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Consider the difference equation

@n+1Pn+1(Y) + bnpa(y) + anpn-1(y) = ypn(y) (1)

with initial conditions
p-1(z) =0, po(z) = 1. (2)

Here a, > 0 and b, is real. As is well known the family {p,(z)} forms a family of
polynomials orthogonal with respect to some (not necessarily unique) positive measure
supported on the real line. We consider the asymptotics of these polynomials when the
interval of orthogonality is, 1) a bounded interval, or 2) an infinite interval. In the first
case we will assume that lim, o an, = 1/2 and lim,_.oo b, = 0, and that

Sv(n)n{|1 — 2a(n)| + |b(n)|} < oo, (3)

where v(n) satisfies the equations v(0) = 1, v(—n) = v(n), v(n) < v(n+1), v(n +m) <
v(n)v(m), and limsupv(n)!/® = R > 1. The above equations allow us to associate to this
problem a family of Banach algebras A, where f € A, if and only if |||, = > av(n)|enl
with f(z) = 3" cnz", |2| = 1. The variable z is related to « in (1) by z = 3(z+1/z). This
allows a very precise description of the asymptotics of solutions of (1) as well as a precise
description of the spectral measure associated with (1) and will be discussed in section
(IT). In section (III) these results are used to study the Askey-Wilson polynomials. These
polynomials contain the g-analogs of classical polynomials when lgl < 1.

When the interval of orthogonality is infinite we will assume that the sequences {a,}

and {b,} are regularly or slowly varying functions of n. That is we suppose there exists
an increasing positive sequence {)\,},n > 0 such that

> an s by
nlLrlgo/\—n—a>0, nlergoA—n—beR, (4)

with

nlin;on (/\;'Fl - 1) =« 2 0. (5)

g of the Liouville-Green method for differential equations, we obtain

(in section IV) strong asymptotics away from the real line for polynomials whose recurrence
coefficients satisfy (4) and (5).



2. Bounded Interval of Orthogonality

We begin by assuming that (3) holds and compare this system with that associated
with the Chebyshev polynomials of the second kind. For the Chebyshev polynomials we
find a(n) = 1/2, b(n) = 0 for all n, and pn(z) = =) [y (7). Here « and z are

G
related as above. After suitable manipulation of (1) (6], [11], (13]) the following formula
can be obtained for pn(z)

ZPal®) _ ny(a) + 'i{(l _ 4a(i + D))" Unmina(2)
a(n) i=0 (6)

e 2b(i)zz"“‘Un_;(:v)}z‘Z£%_7).

Here a(n) = [1i= 571(—;3, a(0) = 1. If we now use the discrete Gronwall inequality ([23))
we obtain the bound

fﬁi%)"_) < 1)(2n + 2) exp }_;1 (@) {11 - 4a(? + 128G - DI} ()
Consider the function
n—1 i 4
¥n2) 14 3 {1 —4ali + 1)2)22 — 2b(3)z} = Z((‘:;”.

a(n) 1=0

From (7) it is easy to see that if (3) holds then the sequence {¥n} is a Cauchy sequence in

A, hence there is a function fo4 such that lima—oo lon — 22f+|lv =0 Since the maximal
ideal space for A, is 1/R < |z| < R, and each ¥n is a polynomial in z, 2 f+ can be extended
f the Jost function ([12]

to be analytic for |z| < R. The function f4 is the discrete analog o
p. 339). We now introduce two other useful solutions of equation (1) . Let pi(z) and

p; (2) be solutions of (1) satisfying the boundary conditions

lim |z "p+(z,m) =1 =0, |z €1,
n—oo
and
lim |z"p-(z,m) — 1| =0, |z| > 1.

n—00

Again comparing p+(z,n) against »™ which is associated with the Chebyshev system We

find the following formula ()

p(Hn) _ oy $° Z{ II (%(j))?}

’y(n + 1) i=n+lm=i ( j=itl

m—2i+n+1 gﬂz,am_)

y(m+1)’

x {(1—4a(m + 1))z — 2b(m)} 2

with y(n) = [[2, =2 Th .
. = 3) e foll
discrete Gronwa,il i';l emat;ahty’ ollowing bound on p4(z,n) can be obtained using the

¥(n+ 1)

Using the above two equations yield

) <exp [C Z my(2m) {|1 — 4a(m + 1)*| + |2b(m)|} | .

m=n+1

Fn+1)

<D Z my(2m) {|1 — 4a(m + 1)*| + |2b(m)| }

L m=n+1

where D is a constant inde
o Pendent of z and s~

b R n. mce p. Z5 .

