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Abstract

We give algorithms to compute the asymptotic expansion of solutions of linear recurrences

with rational coefficients and rational initial conditions in polynomial time in the order of the
recurrence.

Introduction
We investigate sequences defined by a recurrence of the form

ApUpyk + Qg1 Untk—1 + - + apu,, = 01 (J')

where §he coefficients a; and the initial conditions belong to Q. This is probably the most simple
type of. recurrence one may encounter. Recurrences of this type are ubiquitous in many fields
of applications (see [3] for numerous examples and references). Among the approximately 2300
sequences listed in Sloane’s book [18], one can estimate that about 13% are of this type [13] In
the rest of this paper “linear recurrence” always means “linear recurrence with rational coe
and we shall refer to u, as a “linear recurrent sequence”.

Surprisingly, some problems related to linear recurrences remain open, and specially problems
related.to effectivity. Our aim in this paper is to describe an algorithm that computes an ‘asymptotic
expansion of a sequence obeying (1) in polynomial time in the order k of the recurrence. It is quite
simple to find the asymptotic expansion of Fibonacci numbers with traditional tools, but these tools
break down when the order of the recurrence gets large. The algorithm we describe works without
any ll.mita.tion on the value of k or those of the coefficients.

Given a recurrence such as (1), one usually computes its general term as a sum of ezponential
polynomials of the form YN pin* A", where ) is an algebraic number. In Section 1 we shall describe
an algorithm computing the coefficients Pk without factoring any polynomial. This general term does
ot solve the problem of asymptotic behaviour. To form a proper asymptotic expansion one has to
otder the moduli of the algebraic numbers A occurring in the general terms. The problem which
‘t"l’llll ()lcf‘,upy most of this paper is: How can one perfo-rm such an ordering ezactly, i.e. we prove that
A algorithms we propose work on the whole class of recurrences (1). We shall use techniques from
poriniiuter algebra to free' ourselves.from prpblems of ill-conditioning related to the use of floating-
y n Valugs. "I‘he. r.es'ult is an f'ilgorlthm which, given a positive integer p and a linear recurrence (1)
9gether with its initial conditions—or equivalently a rational function in Q(z) (see below)—outputs

€p ﬁ?st exponential polynomials of the asymptotic expansion of the solution u,, of (1) as n tends
10 infinty,

fficients”

y diﬂ'.erent decision procedures to compute this asymptotic expansion.
purely algebraic, completely avoids factorizations. It is made expensive by the
due to resultant computations. Currently this is the most natural computer

Mhe first approach,
HiCrease of degrees

~ “Algorithms Project, INRIA, 78153 Le Chesnay Cedex, France.
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algebra approach to the problem, and the most easily implemented. However, as soon as p22,1ts
e. The second approach, based

cost becomes potentially exponential in the order of the recurrenc
on guaranteed numerical approximations remains in polynomial time in the order of the recurrence.
Numerical approximations have long been banned from computer algebra because of the reluctance
inherited from fixed precision routines. However, with the arbitrary precision provided by most
computer algebra systems, we feel that it is time for floating point numbers to be rehabilitated in
computer algebra.

The first step of the algorithm is to compute a suitable partial fraction decomposition of the
generating function of u,. Since factorization of polynomials is known to be polynomial-time but
depressingly expensive, we shall avoid factorization and rely instead on a recent decomposition
algorithm [2]. This is described in Section 1. In Section 2 and 3, we address the problem of comparing
the moduli of the singularities (corresponding to the roots of the characteristic polynomial). As
opposed to what happens usually in most algorithms involving algebraic numbers, we have to
distinguish between roots of a given polynomial. A first method is described in Section 2, based on
an algorithm [6] for comparing real algebraic numbers. At this stage, we can produce the desired
asymptotic expansion. Section 3 describes a numerical alternative to the algebraic algorithms of
Section 2, where we show how to get exact information from pumerical values. We prove that this
can be done with a cost that 1s Jower than that of the algebraic method. In Section 4, we study
optimizations that can be applied to subparts of our algorithm in practical cases. In particular we
show there how rough nwmerical estimates can be used fruitfully. We conclude in Section 5 with a

few examples taken from classical combinatorics.

1 Outline of the algorithm

1.1 Generating function

One can translate (1) into the rational generating function S u,z" with O(k?) rational operations:

the generating function of the sequence (1) is

k i k—14y
Tico Lz iZ 7

Timo k=i’

The reciprocal conversion is also easy.

From the asymptotic point of view, the generating function approach enables us to use tools
from complex analysis, like residue computation, which prove very effective. Because of the low
cost of the conversion {rom a linear recurrence to the generating function, from now on we shall
be concerned with rational functions only. Thus the input of our algorithm is a function f € Q(2)
regular at the origin, together with a positive integer p, and its output consists of the first p terms
of the asymptotic expansion of [z"]f(z)—the nth Taylor coefficient of f at the origin—as 1 tends

to infinity.

