From the Fibonacci numeration system
to the golden mean base
and some generalizations

Christiane Frougny* and Jacques Sakarovitch!

Abstract

Every positive integer can be written as a sum of Fibonacci numbers; it can also be written as
a sum of powers of the golden mean ¢, with a decimal point in the middle. We show that there
exists a letter-to-letter finite 2-automaton that maps the Fibonacci representation of any integer
onto its op-expansion, provided the latter is folded around the decimal point. As a corollary,
one gets that the set of p-expansions of all the integers is a context-free linear language. These
results are actually proved in the more general case of quadratic Pisot units.

The aim of this paper! is to describe some relationships between different ways of writing
numbers, with the study of a case where this relationship is achieved by means of a finite automaton.

1 Where the problem and its solution are presented on an example: the celebrated
case of Fibonacci numeration system and golden mean base.

Let F' = {f, | n € N} be the sequence of Fibonacci numbers (with fo = 1 and f; = 2) and
let A = {0,1} be the two digit alphabet. This defines the Fibonacci numeration system : every
integer can be written as a sum of Fibonacci numbers and thus can be represented as a sequence of
Usand 1’s, e.g. 24 = fs + f2 and 24 is represented by 1000100. This representation is not unique;
for instance 24 = fs + fa + f2 and is thus also represented by the word 110100. For every integer
however there exists a unique normal representation : the one that does not contains two adjacent
Us, which is also the largest in the lexicographical ordering. The set of all normal representations of
the natural integers is thus

Rp =1A"\ A*114" ,
drational set of words of A*.
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The Fibonacci sequence is defined by the recurrence relation fas2 = far1+ fa to which is naturally
t root of which will be

associated the characteristic polynomial P(X y=X?-X-1 the dominan
denoted by ¢ and is currently called golden mean or golden number. This number ¢ taken as a base

also defines a numeration system : every real number £ — and not only integer — may be developed
ibly infinite — of 0’s and

as a sum of powers of ¢ and thus be represented as a sequence — possi
1’s together with a “decimal” point. Such a sequence is then called a :p-representation of z; e.g.
5=¢>+e '+ ¢~* and thus 5 can be represented by 1000.1001. Again such a representation is
not unique, since for all z in Z it holds P+ = @*t + ¢*, but for every real number there exists a
resentation, called its (p-eTpansion : the one that does not contain two adjacent
nate by the factor 10 repeated indefinitely (which is also the largest in the
). It turns out that in this base ¢ numeration system, every integer has
Proposition 1 below). Table 1 below gives the (p-expansion of the first 15

unique normal @-rep
1’s and does not termi
lexicographical ordering
a finite p-expansion (cf
integers.

‘—IZI— Fibonacci representations cp-exm
1 1 1. 0
2 10 10.01 10
3 100 100.01 %0
4 101 101.01 570
5 1000 1000.1001 1908
6 1001 1010.0001 1000
7 1010 10000.0001 53600
8 10000 10001.0001 19000
9 10001 10010.0101 39319
10 10010 10100.0101 1o
11 10100 10101.0101 Leals
12 10101 100000.101001 1ouint
13 100000 100010.001001 Lo0ohe
14 100001 100100.001001 10000
15 100010 100101.001001 100100 ‘J

Table 1: Fibonacci representations and (-expansions
characterization of the set Ry of the (-expansions of all

t roughly situated, as Table 1 let guess, in the mi
tually shown that R,

The first question to be answered is the

integers. The existence of the decimal poin
ible for R, to be rational. It will be even

Corollary 2 below). This is indeed the consequen

every expansion makes it imposs
linear context-free language (see
precise result that will require some trans
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0000 0001 0010 0100 1000

end

origin | label

0000 0000 / 39 | 0001 / 8883 | 0010 / 8816 0100 / 3399 | 1000 / 1353
0001 0100 / 1285 | 0000 / 288} | 1000 /3308 0010 / 9498 | 0001 / 9313
0010 1000 / 3338 | 0010 / 8183 | 0000 /3308 0001 / 3499 | 0100 / 1333
0100 0001/ 3988 | 1000/ 1536 0100 / 1338 | 0000 / 5233 0010 / 1304
1000 0010 / 332 | 0100 / 3333 | 0001 / 3338 | 1000 /5635 0000 / 5301