.1_y<ex|m|n;nlng the boundary conditions they satisfy we se; Ehartl) al(ld p~(zn) satisfy (1)

% < |z| < |R|. The above considerations lead to p—(z,n) = p+(1/z,n) for

Lemmal. [5 . J

is analytic fo[r]lg(j)é’(;fs ﬂien z P+(Z, n) a.nd 2"p_(z,n) are elements of Ay,2 " "p4(z

P (17 ate Baearly | 2"p_(z,n) is analytic for |z| > 1/R. Furtherm ) +(z,n)
) inearly independent solutions of (1) except at z = +1 ore p4(z,n) and

Since i i
p+(z,n) and p_(z,n) are linearly independent it is not difficult to show that

(2 = 1/2)pa(e) = £4(1/2)ps(2,7) = fo(Ip—(2sm), = < |l <R
7 SlE<R
Thus for  C [-1,1],2 = cos @ we find the following asymptotic formula
sin @p,(cos 8) = 2 10 i ' '
cos 6) lft(e )(n + 1){sin((n + 1)8 — arg e’ f1(¢*))
% Zj a(n,)sin((n +1 +1)8 — arge f4(e))}
e (8)
+ 2m — |
m;{;/z]( m — £+ 1){|1 — 4a(m +n + 1)%| + 2|b(m + n)|}> :

HereI;:v(n., i) his the ith Fourier coefficient of 2~"p4(z,n)

ist i 1 lyno

P e measure with respect to which the polynomials p,(z) are orthonormal th,
en

({6l (11]),

) = {gffv)dx"é z=cosh, 0sfsm
- i=1 Pi6(z — z;)dz, =z not as above, N < oo,
o(6)dz = _._Siﬁ_d _ ;
and EREP sl a=e
pi = p+(2i,0) 2 = (z,‘-f-l/z,-)

;= LU
fi(z:) ' 2
With the above relati
elations the work of B
e 'k of Baxter [2,3] and the Weiner-L
obtain necessary and sufficient conditions for a certain classr oferi};aZilf: renl1 I:ay
s relating

