The number of column-convez polyominoes having perimeter 2p and ezactly ¢ columns is given by

(G, aCbp—-c) i (F, acbp—c) _ <F, acbp—c—-l)

i Zg k+c+j+k p—ct+i—1 c 2¢+7—=1\[2(c+i—k)-1
e 2c+i+7j 2 i+ 1 J i—j—2k

(1.3)

201




F)y (= F=0- L)/(3 — L)), turns the equation
4ab/(1 — b)? =0 By using the generalized binomial

A "magic” substitution L := (1-3F)/(1-
1, the solution of (1.1) reads as

(1.1) to a biquadratic one: L* — (1+a)l*+a+
series Bi(z)" = Yoo (tk:r)?k_r_;r_zk (cf. (4], (558)) fort=-1,r=
N 2 \1/2
follows: F =1— 32T L(a,b) = (1 + a)/?B_, ((T:_—"é}z;&ﬁ_%p) " In more explicit manner we have
the following:
THEOREM B For column convezr polyominoes,

i) for (5 horizontal perimeter = # columns, § ver

G(a,b) = (1 —b) 1—_____-————2{2’—-"_’ , whered::—ﬂ-; (1.4)
3va—\[1+a+/I-ar-4d (1 =5

it) for G perimeter) by:

P PO -
G(a,a) = (1 ){1 37 ’—_——_—(1-*-(1)6}7

the generating functions are given explicitly:

tical perimeter) by:

JT—6a+a
YLl=ba v (1.5)

where e =1 +
1—a

complicated formula, obtained for

Remark 1. This result may be compared with an extremaly
which can be obtained by clearing

the first time for G(a,a) by [3) and later in 1], or to a result of [6]
the denominator of G(a, b) and written more compactly as
1—b)2(L+3)(L*— ab+8)
)= (1=0)|1— g_—-——————-'—“‘"—‘— :
Gla,0) = (1 =b) [ 4[(1 = b)2(9 — ab) + ab?]

developped by Schiitzenberger [9], [10].

a going to use in Part 1 was
d the encoding class of

The methodology that we
e correspondence between the polyominoes an

Hovewer in the present work th
Motzkin words is not a bijective one.

2. Preliminaries

In this work ”a polyomino” always means ” a column-convex polyomino”. The polyominoes whose

first column consists of exactly r cells will be called r-source polyomino (or simply r-polyomino).
Similarly (r, s)-polyomino will mean that first and last column consist of  and 8 cells respectively.
Let P be a polyomino with ¢ columns. The minimal and the maximal ordinate of the ith column

will be denoted by y; and Y; respectively. If for some i, 1<1<¢

(i < ¥Yir and Yi < Yip1) or (yi > Yin and Y: > Yin)
i — i+ 1 is an in-out passage. In the case of t

1—2and2—3.

then we shall say that he four polyominoes shown in
Figure 1 the in-out passages are

Let w be a word over the alphabet {z,y,7} and let |w|, = n. For i=2,..

in w (the two z’s excluded) wil

)t up to the it letter z 1
t is the left factor of w ending just before the first 2 and the (n +1
he last z in w. We shall be mainly concerne

« interpreted as northeast, sou

.,n, the subword
running from the (2 — 1 1 be called the ig
nest of w. The first nes
is the right factor beginning immediately after t
Motzkin words (|wly = |wly, w = uvv = luly > luly) with y,7,

and east steps.

d with
theast
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)™ nest

3. i
A coding for column-convex polyominoes

Let 1 be a po yO no wit CO. ns. Vbe a.l enCOde 1 by the WOId
I mi i h C lum Sh I

f(P) = a1rax T
©rTA2c-1TA2 € {T 1>

where the a;’s are defined as follows: ~ bt

> a = yyl-yl—l :

> Ay = yyc-yc—l

pfori=1,...,c—1I:
ifi > ¢+ 1 is an in-out

iy passage such t ’ .

then ag = yY-—Yi+1 and 2041 i yy;—y;+lhat Yi > Yiq1 and )/t > )/H-l
else
if Yi > Yit1, then ay = y¥i—vin
}f Yi < Yig1, then ag; = yyit1—v
}f Y: < Yiy1, then agy = y¥er-%
if Y; > Yiy1, then ag;y; = g¥-Yin

endelse.
L P
2
N
S A ~
N\\_
PR EE
<oy
Ylo I k7] P
4
© _
N
»olyY|R G| Ty | NV
2 ~|Y Q
Il yl2 | R|w
e & )
P N

hgule 1. These four pol ominoes are (and no o her) encoded by th d:
poly: t y € WOTH

Col.1
e Col.ly—» Col.2 2=3 34 fsk 5 6
zyy 797 = - —
| = [¥99sy] = [yzyy | = (32997 | = [wysz | = L6I?F7] ICol.7
z v
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»first in then out”, whereas all the other

In brief, the in-out passages are encoded by the rule
d then the upper side”. See Figure 1

passages are encoded by the rule ”first the lower side an
for a few examples.
THEOREM 3.1 Let P be a polyomino with perimeter 2
following properties

a) It is a Motzkin word

b) It contains 2¢ — 1 z’s and its length is 2p — 3

c) It contains neither of the syllables Yy and Ty, as well a
in the next (odd) nest.!
) b) and ¢) and let the event "g’s in an