Table 2: The labelled edges of the 2-automaton 7'

The aim of the paper is to establish Theorem B — and thus Proposition A — in the more general
nits. The precise statement requires some more definitions and notations
he proof will be the complete description of
description is made possible by
symbolic dynamical system the

case of quadratic Pisot u
that will be given in the next section. The core of t
the 2-automaton 7 in the general case (Sections 4 and 5). This
the identification of the underlying input automaton with a (finite)
existence of which is «discovered” in Section 3.

92 Where some definitions are made precise, Some notations given, and some

previous results recalled so as to state at last the main theorem.

2.1 Representation of numbers
2.1.1 Representation of integers in a numeration system U

Let U = (un)n>0 be a strictly increasing sequence of integers with uo = 1. A representation in

the system U — or a U -representation — of a (positive) integer N is a finite sequence of integers

(dn)o<ngk(n) such that
k(N)

N = Z datty,
n=0
for a convenient index k(N) 2 0.
Among all possible U _representations of a given integer N one is distinguished and called the nor-
mal U-representation of N: the greatest for the lexicographical ordering. The normal U-representation

of N is denoted by (N)u. By convention the normal representation of 0 is the empty word.

Conversely let D be a set of digits; any sequence of digits, or word in D~ is given a numerical

value by the function 7y : D* — N which is defined by

k
mu(w) = Z dau, where

n=0

w:dk...do
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2.1.2 Representation of real numbers in base ¢

Let now 0 be a
B ﬁre‘:al number > 1. A representation in base § — or a 0-representation — of
nfinite sequence (zn)—oosnsk(z) of integers such that of a real
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T = E 0"

n=-o0

for a convenient index k(z) in Z.
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that maps any sequence $ of DZw onto the §-expansion of the real mp(s).

2.2 Finite automata and 2-automata

2.2.1 Finite words

and of [4] for the definition of finite automata over an
alphabet. An automaton over a finite alphabet A, A=(Q,AELT)isa directed graph labelled by
elements of A; @ is the set of states, I C @ is the set of initial states, T C @ is the set of terminal
statesand E C Q@ x A X Q is the set of labelled edges. The automaton is finite if Q is finite and this
will always be the case in this paper. A computation in A is a finite path. It is said to be successful
:f 1t starts on an initial state and ends in a terminal state. The behavior of A is the subset |A| of A*
s of successful computations of A. A subset of A* is said to be rational if it is the

We basically follow the exposition of [5]

consisting of label
behavior of a finite automaton over A.
extends readily to automata over A*x B* in which

case it is called 2-automaton : A = (Q,A*xB*, E, I,T) is a directed graph the edges of which are
labelled by elements of A*x B”. The automaton is finite if the set of edges E is finite (and thus @
is finite). A relation is said to be computable by a finite 9-automaton if it is the behavior of such an

n. In the literature 2-automata are also often called non deterministic generalized sequential

|A| of a 2-automaton A is a functional relation, we say

This definition of automata as labelled graphs

automato
machines or transducers. When the behavior
that A realizes this function, also denoted by A.

The (1-)automaton over A obtained by taking the pro-

Let A be a 2-automaton over A% B™.
e underlying input automaton of A. A

jection over A* of the label of every edge of A is called th
2-automaton is said to be sequential if its underlying input automaton is deterministic. A letter-to-
letter 2-automaton is a 2-automaton with edges labelled in A x B. A letter-to-letter 2-automaton can
thus be viewed as a I-automaton with input alphabet A x B and in particular can be determinized

(see [8] for more details).