- (3) t i
) to the decay of the Fourier coefficients of o. For instance (8D




T
. iteration of this equation beginning with 8y = X yields improving estimates for 8. To see
: 1 tinuous function on : . . n+l . .
reasing, a a, b, c, 2
t p(z) be a bounded nondec g, absolutely con this suppose for convenience that 4, b, ¢, and d are real .a.nd less than one in magmtu?e
TheoremhI- Let p f<b<n Then with fp = 7222 = (1 — Z4£1) we find arg(1 — ae'®gk) = —arZH ol + 0(%).
- it — ST : "
[-1,1) wi dp(z) = o(6)de, = cos®, = Consequently arg(ae™®, g)oo = —avrﬁ'-f% s _L;1+:q +O(max(;1-§, Z-)). An application of
@) _ o(=8) .odln 2 € A, with R>1. Then the Euler-Macluran formula gives
o = T )
Furthermore, let 575 = sa(=0) 2" 2=l ag* " ag® 1 [ &  ag®
= dz + ¢(a, ——/ By — By(z — [2])] — —————dx,
inu(%){ll — 4a(n)’| + [o(n = DI} < oo é 1tagt /o Trap o003 | BBl g
= where »
o0 k oo =
. agq aq
if and only if o c(a,q) = Z I —/ dz
Z nu(n)\g(n)| < 0. — 1+ aq o l+ag*
=1 B, is the second Bernoulli number and Bs(z) the second Bernoulli polynomial. Thus we
(2) Eoo (m)z™ 1/R< |2| £ R, with g(m) = g(—m). find that
Here z.:lz/z = m=—°°g ’ - » k n zlng o j2 z
ial Z 1 -(:-qaq" - / 1 -:l-cae“"qu +elag)+0 (/ dz? 1 -T—qaq’dm) ’
: lynomials . : = 0 n
3. The Askey - Wilson Po.yno tion can be applied to the Askey-Wilson polynongals k=0
The results from the Pfe‘”ouls secl —19...and b, = J(a+ 1/a— An — n), which yields
([11,91,010]). In this case af = §An-1Cn =15 " n
202, where _In(1+a¢") In(l1+a) +e(a,q) +0 (_aq_lnq) ,
A dg™)(1 - abedg™™ 1) =0.1,2,... Ing Ing (1+ agn)?
a~1(1 — abg")(1 — acq )(1 — adg — J ke b In(1+ a)
Ap = (1 — abcdq2n"‘1(1 — abcdq ) = = lnq + c(a7 Q) + 0(qn)'
and afl — beg™1)(1 — bdg"~1)(1 — cdq"—lg(l -q") ’ n=0,1,2,... Consequently
b= 2n—1(1 — abedg*"~ . ) n
(1 — abedg®™~( €. >0 and g < 1. In this . M_c(a o)=mFL o 1Y
that A, and C, are real and An—1Cn tion may Ing ' n+1 n’n3
where a, b, c,d are chosen 50 enis true of b, and the results of the above sec1 o
e s < t{la .ThOI;q")lt;Y;d :I‘I;fe Sf?llrrllction f+ has been computed and found to be [1], Applying similar methods to the other factors in the formula for z f+(2) yields
be applied w1 = ? Inf(1
i ; +a)(1 4+ b)(1+¢)(1+d)] —2In(1 +
) (az,q)w(bZ,Q)oo(CLQ)w(dz’q)w k(q), arge’® f, (e'%) = 7r[ K X X 11(1:)41( ) all+ae) c(a,q) — c(b,q)
(42,900 (b2, 9021 D)ool 75 T2
2f4(2) = 2q:
+ (2241 @)oo _ e(erq) — eld, ) 4 2¢( )]ﬁ-l-_l+0 " 1
' q »q 9,9 n+1 max ;—’n_i‘
where
1 /_((Mloi,___———ﬁ‘ This yields ([5])
K9 = 5 Tab 7 groo(ae T Doolad : Danlbe : Doolbd : onled  eold * Doe

Theorem 2. Suppose a,b,c, and d are all real and have magnitudes less than one. Then
the zeros of p,(cos ) are given by,
and (1 _ a)(l _ aq)- .- (1 — aqk"'l)) k _>_ 1’
. = k = 0,-

(a . q)k { 1,

mp
( )
If we Substltuhe tlle a:bove fOI mulas 1nt0 eq ua.thIl 8 we Obtaln an a:sy tvohl

. r(n —m) 1 7r[ln[(l +a)(1 +5)(1 4 ¢)(1 +d)] —21In(1 + q)

¢ formula n+1 Ing —c(a,q) — c(b,q)

m+1 1 ¢"
n . g —c(c,q) — e(d, q) + 2¢(q, ——+O(max<_’_)).
R i i i £ (' O(%-). Successive (c,q) — c(d, q) (g Q)] (n+1)2 ni'n
for nlen® Y B (8)we find 6 = 2+ 7 arg(e’ f4(e®) + O(%
zeros of pn(cos@). From - =




3. Unbounded Orthogonality Intervals

In order to consider the case when the interval of orthogonality is infinite we consider
the case when when the sequences {a,} and {b,} were regularly or slowly varying functions
(see (4) and (5)).

In this case we can no longer compare the solutions of (1) with the Chebyshev poly-
nomials. Instead a a good comparison system turns out to be (8hH

wy(z,n) = H u(z,1)
i=1

where

1 — [ug(z,1) — (@ig1/ai)uo(z,t + 1)]) -

u(z,t) = U0(27i)< ug(z,1) — 1/uo(z,1)

with uo(z,2) = %%i + %\/(5—2"‘1—':‘)2 — 4. We now apply a discrete version of the WKB or
Liouville-Green method ([4],[8]) for differential equations to show that for y ¢ [D,E] =
convex hull ({0}, [b — 2a,b + 2a])

im p(>‘n3/1n) — 1
Lo w+(’\ny7 ')’L)