Conwversely, let w be a word possessing properties a
even nest of w followed by y’s in the next nest” take place m times. Than w encodes ezactly 2™

polyominoes. Each one out of those poly

p and c columns. The word f(P) has the

s noy’sin an even nest followed by §’s

999

ominoes has m in-out passages.

ding for the perimeter of column convex

Remark 3.1. In [3] it was constructed an injective co
t makes algebra a bit harder.

polyominoes, similar in spirit to our, with more letters, so i

4. A non-ambiguous grammar

Let J; (resp. Jo) be the language over the alphabet {z,y,7} consisting of all those Motzkin

words satisfying the following conditions
i) w contains neither of the syllables y¥ and Jy.
ii) |w|, is an odd number (resp. even number or zero)
The languages Jy and J; satisfy the following system of equations
Jy =y +yhy(l + xJp) +y(J2 — ISUEDD) (@)

Jp =1+ aJi +yhyzda+ y(Jo — 1)F(1 +zh)

which follow simply from the following (obvious) equation J=1+y(J-1)7(1 +zJ). for the language
J = Jy + J of the all Motzkin words with no factors y¥, ¥y

5. Attribute grammars

Let w be a word over the alphabet {z,y,7} and let |w|, = n. Write w € J = Jy U Jy in the form

w = a1TaT """ AnTAn41

is then called the it nest of w.

* Lpmod2@n+1 (111 3
from left

with a; € {y}" or a; € {7} Inour terminology ;
It will be customary to write w also in the form w = a1%1a9T203T104T2 "
£, = ) in which the index 1 (resp. 2) only indicate that the order of appearance ofzinw

is odd (resp. even).

Now we introduce two attribute g
J = J; + Jp with atributes describing the types of two
More precisely, for J 1 we use the additional (commuting) letters u,v,c, e marking maxim

in w € J belonging to
¥tz gyt T ey}’ @y {m \ (a), ey} \ ol respectively. We call such events
left odd expansion, right odd expansion, odd contraction, odd expansion respectively:

rammars J' = J}+J3, J? = J2+J3, by extending the grammar

. k)
consecutive nests around z1’s (resp. %2 5)-
al factors

10f course, when some nest contains zero y's (resp. 7's) then we consider that it does not contain y's (resp- 7’s).
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o f 2 - . 1 1 ]
.
[he deﬁ]llt ]0,11).0 J 1S deﬁned W]th the same markmg lettels but With 1 Iep ace y T2 (.1 €

Th . . :
PROPeOf(;l;;‘v;lS%mmple facts will be useful in writing a grammar for J! and J?
5.1 1) (zJy)! = ex(JE — 2J} |
. t—zJl)+ 22}, (a41)? =zJ}
’.’.).)((m J})l)lz ez(("f —1-2J}) + 2zl + 2J}), (xJ2)22= iJ‘l) "
iti) (y17)' = (u— 1)yzg+yJ G4 (c— : 7 :
T y g+ (c—1Dy(J; = 1)zg + (e~ yz(J3 - )7+ (c = 1)(e — 1)yzJizy
w) (y(J2 = 1)) =y(J; - 1)y |
(3 v 2~ D7+ (e—DyzJiy, (y(L—-1)7)=y(JF-1)7
Y (nyz)‘f gelo(J; =1 = 2Ji) + el + 2J})), (’y‘xi)z =)yy)zJ‘ T i
o) el = alo(J? - oJ}) + cedl], (Geh)=gas
1

By using this Propositi
position, one obtains f
RN . : rom (4.1) four language equatio i i
eéuaii,onls an thz Zvolilrih we ;&flll not ertf? down. By letting z,y,7 comr?lute wI;So(b‘:;t'h ?tt“bUteS) f(')r
el sponding generating functions which we denote by J!, J1 J? H.;Z ’B quadra'tlc
z,y — ¥, ¥ — y and reversion on words we get that G SYAPRiLE

J%(x, Y, 7, u,v,¢,e)=J(z,y,7,u,v,ec)
J;(x,y,y',u,v,c,e):J%(z,y,y,u,v,e,c) 5
Iz, ¥, ¥, u,v,¢c,e) = I3(z,y,7,u, v, €, ¢) o
so we only need to find three generating functions J2, J2, J!
Define the normalized generating functions Fj, F2’2’, F;;’ byl.

Fl = QJ?, FZ = anx F3 = QJ}, yyl‘
= (5.2)

- Yy

where a 1=

6. Functional equations for F}’s

h gen rat]ng fuIlCtlon 1 2 y g Y
F 5 F a.nd F3 d ﬁrl m 5
l e e S € ed .2 Sa-t]s{ the fOllOW g system Of fUIlCtIOHal
qu&t] ns, b lned fr m th qua. 10ns f 2 J17 1,( ) h ( . )
{51 O obta (0] e e tio or J .] W]le]l the aHl]lmles are aSSlgned to 4 ].