2.2.2 Infinite words

in the literature — on an alphabet A is denoted

=(Q,A,E,1,T),is an infinite labelled

The set of infinite words — often called w-words
by AN. An infinite computation of an automaton Aon A A
path in the labelled graph A. The computation is successful if it starts in an initial state and goes
infinitely often through T. This definition of successfulness is usually known as the “Biichi condition
of acceptance”. The infinite behavior of A, denoted by ||Al|, is the set of labels of successful compu-
tations of A. These definitions extend to relations on infinite words. Let A = (Q, A" x B*, E, I, T)
be a 2-automaton with edges labelled by elements of A*x B".

2.3 Pisot numbers

A polynomial P(X) = an X"+ +do of Z[X] is said to be monic if an
is a oot of a monic polynomial of Z[X]. A Pisot number is an algebraic integer > 18

algebraic conjugates have modulus smaller than 1.
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2.3.1 Representation of integers in base 0
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PROPOSITI —
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i) d(1 =1y - +
11) ( ,9) tl tm(tm+l) with t1 22t > 21
= Z'm m+1 = 1.

Then 0 ¢ ]
is a Pisot number, and every integer has a finite O-ezpansion
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* f J € Y g
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2-3-2 leleal Ilulllelatloll systellls aSSOClated tO I lSOt Ilulllbels

A very basic property of Pisot numbers

following. (as far as f-expansions are concerned) is given by the

IHEOREM == - p ’ »
1 . 2 1 ‘9 s a I ZSOt n 7nb T then d ‘9 t € l9 € nsion o 1S ev TLt (l“ [ f l()dllf
f u € (1, ), h Tpans fl S entu y p
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y makes it possible to canoni
nonically associate a lin
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We glVe hele the COIlStI uCthn Of the Sequellce ()9 ( )

studyi
udying. The general case is analogous; the formu
Case 1. ¢ =

to every
is finite or infinite.
for the case of quadratic Pisot units we shall be

e e ' lae are just a bit more difficult to read.
» 7 21, i.e. 0 is the dominant root of PX)=X%2-rX -1
Ag={0,---,r})
The linea - R
T recurrent sequence Uy = (uk)k>0 associated to 6 is defined by:

Ukt = TUgyy + uy, k>0 up =1 i 41
= =y 1=7T

Case 2. £ = — .
’ =—1,7 >3, i.e. 0 is the dominant root of P(X)=X?—rX +1

Ag={0,---,r -1} d(1,6) = (r—1)(r —2)

ed to 0 is defined by:
Ukt = TUky1 — U, k>0

up =1, Uy =r.

. qllence U t()get]le] wit II i]le a ])]lal)e‘ A (16‘ i]leS 1Ile near numeration SyStC?n ass th
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Theorem 2 i
is related to the problem of normalization in the system U,
9.

generality if normalization i
ntation in a Pisot base and automata theory is a letter-to-letter ﬁnit: éon ot A soe e i

2.3.3 Normalization in base 0
It is not known in full

er is a function computable by

alltOIIla.ton. A posltlve answer is g] vVen in Celta.ln cases Ii aﬂlong Whlch

The fundamental property that relates represe
fall Cas .
e 1 above of quadratic Pisot units, We have the followi
wing.

given by the following.
PROPOSITION 2 . — [6 t D, normalization on pZw COROLLARY 3 . —

] If 0 is a Pisot number, then for every alphabe 0 J
; ; . 18 a quadratic Pisot uni )
in base 0 is a function computab isot unit, then normalization i
in the system U, i ;
0 s a function

le by a letter-to-letter finite 2-automaton. computable by a letter-to-letter finite 9-aut
-automaton on any alph
phabet D.

In [6] this statement is proved in the case where every element of D is non-negative. The proof Proof. Let A be the letter-to-letter finj
extends readily to alphabets containing both positive and negative digits. As a matter of fact, the normal Us-representations of the in:r nite 2-automaton of Theorem 2, and let L(Us) be th
. egers. : . [)
w, on D is obtained by gers. L(Up) is a rational subset of A3 (3]). The norma;:ett' of
: ation

converse of this result holds as well ([1]) but this will not be used here.