The above convergence is uniform on compact subsets of C\[D, E) [8]. Now using the fact
that {b,} and {a.} are regularly varying sequences we find ([8]),

Theorem 3. If a > 0 and

lim n-—————(a"‘H — an) =aa, lim n———————(b"Jrl = bn)

= ba,
n—oo A n— o0 An

then

_ Pa(Any) (z — b)? — 4a? 7" b [ ds
lim =5 <~ = > exp4 5 )
n—oo [[1_; wo(Any, 1) z 2 Jo +/(z — bs)? — 4a?s?

uniformly on compact subsets of C\ [D, E]. Here

[D, E] = convex hull({0}, [b — 2a,b + 2a]),

.r—b,‘+ Jr—b,' b 1
2a; 2a; '

This result can also been extended to the case when a = 0 if

and

up(z,1) =

n

1 1S
'™ Z |@ige — 2ait1 +ail = o(1) = '™ Z |biva — 2bit1 + bil,

i=1 i=1

and

5 al_ .. b
1msup{121l?§(n an} —l—hmsup{ox?&xnb—k}, b#0.

These results can be applied to the case when

obtain ([7],[13])

ap, = an®,n >0, and b, = bn® n > 0 to

tig G Pny) /(D) b [ dz
= wHm) T (e AT i, \/(y—bz)z.—4a2z2")’

1
H(n) = exp (nya/ 1
o Vo Byt )

andu= 520 4/ 1

where
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Abstract

We give algorithms to compute the asymptotic expansion of solutions of linear recurrences

with rational coefficients and rational initial conditions in polynomial time in the order of the
recurrence.

Introduction
We investigate sequences defined by a recurrence of the form

ApUpyk + Qg1 Untk—1 + - + apu,, = 01 (J')

where §he coefficients a; and the initial conditions belong to Q. This is probably the most simple
type of. recurrence one may encounter. Recurrences of this type are ubiquitous in many fields
of applications (see [3] for numerous examples and references). Among the approximately 2300
sequences listed in Sloane’s book [18], one can estimate that about 13% are of this type [13] In
the rest of this paper “linear recurrence” always means “linear recurrence with rational coe
and we shall refer to u, as a “linear recurrent sequence”.

Surprisingly, some problems related to linear recurrences remain open, and specially problems
related.to effectivity. Our aim in this paper is to describe an algorithm that computes an ‘asymptotic
expansion of a sequence obeying (1) in polynomial time in the order k of the recurrence. It is quite
simple to find the asymptotic expansion of Fibonacci numbers with traditional tools, but these tools
break down when the order of the recurrence gets large. The algorithm we describe works without
any ll.mita.tion on the value of k or those of the coefficients.

Given a recurrence such as (1), one usually computes its general term as a sum of ezponential
polynomials of the form YN pin* A", where ) is an algebraic number. In Section 1 we shall describe
an algorithm computing the coefficients Pk without factoring any polynomial. This general term does
ot solve the problem of asymptotic behaviour. To form a proper asymptotic expansion one has to
otder the moduli of the algebraic numbers A occurring in the general terms. The problem which
‘t"l’llll ()lcf‘,upy most of this paper is: How can one perfo-rm such an ordering ezactly, i.e. we prove that
A algorithms we propose work on the whole class of recurrences (1). We shall use techniques from
poriniiuter algebra to free' ourselves.from prpblems of ill-conditioning related to the use of floating-
y n Valugs. "I‘he. r.es'ult is an f'ilgorlthm which, given a positive integer p and a linear recurrence (1)
9gether with its initial conditions—or equivalently a rational function in Q(z) (see below)—outputs

€p ﬁ?st exponential polynomials of the asymptotic expansion of the solution u,, of (1) as n tends
10 infinty,

fficients”

y diﬂ'.erent decision procedures to compute this asymptotic expansion.
purely algebraic, completely avoids factorizations. It is made expensive by the
due to resultant computations. Currently this is the most natural computer

Mhe first approach,
HiCrease of degrees

~ “Algorithms Project, INRIA, 78153 Le Chesnay Cedex, France.
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