?(1—vF1)=(F2+:c(1+(2c-—v—1)F'1))f2
F?Ei = ‘U?l) = (1 + (26— v — l)Fl)(a + IF3) + F2F3 (61)
e T 6.2
1 — z+2cz)—a(1+(2c—v—I)F1)+F2F3+(2c—1)F1+(26—U—1)F2(63;
5 (6.

where F. 7

R e s B A
Bels (1 + (20— v 1)Fl)f? ;azlldle S;Ch huge system is as follows: First by applying ™ to (6.1) one
terms of Fy. By subtractinzg (6 3)-11:r£m6 _6v2— LF)F; WhaF is a linear relation between ﬁ?- and F3 in
(6.1) multiplied by Fy minus (6.2) m i . e i o Then
£ (or F;). This is sufficient t(; isolal.ltelrl)"']e(ihby 2 gll\/e's us linear relation between Fy Fs, FyF and
state the result for F, in this generality, iI:,theu;oﬁgvtv?i:lg]ntieir}:r)rlx}‘momial seuabsn i i s oty

II{EOREM 6. l € ge7le7 ailny unction F T Y, U V5 C; € at lsﬁes ”le ()ll(”ﬂl"l € U(ltl()n )
) f ( Y, Y, U, U, 6 ) S f q f

-~ sigth degree:

B = 2P+ (2¢' — v)RJ*{(1 — v'F})? + eF? + 6F,

— 1 (1 = ’UF 1-— /F1 2 U
: (1 vE){[(1 —v'FR)(1 —v"F) - 51;'12]2 - ;2(1 - v’lF)'l}){((l - vaFl —)l—:FE)I?i : ?g&’Fl(l’_ Ufl)}
ere o .= Yz 3. l e_v)FI)G}

E 1-yy’
i+ v—2

z -
g ¢i=c—le=e-1,vi=v-1,v":=v+1,e:= (20—1)(26—1)—‘1



b) If c = e, then F, satisfies the forth degree equation:
F12 + yg_j(SF](l == UF])}

F = aB{(1 — v'F1)* +4e(e - DFE+6F(1 — oF)H( —v'F)’ + 4e(e —1)
' ] (1—vF)(1 —v'F +de(e— 1)F)}

(1 = ’UFl){[l e (U' + 26)F1 2 g2
(6.5)

In the special case where ¢ = € = 1 we state the result for all three generating functions

Fl(xa yvyvuav)a F2($1 y7y’uvv) and Fg((t, y’y»u»v)

THEOREM 6.2 For Fi(w,y,y,u,v), i=1,2,3 we have

2) P = afl(1 - v’F1)2 +6F (1 — vFl)][(l — v’F1)2 + yyéFl(l —vhA)] (6.6)
" (= oF)[(1 = v'Fy)? — 2*(1 = vF)’) ‘

b) F= 5_F1(1 — vlFl) + yz[(l - ;)i‘l)v(ulpj U/Fl) —§(1 - UF])F1] (6.7)

g F= E:_li%,ﬁ-@ (6.8)

4= _ = " " = o
u;herea—l_yy,ﬁ e T 1,0 v+1l,6=utv—2=2
olved explicitly by using more general "magic

Finally we remark here that the system can be s
o a biquadratic equation, but

substitution” L =[1—(v+ DR/ = (v- 1)Fy], which reduces (6.6) t
we will not write this solution here.

The following modification of attribute grammars J' a
the attributes u and v as before and introducing a new attri
maximal factor of w € J belonging to ytz1 U {1} U zTt
yta, U {z2} Uyt (even small descent) for J%, and using other notat

get the following result

nd J? is also interesting. By keeping
bute, denoted by d which marks every
(odd small descent) for J', and to
ijons from Section 5, we can

THEOREM 6.3 The generating function Fi(z,y,7,u,v,d) s given by F1 = ﬂbﬁ\_ where (1 +

K?)A = 4K and where A satisfies the following quadratic equation

2
9

(1= A)(a? +A) = B2+ + %:A)

n::yﬂ,z::An+d—l,A:=u+v+d—3.

where f:= ——=

1-vy’
tion for hexagonal lattice case can
function Guc for unidirectionally
ing expression Guc =

sult is that perimeters generating func
lattice case. Namely, the generating

honeycomb lattice (see [7]) we obtain the follow
ler than that obtained by Lin and Wu

The importance of this re
be obtained from the square
convex polyominoes on the
Tz?—%lf’ where ®; = myzFl(a:,y,z,O,z"Z + 22, 2%), which is simp
in (7).

Remark. The coefficients of Fy, A, K can be written as certain 6-fold, 5-fold and 4-fold summa-

1d, 4-fold and 3-fold summations.

tions respectively. In case d = 1 they are reduced to 5-fo

7. Applications to polyominoes

J%(z,y,7,0 i\ — . :

‘(/eiﬁic:{,pyériﬁgég (23;1113-% —T}f# polyominoes with % columns (i.e. horizontal perimeter

s (P(z0.9.0.2) z?c—l(' _)Ul_xf the number Of: polyominoes with vertical perimeter 2v a(;rdl ! 1l) s

tions. (J2 'Tzc_-,z(y,_?j)“—l) yytl ). The coefficients of J2 and J} also have combinatorial 'tho iy
= A2y is . !