1.2 Exact formula

In this section, we derive an exact formula for [2"]f(z), based on a partial fraction decompositioh
that does not require factorization. This allows for both an efficient implementation and possiDi€
future extensions to rational functions with parameters or non-rational coefficients.

Algorithm 1 (Exact formula) Let f(z) = P(2)/Q(z) € Q(2), with P and Q two 1€
polynomials and deg(P) < deg(Q). To compute [2"]f(2), i

latively prime

2 Usi . .
Using the decomposition algorithm [2], compute polynomials P;; € Q[z] such that

o b P2 L
ﬂn=&$=§§n§_

Fij(e)
(z—a)

with deg(P; ;) < deg(D;). This requires only ged computations.

3- F ) ] 1 — —
or each (i,7) such that gcd(P;;, D;) # 1, write D; = G; H;, where G; = ged(P;;, D;) and
1 [N R

rewrite all terms in (2) involving the polynomial D; as

v Pl _ 5

D;(a)=0 (Z - a)]

Bij(@)

Hi(e)=0 (z — @)

Ai.j(a) + Z

Gi(a)=0 (2 - a)j

wh w - . .
"”teirl’eaﬁ,,;c(:;;dfzﬁ M’i obtsz}ined by Euclidian division of P;; by G; and H;. Repeat this pro

s are units. is gives a factorization of B e R i PTOCESS
and the partial fraction decomposition has the fomiL of each D; in the form D; = D;y--- D;,,

w7 1

f() = Py k(a)
) ;;;DWFO G (3)

each P, ;. being a polynomial with rational coefficients, deg(P;;x) < deg(D; ;)
| | 5 G& 1,7, % 63/
4. From this we get the value of [2"]f(2):

Ty 7

[Z"]f(z)zzzz (7L+1)..-(n+k—l) . Pi,]',k(a). 4)

i=1 j=1 k=1 D; , (a)=0 (k—1)! P

Step 1 is computed b iti 3

y repetitively differentiating and e d
each P : : : i g and computing gcd’s. Step 3 guar T
;54 (@) in (3) is non zero. Step 4 is a consequence of the usua,gl’ §eries expfnsifrlll E:)lia?cteibzt)ﬁt

I 1S Cleal l]lat A i y g
1g0rlthm 1 runs in pOl nOInla.l y I
time. WP dO Ilot WOIT about 1its com )leXIty sice

Example Let f(z) be the following input

2442
(I=22(1+z—222— 22 —22%)

In tl)is S 5 -1 1 € e O (o) i S ve by l) = J. ~ Z
cas €, the Square free decompOSItion Of th = d ,nonlina't T Q f & i > gl 11 2
p y I

Dy =1+2z—2:2— 22
— 23 — 22° (note that D is g : . .
produces the following decornp(gsi il at D; is not irreducible). Step (2) of the algorithm then

(2 :—__1 14/3 h(a
1z) (1—2)2— + Z ﬁ?

l-z pa=0®— 2

Where 1 = 4
P (@) = (11530a* — 7778a> + 1132502 + 3889a — 8080)/93. Since h and D, are relatively

Prime, St ; '
y otep 3 does not do anything, and then Step 4 produces the result:

14
—?4— Z h(a)a‘"‘l_

Dy (a)=0

[z"]f(z) = —=(n+1)

1. Compute QQ = DyD?%--- Dy the square-free decomposition of Q. (Bach D; s @ squored™

polynomial.)
254

) get an asym v . .
ptotic expansion from this
mpa; ADs we have to com < or .
Pare them to 1. This is addressed in tile following sectitl))g;e NSRBI s G
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1.3 Specification of the algorithm

m m i successive “layers” of singular-
1 i i1 ; poverned by the successive “layers” o _

. ntioned, the asymptotic expansion 1s goverr y : il ey

{:;e:lé(fei(liz: raet::ional fu7nction, sorted by increasing moduli. We shall need several ways

ities '

these moduli.

P) the distinct moduli of the
. , z], we note py(P) < pa(P) < --- < pi( e g <
Notation .FO_T fé(igine ?r[d}y When there is no ambiguity, we simply (_lcnotf,, these 1;uan_b(£;)s) /;,,}:,
IOOtS ifkp llf/;/em(flso no?e Zn(P) the set of zeroes of P whose modulus is pm(P), and ZJ e
\<l -= . 4 m o O ; } p
qui)::t of Zm(P) whose elements have positive imaginary part.