Yw € D*, vy s -1
and the result follows. vp(w) = (A" o A(w)) N L(Uy)

2.4 Main result
n

. Subsequent

2.4.1 Folded g-representation q work [10] proves Coroll i

| -y ary 3 in the mor .

polynomial is equal to the characteristic polynomial ofe geﬂeral case where 8 is such that its minimal
9.

point of a f-representation.

Let D be an arbitrary alphabet of integers containing 0, and let D, = {¢ |abe D} be the 3 Where the B-expansion
tly written one above the other. The mirror image of of the elements of the linear recurrent s -
equence Uy is

D ] o VVI’]tten as b o] a nzte 2 aut maton

f and g with enough 0’s (at the left

We now introduce the folding operation around the “decimal”

alphabet of pairs of elements of D, convenien
a word v is denoted by 0. Any element w of
|u| = |v|. The upper part of w will be denoted by w=

Let s = f.g, with f,g € D*: by completing the shorter of vrom now on s a quadratic Pisot unit, the domi
» the dominant root of P(X) = X?
= —rX

for f, or at the right for g), one can assume that |f] = lgl- Such an s will be called a balanced the linear recurrent sequence i
' ass e .
(6-)representation. B> 1; Case 2 to the conditions ‘E)Cl—ated to 8 as above. Case 1 will refer to the cond't.e, and U is
The folding operation p maps any balanced representation s = f.g onto the element p(s) = é of The result relies ind =-Lr23 1tions € = +1,
Ds. Conversely the inverse of p, p~t, called the unfolding operation, maps every element w = ¢, of of § as stated in th lrf1 lTed on the very regular expression of the elements of U,
] — — - e following, th N . sof Up in ter
D7, onto the balanced representation p~'(w) = w.i. Thus p(f-9)= [, p(f-9)= 9> and p~(w) =w . W 3 8, the proof of which is straightforward. sl Gt powers
RO

The numerical value function mg extends to folded representations : if wis a word on Dj, then, POSITION 3 . — Case 1. For every k € N

by definition mg(w) = 7 w . W). '
y 1 o(w) o ) uge = 0% 4 (r - 1)§2+~2 4 g2k—4 4

Two representations (on X* or on D* or on Dj) will be called equivalent if they define the samé Ugker = G 4 G P g oo (r—1)072H2 4 g2
integer, i.e. if the have the same numerical value. - + 6% 4o (r—1)97 %1 2k

g Yy Case 2. For every k ¢ N, ( )0 + §-2k-2

|
=05 4052 ... Lg*

2.4-2 I ll =
pOSIt
n 3 can be re rltt 31 uSlIlg expa.nsl ns f l T

We are now in a position to state:
: PROPOSITION 4 . — Case 1 F

THEOREM 2 .— Let 0 be a quadratic Pisot unit and let D be an arbitrary alphabet of non-negative . Fork e N,

integers. There exists @ letter-to-letter 2-automaton that maps any word w 0N D* onto the folded (uar)e = v

0-expansion of the integer represented by w in the linear numeration system (Us, As)- ': (Uaks1)e = léf?f‘r 1)%?8:3(’ - )1)01):

u _ B ((r = 1)010)*(r —
As a corollary of Theorem 2 and of classical results in formal language theory (see [13]), we gev ' E“::I:i: ; (1010(1‘ = 1)(010(r — 1))*.(010(r — 1);’%()1 -
| e 2 Forfc N (r = DO)(10(r ~ 1)0)%.(10(r — 1)0)*10(r ~ 1)1
‘_ COROLLARY 2 .— Let 0 be a quadratic Pisol unit. The set of folded 6-expansions of all l"t"'gm;. ’
| is a rational language. The set of 0-expansions of all integers is a linear context-free language: s (u2k)e - 1(01)k_(01)k ( ) \
P Ugk41)s = (10)*+1.(10)%+1
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I()I)()Sl O! be €eWT tte once more usi O ded e-expanSl .
P tion 3 can T 1 n ng f 1 ons