. he number of 1-(source)-polyominoes having vertical perixnetf:'l;vq::(;ac

For ¢ > 2 (Jl 2263 (7)1
columns. T (y7)"""') is thé number of 1,1-polyominoes with vertical perimeter 2v and ¢

Now we shall specialize The
orem 6.2 for u =0, v = 2.
THEOREM 7.1 Let F; = Fi(z,y,7,0,2), : = 1,2,3. Then

a) F= af(1 - F)*
(1-2F)[(1-3F)?-2%(1 - F)?Y
b) R=phl-R)+y(1-2R)1- F)
(1-3F) (7.1)

F, — F? _
<) F3= 1—F2’ where o = 242 -
! 1-yy’ 1—yy

N

1 al mon s Th T A y
(o) fOI the Coeﬂ‘l(ile t ev uatio €c eorem m ‘]le IntIOduCthIl 101 case Oi a-l] Velt]Call
convex pOlyOInlIloeS. He]e we state the Iesu]t fOI 1-p01yOIIlllloes

THEOREM 7.2 Forc> 2 a
. >2andv>1
B o and.c columms is v > 1, the number of I1-(source)-polyominoes having vertical perime-

(_1)i+j+k2k+13j_1

(Bi—v+2)(c— c —
2 (i+1)(v+3) [ L 1)+20—1].

ik (2c+7-2)(2c+5-1)

GO

USlng The TEIn A and Th
) rem .2 1
10) : eore: >; logethel Wlth the reS\lltS mn Part II, Ille()lenl 2.1 we can

PART II - (An alternative to Temperley’s methodology)

Intl‘oduc ion H i Y
. ere (] IHUS rat P Y
t 4 ; W t. € b two exa.mples an a,pploach to TeIIl e]le type inﬁnite
) ems Cf. equ'avtlons W]thou? reduclng them ﬁrst to difference eqllations Ihe Hlethod quui(les SOIIle)
COmplltath]ls m ”le algebralc Closure ()f forma.l p()wel‘ Series (a bit 0{ Ga..l i y)
018 the()l .

1. Unidi i
irectionally-convex polyominoes on the honeycomb lattice

In this section ;
. we consider unidirecti ;
. . nidirectionally-convex pol
pproach t} ] polyominoes on the hone i
Bquations (cf (6)1;;n[;1]1)a.t ucrlldeitaken. by L1r.1 and Wu in [7]. We also start wit}};cz)}rlr;bql*::tlce 1by more
“Without any reference to ;Iflf solve this " finite system directly by the generating funcl;'nper el
o iginal A 1 e(;ence equa?lons. Lin and Wu considered first the fourth diﬂ;on apread
an eXtremely’ Comphcatr:; fo'ztljn bei a dlﬂ'erelx'lce equation of the forth order, and statedirlf: (;Zloufche
€irs by introducin form. In an earlier version of this paper we obtained si ion
g an additional class of polyominoes denoted by go, whose ﬁrssltmcr;llffrrrlesult t}'letn
J n consists

mn conveX f
have two
f columns

in the coding word of a colu
and for each attribute v we
1 the sizes 0

L on € degenerate hexa. (6} w g lan ose g a ld g 1
b hat led t i initi iti 0 1 1. 2
a ( ) g n us to Slmpler ln]tla.l COndlthnS g y tl th 1
te m, ] [ ‘ ]' Thein we used Only .Second diﬂerence (C.f. (8) in [ i ]) w hich iS St(ill an i Ilﬁl)l'lte
ut somew llat S lnpler tha,n (6) m [ I ] . In the a.pproa.ch presented bellOW we dont even lllse

According to our group coding rule "first in then out”,
polyomino (which belong to J?) the attribute u is ruled out,
polyominoes with the same relative position of two consecutive columns wher
are given. So if we set u = 0, v = 2 into the generating function J2 we obtain that
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ane hexagonal (or honeycomb) lattice with z-axis as one of its three axes of sym- H— G5 s
t where by column convex we meail that the vertical s=1 5)9s, where G=3Y" _ g, H:= Y .
> s>19s, We can rewrite (1.2) as follows:

Imagine a pl
ct the polyomino in a convex set. and of course the
g ’ g ="y {n’ + [ an oy

metry and an ” column” convex polyomino ini
lines trough the centers of the hexagons interse
consecutive columns have at least one edge in common (see Fig 2)

T —re]G+ [__an —pr
T ; l—T](l U] )+(7‘—3)(C777—3+e)]g,+eH

By multiplying both si
ying both sides of (1.2) by ¢" and summing over » > 1, and usi h '
2 b using the formula

Yoisy Ker =z (1 —x)?
= — ) we get the functio : s
noes on the honeycomb lattice: nal equation for unidirectionally convex polyomi

Y,
Yy G(t) = alt + b t
v & S A ) w9
Y | 2
_ xngt 2 —
! “t) =1 —:qt’ ht) = 7 (uy2+vy2 — 2get
I —qt l—nqt 1— gt ’ bz(t):l_q—
eft)=algt ¢ - uy? + vp? - g
(T=4tF " W= —ngt) " 1= nqt)2>

Figure 2. Unidirectionally-convex polyomino
Toward solvin :
g the equation (1.3) we introduce more notations:

Observe that there are four types of transitions from the ;4 column to the (2 + 1)* column:

Type 1: upper contact ( = in-out passage), Type 1I: lower contact ( = out-in passage), Type A(t) = a(t) bi(t) b
IIT: contraction ( = in-in passage) and Type IV: expansion ( = out-out passage) marked by u,v,c,e a(t) )’ B(t) = (b’:(t) bzgg> , C(t) := ( C((t) 0
' c(t) et)q

respectively. (where ’ deno
tes the derivative 4 ;
{he same label are parallel to erivative 3), the equation (1.3) can be written as the followi
owing matrix equation:

The edges of hexagons are labelled by z,y,7 so that all edges with
G(1) )
A(t) + B(1) (G ) +ew (Gl
G(t) = Gz ¥, T G w0, 6 &) = Y @y maw et (LY If we further denote 4 i G'(fﬂ)) (1.5)

the same direction. Following Temperley we write
G'(t)
r2l
_ [ Gt
oes whose left-most column contains (1) := (G’((t))> <:> G(1) = ( G)>
H

where g, is the generating function for column convex polyomin
s area (i.e. number of then the solution, obtained simply by iteration, can be wri
) e writen as

r hexagons, where z,y,y marks edges contributing to the perimeter, ¢ mark
tractions, e marks expansions.

(1.4)

Il

hexagons), U marks upper contacts, v marks lower contacts, ¢ marks con

By extending an argument used by Temperley for the square case and by generalizing Lin and () = A G

Wu equations (6) in [7] we obtain the following system for g;’s, 7 2 1 ! = A(t) + B(t) (H) (1.6)
where .

) min{r,s} r 0 A = m m
- zg(y_g)zrqr 1+ng Z aﬂn—l + CZ(T —5)g.f e Z (s — r)gsB" (1_2) (1) mZN)A(q t)C[ ](i)y B(t) = Z B(qmt)cv[m](t) (1.7)

a'nd Whele C[ ] (I‘ g = p i Wl l ﬁ 1€
s=r+1 ( ) C( )
t dell()' €s ”le ana.l() ()i lhe m 1]1 over ()1 t]le matrix 11Ch 18 de 16 d as:

with a=ugi+vy? B= (y9)~2. -
: ; s 2 rf. T . . cl ](t) = C(t)C( t)C( 2. .. —
The left hand column, by itself, contributes in (1.2) a term z°¢ (yg)", because 1ts perimeter By plugging ¢ — 1 i q gt)---C(g™ ')
contains two horizontal lines, 2r labelled by y and 2r lines labelled by . If however, the next column ging ¢ = 1 into (1.6) we obtain the ”initial” values flac)
to the right contains s hexagons and has contact of Type I, then out of n hexagons, 1 <n < min{r, s} G
having contact with the first column one hexagon has partial contact along 7 line (thus contributing ( ) =¢(1) = [I - B(1)]™ 1
w it have full contact and contribute (yy)'z("‘l)- The i [ (D7 AQ), I= (0 ?) (1.9)

uy~?) and the remaining n — 1 hexagons belo .
situation with Type IT contact is symmetrical with contribution vy'z(yi])'u"'l). The type I11 conta(ft o My he general solution of the system (1.2) (
is possible in 7 — s ways if r > s, and all s hexagons contribute ¢ - (¥¥) > The type IV contact 18 - MAIN THEOREM (area-peri .2) (or (1.3)) reads as follows:
perimeters-contacts-sources) With the notatio b h
ns above the gen-

possible in s —r ways if r < s and only r out of s hexagons contribute by the factor e(yy)—”- In S8 tmg f"nction G(t)y=3 ( -
this way the system (1.2) is explained. L Mallattice ;s given by the f:ﬁllﬁ;i;g’ 1};?:.;:,1’ u’,v, ¢,e)l” for column conver polyominoes on the h

By letting 1 := y)*(= A7) and writing the first sum %, in (1.2) as L it + Yl by e s o
using that Yo B = (1 - BY/1 = By Lo 9s = G (o + T o), T (s — T

G(t)
<GI(¢)> (=6(@1) = At) + B(t)[I - B(1)] " A(1) (1.10)
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re explicit formulas are available.

Now we shall consider some special cases in which mo
(1.3) we see that G(t) is rational with

Case 1. ¢ = 1 (i.e. by neglecting area parameter). From

respect to t, say
G(t) = %E% (1.11)
where
N(t) = (1 = nt)a*t{n(1 — )" +[(1 - £)(uy? + v7?) — e(1 = )]G + e(1 = t)(1 = nt)H}  (1.12)
and
(1.13)

D(t) =1 —art +ast’ — ast® + aqt?

has coefficients given by
=2+ +2(et+en— uy? — v7°)
ay = 1+ dn + 17 + 5*(2en + 2en — (1 + 1wy’ + 7)) (1.14)
as = (2 + 20 + 22(c + en — uy’ = V7)) '
a=n"  (with n=y7)

Thus one obtains the following difference equation

gr — @1Gr-1 + Q2gr—2 — G3gr-3 T Qagr-4 = 0 (1.15)
g the explicit formulas for the solution of the quartic D(t) = 0 by
initial values go, 91,92, g3 (rather then g1, --,94)
we will not write these formulas.

for g,’s, which can be solved by usin
radicals (c.f. [5], p.258 Ex.2) and by considering as
where go is also given by (1.2). To save the space,