We first state the form of the output on the example of f(z) from olm p;;%\rf‘llo:;esecmon e
: g . - alvor e
first four terms of the asymptotic expansion of [2"]f(z) as given by our algorith

1 n+1 1 ——___—_(‘IL + l) —_ E} = ! 1
[(-—1)"+1h(—p1)] ,-0—"+—1 F [h(/"z) +(—1) h(—m)] },_317 + P3 3] st
1

_ 1 1
o 5 (h(ﬁ)+h(ﬂ))COS[(”H)Mg(ﬂ)l]Eﬁ+0(7>7

P4
Bez}(D2)

3 = = p3(D3) and
together with the following information pp = /)I(DZ), py = ‘/)Q(Dz),‘ pf = l),» 5:141(1 ﬂ'/ 3(D3)
¥ D) = 1. If requested, we can also give numerical approximations 07 s it
& 2){ _f : t resqof the’general case are present in this example. We now .st(m}tle pre ,1.t 311 0u£
A.H o eafuthé al ‘ori}thm which we encourage the casual reader to skip. T 9 t1}I1p1; ll0 .
Sﬁ)gciﬁiﬁoﬁ)r?sists of J%(z) = }’(z)/Q(z) € Q(z) and an integer p>1. The output 1s the tollowing
algor ] .

asymptotic expansion of [2"]£(2):

P ce(n 1
e =3 o), 4

Ti 10
£=1 /)[ /)II

where .
Eenkt) cosf(n + k) arg(B)]
ce(n) = Heo(n) + (=1)"Hea(n) + ;} ;: Ek: P cos(
i>2pezt, (De,)

. i ) . 2

and explicit values are given for the coefficients of the polynomml; IIJC,U d.l;(l f]z 11 (1Zu+<Q;fl/:,[0)l[VBl
' i ‘ 1 A)z]). as well as for the number of elements ot the
De; (in Q[z]) and Hejx (in Q(ﬂzﬁ)[,{]), as we A S
arf(i EE deﬁl[li]tzon s ;ither i Orl laS tm r /’f’(Di'J') f?}llb:;)l;)(;‘(;ki‘i::éi;tls‘()of the moduli and the

-actice, the program will be able to give numerica oximations ¢ ' P
g tIn ];)Illa(lzltélcﬁ;/ deﬁﬁed% Note that, because of the trigonometric functions 111\;01V;:1du(11€tﬁk$tion ¥
1('):11:&1 t}IL)e ex;;ansion (5) is not of Poincaré type. Instead, we resort to the extended de
cients, > ! \

Schmidt [16] (see also [7]), according to which an asymptotic expansion is a sum of the form
P ' o
flx) = ar(n) - fu(n) + r(n)
k=1

i < r(n) = *(n)]: and ax(n) &€
where as n tends to infinity frsa(n) = o[fe(n)], (1<kgp — 1); r(n) = o[fp(n)}; @
bounded functions of n that do not tend to zero.

1.4 Main algorithm

iti ‘der i of the
Starting from the partial fraction decomposition (3), we need to-o1de}11 @be‘.r?lc:dug J)r ~ gorthin
;hé D;; in (4) and find those roots that are purely 1't?a,l along with their signs. i
ba.s:ed lgn the resolution of the two following computational problems.

roOtS ?f
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Task 1 (Ordering the moduli) Given ) = [1;; D ; a square-free decomposition of () € Qlz] and
p @ non-negative integer, compute for each (i,j) and for each k, 1<

D; ; of modulus p(Q).

Task 2 (Real roots and their signs) Given P ¢ Q2] a square-free polynomial and k a non-

negative integer, compute the number p € {0,1} (resp. n € {0,1}) of positive (resp. negative) real
roots of P of modulus pi(P).

Most of the rest of this paper is devoted to algorithmic solutions to these tasks. Based on these,
our main algorithm is as follows.

Algorithm 2 (Main algorithm) Let f(z) = P(2)/Q(z) € Q(2) be a rational function, with
deg(P) < deg(Q). Let p be a non-negative integer. To compute the p first terms of the asymp-
totic expansion of the coefficients of f(z)

)

1. Compute the partial fraction decomposition (3) by Algorithm 1.

2. Perform Tusk 1 to compute, for each (2,7) and for each £,1 << p , the number m; e of roots
of D;; of modulus p, = py(Q).

3. Select those terms in the expansion (3) for which le] € {p1,.

; -~y ), and rewrite (3) in the
orm

_— P fnt k-1 P iela 1
SVCED DD b ol (RS EC=C N o
=1 m-(w,);eo Di"’|(“)=o k=1 Py

4. Perform Task 2 to compute, for each (i,7) and for each £, 1 < £ p, the number p; ;, € {0,1}
(resp. nije) of positive (resp. negative) real roots of D; ; of modulus p,.