PROPOSITION 5 . — Case 1. For every k € N,

k
- G20
- 855¢ 0"1,2“‘))" p((U4k+1)9) ~a %0::1_3 1 0 r=10\k
i) gt el = 427G
p((uak+2/6) = \oo01 0 Jir—
Case 2. For every k € N, i (0010)(1%2)"
= (0001 ((1)})% b P((“4k+1>8) = (1)3(1)(1) ((1]010)1;
p(<u4k>8) - gggg 0101)k P((“4k+3>0) = (0101) 0101
P(<u4k+2)0) = (0010)(1010

Ihls last series Of equa:tlons su, eShS hhe rollpln (¢} dl ltS by blOCkS 0{ len th 4 and the fOllOWlng

= d} with
notation : for the sequel of the paper, let X = {z,a,b,¢c, 3

b = 0010, ¢ = 0100, d = 1000.

z=0000,  a=0001,

I he nol‘mal 1} -re ]‘esentaf]()][ ()i a]]y 1 ]]llll)e] Uy 1S 'he W()](l “ Wlll( Il can be W]lbtell USlIlg the new
] p n >

alphabet X:
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f f * 2
THE()REM 3 . Let be a wo’d 0, /‘( 711616 er sts a lette" 'tO'IettC'l 2‘aut07naton wnlCh aSSOClatCS

to f its folded equivalent 0-expansion.

Theorem 3 implies Theorem 2. Let us introd.u?te
be two words of D* of equal length. The digit-
). Let m be the greatest element of D

Before coming to this point we have to show that
another notation. Let f = fn - fo and g = gn )go i
addition of f and g is the word f @ g = (fa+9n
The following clearly holds.
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on on D a folded equwalent 0 rep fr ; f 11 v

every Us-representati e D
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Let pLw — DZw be a relation realized by a letter-to-
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automaton. Then the relation p* : By — B defined by p
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habet of

" The following two propositions describe th

tter finite & "
letter f ; the exact counterpart of the result of [11]

= popopt is also realized by @

tter-
hat the

4 Where a (finite) dynamical system is computed to serve as underlying input
automaton of the searched 2-automaton. It is a one- or two-generator finite
Abelian group, whose order i equal to the discriminant of 0 or to its half.

Let us come back to Proposition 5 and to the “obvious” 2-automaton it suggests for the compu-
tation of a folded equivalent #-expansion of words of the form az*. The letter a induces in such an
automaton a transition from the initial state to a certain state, call it &. The reading of a letter z

(= 0000) when in state & causes the 2-automaton to stay in the same state @ and to output the “let-
ter” (0 r—-1 0 1

170 r-10)- If we thus keep reading letter 2, the automaton keeps outputing letter ($751,%,1);
in such a way that one can say that this state & potentially contains the left infinite word

wOr—-1 0 1
1 0 r-10

the unfold form of which is the bi-infinite word

“(0(r — 1)01).(0(r — 1)01)~.
The same is true, up to a “shift”

» if any other letter b, c, or d of X is read from the initial state.
Consider now a word of the form

w = abz* = azFt! @ b2k,

If az* and bz* are associated to two bi-infinite words then abz* should be as

sociated to the digit-sum
of these bi-infinite words.

The idea behind the building of the 2-automaton announced in Theorem 3
is to maintain the identification between the states of the 2-automaton and some bi-infinite words,
the reading of a letter being equivalent to an addition.

Let Y be the set of periodic bi-infinite words on Z of period 4.

It is a commutative group
isomorphic to Z4.

The shift o acting on the elements of Y corresponds in this isomorphism to a
drcular permutation on the four coordinates. If w is a 4-lett

er word, the corresponding element of
Yis denoted by W = “w.w”. Then w is said to represent w.