Note that, from (1.3) with
s=mnt

(s—1)(s—m)s—a*(1~n)([e(1 =) +e(s—m)}s’ =0

D(t)=0 & (s—1)2(8-n)z—w2(8+cn—uy2—v§2)
(1.16)

Case 2. Extension of results of Lin and Wu.

g=1l,c=e=1d Then the equation (1.16) tourns to a quadratic one with

Now we specialize

respect to ( 0 )
S — —_

I il | Gl 14

S

with the roots:
wij2 = (ﬁ(d(l +1) —uy® —vF’) £z /41 —n)?d + z2(d(1 +n) —wy® — v§2)2> /2 (

quations

1.17)

Then, by choosing appropriate solution of each of the e

52‘(1+Tl)5+77=w18 and 82—(1+7])3+n=w23
51:(1+77-‘w1"\/(T+7]—w1)2—4n)/2, 33:(1+77"w2—’/(1+W—w2)2—47])/2 (1.18)

or the corresponding t’s:

ty=(1+n—w — /(1 +n—w)
1.3), with ¢ =1, we obtain two equations for G, H

and substituting into (

p1-t)+[(1 - £)(uy® + v7%) — d(1 — )]G + d(1 —t)(1 —nti)H =0, = Lz

- j

210

“an)/2m, te=(1+n—wr— V(1 +n—w)? - Im)/2n (118)°

- n(n =11 = 4)(1 —t5)
(1 —271t1)(_12— nts) — n(uy? + vg?)(1 — t;)(1 — ta)
= B 07) 0= )L~ t5) + dlr = 11— )
g [d(1 = nt1)(1 — nts) — n(uy? + v7?)(1 = 61)(1 — t3)]
y substituti is 1 i
e 1gg this in (1.11), (1.12) with ¢ = 1 one obtains th i i
TS ot e o e e generating function G(¢) =
fweputu=v=d=1,w btai
. =d=1, we obtain a result equivalent to th i
Lin and Wu. Our result is seems to be more appropriate forocoefﬁi?etrf: r::i{u:(t)irgrlx) feated formula of

Finally we note that Case i
] z = 1in (1.10) gives the i
on the square lattice, what will be treated in a futu:eeS:alx;iorr riagonally conves polyominsss

whose solutions are: G =

2. Solution of the Temperley’s Model () and extension

In this section we i 1
ke isd[i;pl‘]t th; techmquf: developed in the previous section to solve the Temperley’
o e unio;l)l. ,f concerning v?rtlcally convex polyominoes. By a polyoming ;ey .
S of unit squares in the plane such that the vertices of the squares h e
equivalent if there ,is a translca(zlil;lne C’ctlf:tatrijnhs?(s)r?zsﬁnite N bk iy b:Consisde:g
: L one 1 i
:(()ngleex 1_f ez%ch .col}lmn” of Pis an upbroken line of squat?(:so, :EZtoitsh?l?LA POlyofn‘no albabiics
y-axis with its two endpoints in P then L C P 7 ey fne segment prellel

w 1 1
.- I 9
U,’ I|||
Nl CoL o]
J T
:::|1: [
U :
[ R S| v |
| N e !
o v i VA
| T e
I c
y il e
. 1l
1
T
e
u S s
T v o L
-U--—C> IUC
m Il T 10

Figure 3. Vertically convex polyomino

Observe that th
the (i 4 1)t ere are four types of transitions from the :*-column t ;
: tl th_
)*® column has a cell higher and no cells lower than the 7t Lolzmrie(’(;y-;el)l) <1:olumn olf
, has a ce

- ower and no igher w y as a ce
cells higher (Type II) has no cells higher and no cells lower (Type 1), | 11
, has

ghel and ha.s a (iell owe y V a event l)y leile S u llpl)el exte]lsl("l v
l T (T peI ). Le us m. I’k SuCh nis T ( ),

R er ext 1
v ens1on), c (contract' i e ense), e w
lonmwaksns) ( i we mar z
5 expansmn) As well we
. mark by z and

i‘hol‘izont 1 1 eter o

al 1 i

‘ ( nlt) Contl‘lbutlons to the perimeter, a.nd by q para.m ter fa,
rea.

- Remark. N

" - Note that the meani

. ning of the symbols u, v, ¢, e here is sli i i
k. w(; f)utt tcllle method would work in the case COI‘;‘C;pOHdi?:ge tlcs) iillilttlgodlﬁerent than in Part
g n e ’
5 roduce the (perlmeters-area-extensions-sources)-generating function

G(t) = i i . 2 :
( ) G(%y,q,uavaﬁ €; t) = gr(:z,y;q;u,v,c, e)t' (2 1)

r>1 .
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se first column contains exactly r squares (i.e. T
column by column from left to right and taking
adjacent columns classified into four types defined

where g, counts column convex polyominoes who
sources). By imagining the polyomino built up,
into account of various possible positions between
above, we find the following set of equations for g,’s.

min{s—1,7} r )
aﬂ’l+02gsﬁ’(r—s+l)+ezgsﬂ’(s-—r—l) , w2l
=1

oo
s=1 n=1 8= s=r+1
(2.2)
-2_ Here n corresponds to the number of pairs of edges being glued between
hat the last sum actually starts with s =7 +2, corresponding to the
) requires at last two more €
and r < s over n we obtain

where a =u+v, B=1Y
two adjacent columns. Note t
fact the type IV transition (expansion

By summing in both casses 1 < s <,

gf=$2y2’q’{1+2[aﬂ_ﬂs +(r—s+1)cﬁ’} P [aﬂl‘_ﬂ: +<s_7-_1)eﬁ’] gs}
@

1ls in the next column.

1= ﬁ s=r+1

s=1

3)

Then letting 7 := ¥*(= B~1), and using TR o9 =G— (G +---+9)
Yerepls =T+ 1)g, =H—(r+ 1)G + Ym(r—s+ 1)gs, we obtain

r I r—s+1
g =2°q {17’ + (E("’—_ll —(r+ 1)8) G+ 2 {M_l +(r=s+ (e + e)] gs +eH
n—1 n—1
(2.4
ming over r > 1, and using 3 p>1 (K + 1)z*
yom'moés on square

s=1

N e

By multiplying both sides of (2.4) by t7 and sum

(1—11‘)2 — 1, we get the the functional equation for vertically convex pol
lattice:
c u+v e
G(t) — 2* [——-——’ -_—— ——/——} G(qt) =
A—ng? (1—gt)1—mat) (1= qt)’ (25)
1 2—qt ]
gl ——H+ 1 Ll AR ok LY
1—nqt 1—gqt 1—gqt [1—nqt 1—qt

In a similar vein as in the previous section we obtain the following

MAIN THEOREM (area-perimeters—extensions—sources)
The generating function G(t), defined in (2.1), for column convex polyomino

lattice is given by
G(1) '\ = A(t) + B - BT AD) (26)
G'(1)
e way as in the previous section starting with
2 _ 2¢0at
i [ utv 2-dt e] Cob(t) = ___;”_e‘; t 1)

znqt
t)= bi(t) = —
alt) 1 —nqt’ (1) 1—gqt {1—mngt 1—qt

es on the square

where A, B are defined in the sam

2l ¢ I ol B . S
o) =2 {(1 i P TR *"‘IW}

r and area generating function another formulas are given in B (13]:

Remark 1. For perimete
are forbidden (e = 0), then (2.5) re

Remark 2. Note that if, in a polyomino, expansions

to the functional equation

z? c u+tv z2nqt
o) - —— | —= - Clat) = =1L 4 —— =y
®) l—nqt<l—nqi 1—qt> (at) 1 —nqt (1 — qt)(1 —nat)
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duces

squt )t q (25) i

llaV]Ilg only on n Y
1 l 11 1 I
I 1 ne 1nitial co (ht on. S SOlu on Obt
( ) ( t y t 5 )a.]ned b lteratlon, we can VlSuallZe bettel, then
u Sp ‘1all a,t:lon (U = 0 &= bl
| ( 0 € 0) COrr Sp nd t 1 ly
] lille € Z cCorrespo o Velt Cal convex dllected allllllals alld
le case CO— O = 0, € = 0) COrreSpond to a Subc]ass Of parallelogl am pOlyOIIlllloeS Wlth no
I(epea‘ted h Cllzolltal Steps m the upp(ar"_pdrt Of the boundary. In the for[[le! ase u ha.S no Slgﬂlﬁ( ance
1} g]VeS # Olu“llls - 1 and A ﬂ]a.rks COluIllIlS) SO we lnd,y I)ut u = l al]d CObtra.ln the fOI‘lOWIHg/

COROLLARY 2.1 T}

. e generati i

e oty o e By ing function for parallelogram polyominoes with sstrictly climbing”
ing

G(“”v?/,q,t):at _a(__l)__
O+ 0T 50 (2.8)

a(t) = (—l)m($2q)m+ly2t _1\ym-1 .’112 i
7%;) (a)m(y?qt)mer Alr)= Z %_(ll(qu))i
aud (a)n — (1 o (l)(l _ a(]) o (1 . aqn—l). m>0 m ql)m

In particular G = G(z,y,q,1) = 2U
, 5

where

Remalk 3. If we let — 1.€ (l sregar area le (0] ..}.c we obtain
q 1 ( . 1ST g dll]g T ) T] n fI m ( )) b

where N(t) = (1 — nt)z? ’
1)zt {n(1 —)* + ¢(1 -
D(t) = (1 = )2(1 = gt)? — ¢ e(1—1)(1—nt)H +(x ) — e
( Let (us no)w(1 772 =21 = 1)? = (u+ v)(1 = )(1 —[(77;;_—:2}(11 tﬂ)t)?]e(z — (1= nt)G}
C . - :

b sidered by Lino;lnm[ﬁﬁrcgnly tl}e special case u = v = ¢ = e = 1 correspondi

ncerning peri B : o >sponding t

B - ool Detine Tn b E,a];:nmeters generating function for column convix (}))oillyglr;l)ibnls]en
2 s

D(t)=(1- t)‘l(] _ 7]")2 —( —77)2.12[2
N(t) = (] —nt zt a2
By using the fact t} e ol — ) {1~ g iy =1 nt]G'} (2.10)
he fact that ¢ = 229 + 2
N(t)=(1 t)t]a 2g1 Eetet for N(t) we can write somewhat nicer expressio
o / - ! sion
nt)t{e n(n = 1)1 =) + (1 = )(1 = pt)gr + 2°t[n(1 — ) + n — 1]G} L)

which we will exploit in computations.