41 Congruence v and set of representatives

The numerical equivalence for §-re

Y.ltis a congruence, denoted by ~,,
obtained by shifting, that is :

presentations has a natural correspondence on the elements of
and generated by the equality 1760 = 0000, and the equalities

17€0 = 0000, 701 = 0000, €017 = 0000, 017¢ = 0000.

.(With the convention that if k is an integer, k denotes —k.)

e representatives of the elements of ¥ modulo vo. They
characterizing the f-expansions of real numbers. Their

.u are a combinatorial play with the defining relations of 49 and are ommited here.

POSITION 7 .— (Case 1) Let § be the root > 1 of PX)=X*—-rX-1,r>1. FEvery class
Uo vy contains a

‘ unique element represented by a word of A} such that all its conjugates are
etly less in, the lezicographical ordering than the word r0r0.
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PROPOSITION 8 . — (Case 2) Let 8 be the moot 1 of FX) = X2 ~rX +1, T2 3. Every class
modulo v contains a unique element represented by a word of Aj which is different from the word
(r=2)(r=2)(r - 2)(r — 2) and such that all its conjugates are strictly less in the lezicographical

ordering than the word (r —1)(r — 2)(r — 2)(r — 2).

4.2 Computation of the dynamical system

Case 1. ¢ = +1.

Let & be the word 0(r —1)01 and @ = “(0(r — 1)01).(0(r — 1)01)“ be the corresponding element
of Y/7. Let Gy be the dynamical system generated by @ (and closed under addition and shift).
PROPOSITION 9 . —  Let 8 be the root > 1 of P(X)=X?—rX-1r121, and A =17 + 4 be the
discrimant of P.

(i) If r is odd, then Gg = Z/AZ
(ii) If r is even, then
a) if r = 4m, then Gy = Z/(A]2)Z b) if r = 4m +2, then Go ~ Z/(A]4)Z x Z2Z.

Case 2. ¢ = —1.
Let & = 0101 and & = ©(0101).(0101)*. Let, as in Case 1, Gy be the dynamical system generated

by & (and closed under addition and shift).

PROPOSITION 10 . — Let 0 be the root > 1 of PX)=X*-rX+1,r2 3, and A = r* — 4 be the

discrimant of P.

(i) If r is odd, then Go =~ Z/AZL (ii) If r is even, then Gg = Z/(A[2)Z x L[2Z.

In both cases, the defining relations of 7 yield a finite set of relations between & and the three
words obtained by shift that allows to compute Gy.

5  Where the description of the searched 2-automaton is achieved.

Let G, as above and let § : X* — Gy be the canonical surjective morphism. If f is in X
it is convenient to note 6(f) = f. Then 6(fh) = f+h We shall denote also by & the (right)
representation of X* over Gp: Vg € Ge, Vf € X", 6(g,f) =g+ _ji The underlying (1-)automaton
of the 2-automaton we are building is precisely the right representation of X" over Gy : the set of
the initial state 1g, =0 and the transition function is defined by 6.

The description of the output function requires some notations. We call double-digit the elements
of D, for a digit alphabet D. For z € X, let a(z) be the 4 double-digit prefix and B(z) be the‘4
double-digit periodic factor of the word p((mu,(z25))e) = a(z)B(z)*. Then, it holds B(z) = p(#42)
forz € X.

For instance, let us take z = a and € = +1 (see Proposition 5, Case 1). Then

- = T 0 l
allugs) = QOOR)@ 500 Bla) =170 10"

states is Gg,

ﬂUg(azk) = U4k a(a) = ggg(]j

18

The output function is then given by the following.
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L ferences

LEMMA 1 . —

Fo ;
Toie T every g in Gy and every z in X let h=g+2.

d. . = . .
1git words on a certain digit alphabet and a function \: Gg x X
1 Gy
VgGGa, Vze X, Vke N

There ezists a set B of 4
— B such that

7o(p(9-9)"*!) + mo(a(2)B(2)*) = mo( Mg, x)p(h.h)*+Y).