By S])llttnl D t mto q y I
tW() ua,dl atic iaCtO] S an l) C ll()OSlll one root ‘IOII[ ea.ch iactor Say tl

and t3 respectivel i
ctively, for which G(¢;) and G(¢
.« . f . :
B e i g(l r;)ndorg;ally exist, then we will obtain two equations for

The choice is the following

= [ay — (a® — 49)'/?
L=m)"/2, t3=[a_ —(a® 1/2
We found si ; ! - = (a2 —49)" /2 withax =1+ +2(1 -
simpler working with g; and G. So our equations read as foll e
' ows:

N(t;) =0 (1—t 1
N(t2)=O B 1)(1—7711)91+£2t1[77(1—t1)+, | G:1L'27 _
} (1= t3)(1 = nta)gs + z*ta[n (1 —t3)+r;— 1}0: 27;8 —Z%E} iﬁ‘;ﬁ‘ (2.13)

(2.12)

By usin - -
g that (1 —1;)(1 — pty) = - = =—z(l -
1t1) = z(1 — n)t, and (1—t
. 3)(1 —nta) z(1
n)ts, we get

(I=ma + 2zl —t;)+n-1]G =
o 1 7 —1'77(1—77)(1—1'1)
(L= n)gs +aln(1 = ts) + 7 — 1]G = en(1 = n)(1 — ts) i

G=(1—n)[1—___1_
1 4 Mltitts=2)

} y = (1= n)zn(ts — 1)
2(1-9)

= =2
1+ 71!;1(‘:_‘_37521 y H=z7g - (2.14)



THEOREM 2.1 The (perimeters, sources)-generating function for column convez polyominoes on

the square lattice is given explicitly by

G(t) = T oele,)t” = (1= nt)IAW) + B(Oar + COGI/PE)

20

where A(t) = a*n(n —1)(1 - ), B(t)=(1-t)(1 - nt), C(t) = z*t[n(1 - t) +n — 1] and D(t) given
by (2.10), g1 and G by (2.14), t1,t3 by (2.12) and n = y?.
Remark 1. Note that, by "squaring” aplied to the relations (2.14) one obtains algebraic equa-
tions satisfied by G and ¢1. Simpler equations are obtained if we consider the quantities F' := —f—n,
1-3F Department of Mathematics,

f =7 Itis interesting to note that in this process our "magic” substitution L:=""F mentioned M
assachusetts Institute of Technology

-1 =
in the Introduction, Part I, appear naturally and the computations agree with those obtained by the

Janguage method. Let us only mention the equation satisfied by fi:

The Yang-Baxter equation, symmetric functions
s and Schubert polynomials ,

SERGEY FOMIN

Theory of Algorithms Laboratory
SPIIRAN, Russia

PROPOSITION 2.1 The algebraic equation satisfied by the generating function f; = - reads as

follows:
1 2 1
[(3f1 + 22 —z(1 + )fy + T ig(zz + ﬁ)] = (3f, + o)’ (z + ht <1 + 2+ 211 t:;) :
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1. Introduction

T ] .
he Yang-Baxter operators h;(z) satisfy the following relations (cf. [B, DWA]):
hi(2)hi(y) = hj(Whi(z) if Ji—jl22;

hi(z)hiv1(z + 9)hi(y) = hiv1(¥)hi(z + y)higa(z) .

The 1;ole the representatio
ns of the Yang-Baxt lgeb i
ek = axter algebra play in the theo
{D\}w\ ;T eJo]ryt}?Z c:iactly stf)lvabltz:ﬂmodels in statistical mechanics [B] lowr}éi?xfeg:?:tair? grcl)ups
: , J], eory of special functi : : . o the
e nctions, and other branches of mathematics (see., e.g., the
We study the connections b
: etween the Yang-Baxter algebra and i
tions and Schubert polynomials. Let us add to the abovegconditionstlzxi telzlet?art};of ymmetric fune

hi(z)hi(y) = hi(z +y)

thus getti - i
tionsf_ Itxrtllgmtf;e sc: iilled colored braid relations (see [KB, FS] for examples of their re
R ctions (ond e‘i‘; uéity l(:nc”e theie relations hold, one can introduce a whole class of spr;eselit?-
Bt Scabens nOI ou ¥e , or “super-” symmetric functions) and respective analo \i{es mfet;]c
o theirppr g'tr:;mxals (L2, M2] as well. These analogues are proved to have rr%any zf th:
R or es; e.g., 1 i iti
o ypes; e.g., we generalize the Cauchy identities and the principal special-
The simplest soluti
ion of the above equati i i

W L . ! quations involves the nilCoxeter algeb i
. G[ gseex[gl]ormg t}.ns special case, we construct super-analogues of Stf.nlerya’sosf tr}rie S};H'm}etrlc
iy baSic),&p:r:wde anot‘her combinatorial interpretation of Schubert polyngmir:lz gc Unc(;
B e (55 5 (;sdconcern.mg. Gy's and G,,’s. Recently, the construction of this pa 2 EL“ ‘

produce a Pieri rule for Schubert polynomials and yet another algorl')thp thai

ithm tha

generates the monomials of &,,.
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