The essence of that statement is the fact that it is

equality holds for every k. possible to find a word A(g, z) such that the

A -
n explicit statement for Theorem 3 is given by the following

THEOREM 4 . — Let T
° = (Go, X, B, E .
defined by the set of edges E = {g,(z, (g | {Ge)) be the sequential leter-to-letter 2-automaton

The 2-automaton T maps every word of ;2),6(% z)}'ld(“;h"e Ao lhe unctio i Lemme Y
onto a folded equivalent 0-re ] .
presentation , that is

VfeXxs, 7o(T(f)) = 7u(f).

Proof. i i
By induction on |f| we show a more general relation

Vk €N, mo(T(f24)) = mu(f2*). (6)

By construction of T,

Vfe X, VkeN, T(f2*) = T(f)o(f*.1*).

But 7 (z2*) = AE _

Nowzjve) ha‘z(:t)/’(xk.xk), thus equation (6) is satisfied for Ifl=1.

t(fzz*) = ru(f2) 4 my(a2b)

mo(T(Dp(f*1.F4) + mo(a(z)p(3*.3* —
= m(T()0") + m(p(f“*“.f*“)/; ; :o(zj(z)ﬂ(i:",a‘c:));, Rt

= Wg(T(f)0k+l) " WF(A(i,JJ)p(ﬁk.f;:k))
= m(T(f2)T(fz"))
= (T (fzz*)).

by Lemma 1 and by fz = f + ¢

position 2 and Propositi i
X position 6 yield b iti
this concludes the proof. g ¥ epesiion Wi

-al‘iow, T(f) is not normalized but Pro
Uomaton announced in Theorem 3 and
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- Using a discrete analo

Asymptotics of Orthogonal Polynomials
with Applications to q-Analogs of Classical Polynomials
by
J. S. Geronimo
School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332 USA

Consider the difference equation

@n+1Pn+1(Y) + bnpa(y) + anpn-1(y) = ypn(y) (1)

with initial conditions
p-1(z) =0, po(z) = 1. (2)

Here a, > 0 and b, is real. As is well known the family {p,(z)} forms a family of
polynomials orthogonal with respect to some (not necessarily unique) positive measure
supported on the real line. We consider the asymptotics of these polynomials when the
interval of orthogonality is, 1) a bounded interval, or 2) an infinite interval. In the first
case we will assume that lim, o an, = 1/2 and lim,_.oo b, = 0, and that

Sv(n)n{|1 — 2a(n)| + |b(n)|} < oo, (3)

where v(n) satisfies the equations v(0) = 1, v(—n) = v(n), v(n) < v(n+1), v(n +m) <
v(n)v(m), and limsupv(n)!/® = R > 1. The above equations allow us to associate to this
problem a family of Banach algebras A, where f € A, if and only if |||, = > av(n)|enl
with f(z) = 3" cnz", |2| = 1. The variable z is related to « in (1) by z = 3(z+1/z). This
allows a very precise description of the asymptotics of solutions of (1) as well as a precise
description of the spectral measure associated with (1) and will be discussed in section
(IT). In section (III) these results are used to study the Askey-Wilson polynomials. These
polynomials contain the g-analogs of classical polynomials when lgl < 1.

When the interval of orthogonality is infinite we will assume that the sequences {a,}

and {b,} are regularly or slowly varying functions of n. That is we suppose there exists
an increasing positive sequence {)\,},n > 0 such that

> an s by
nlLrlgo/\—n—a>0, nlergoA—n—beR, (4)

with

nlin;on (/\;'Fl - 1) =« 2 0. (5)

g of the Liouville-Green method for differential equations, we obtain

(in section IV) strong asymptotics away from the real line for polynomials whose recurrence
coefficients satisfy (4) and (5).