9. Rewrite relation (7) in the following form which is ezactly the sought expansion (5):

- d n+k_1)Pijk(/7L’) L (n-l-k—l)Pi'k(-ﬂz)

p’_’ ) sJ + —1)"n.‘,‘, 1)y

E{ (ZL [ " ( n gt ey (=pe)*
"‘I‘.],I 0

L > (i: (n +,k - 1) (Puik(pee™) + P, ik(pee™)) Cos[(n“-kk)al)]}L + o( s ) :

k i e
D j(pee'®)=0 k=1 L Pe Pe Py
sin 630

2 The algebraic method

To complete our main al
and 2. We describe in th

on three tools:

gorithm, there still remains to exhibit algorithms that perform Tasks 1
is section how this can be done purely algebraically. We rely principally

(1) a method to order real algebraic numbers due to M. Coste and M.-F. Roy [6], based on Sturm
sequences;

(2) a resultant computation that, given two polynomials P and Q produces a polynomial P ® Q
whose roots are the pairwise products of the roots of P and Q. In particular the smallest
hon-negative real root of P ® P is the square of p;(P) the smallest modulus of the roots of P

* (3) the Graeffe process: Gi(P) has for roots the kth power of the roots of P;

(4) the construction of a polynomial Py (P)

whose roots are the products o, - - @, foriy < --- <
U, the o;’s being the roots of P.
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k <p, the number of roots of




llest moduli pi(P) and p(Q) of the roots of two
(2) and (3), we can produce the
This in turn enables

Using (1) and (2) we can compare the sma
polynomials P and . This will be done in Section 2.1.1. Using
(P) the modulus of the smallest root of which is |eq]-- - al.
(Q) as will be shown n Section 2.1.2.
compare real algebraic num-
of Coste-Roy’s algorithm

polynomials P
us to compare any pair of moduli pi(P) and p;

Note that other methods than Coste-Roy’s algorithm are known to
bers (see, e.g. [14]). One of the reasons for our choice is that the complexity
is known [15].

The polynomials mentioned above are computed by the formulas:

k-1
P ® Q(y) = Resultant, (P(z), Z‘ICS(Q)Q(:I//;')) CGu(P)(2) = T P(e*imt2),

i=0

L(k=1)/2]
J 77L-—(2,+1)(P) & Gaipa(P)
vk, lkgn, (PP =~ : ®)
H Proai( P) 0 Gui( P)
=1

where by couvention we set Po(P)(z) = z — 1. Apart from the last one, these polynomials are
well known. That the last polynomial has the roots we expect is not difficult to check. All these

polynomials have coefficients in the same field as P and Q.

2.1 Sorting the moduli

Given the polynomial @, its factors D;; and an integer p, we need to determine the number of roots
of these factors which belong to Zi(Q), L <k <p. To simplify our description, we first concentrate
on the case p = 1, corresponding to the first order estimate of the asymptotic expansion.

2.1.1 First order estimate

d in polynomial time in the degree of () by Algorithm4
[ to us by M.-F. Roy, taking into account
he number of roots of smallest modulus

In this case (p = 1), our task can be performe
below (which is an extension of an algorithm communicatec
multiplicities). We first describe an algorithim to compute t

of a polynomial.
Algorithm 3 (Number of roots of smallest modulus) Let P € Q[z].

1. Compute PP} --- P} the square-free decomposition of P P.

9. Using Coste-Roy’s algorithm, find i such that Py, has the smallest non-negative real root.

3 T]l,f',ﬂ, lZ](P)l = i().

gative real root of P & P(z) is p}(P). Moreovel
of P of smallest modulus. Computing square-free
f the polynomials P; has the smallest non negat

Proof. By construction, the smallest non-ne
its order of multiplicity is the number of roots ¢
decompositions in Step 1 ensures that only one o
real root.

ve

Algorithm 4 (Smallest moduli comparison) Let P and ) € Q[X].
1. Compute P;, and Q;, as in Algorithm 8. Their smallest non-negative real roots aTé f’%(P)

and p}(Q).
2. Applying Coste-Roy’s algorithm to P, and Qj,, compure p2(P) and P (Q).
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3. The number of roots of P (res
mbe } sp. Q) of modulus py(PQ) = mi S gl ]
(resp. jo) if p1(PQ) is equal to p1(P) (resp. pl(Q';)l,( m?d) 0 o;;tlerigfzt.(f,]))’pl(Q)) e gmven by to

Proof. This algorithm works for the safi;e reason as Algorithm 3 O

Applying this : .
thereﬁ)fx)- éy:g’vz}:;?o?lgioft?n}‘to the POlynomla,lS D;; and Q gives the result we are after. Task 1 is
Algorithm 4 is ()(nzé(; +.l fO}ran the compl26Xlty estimates in [15], it follows that the c;)ﬁlplé;(it (1);
e oF His ehook og |P| +log |Q])?), where n = max(deg(P), deg(Q)) and |P| d .

S e ute values of the coefficients of the monic polynomial, P‘b .| denotesithe

2.1.2 Ordering the p smallest moduli

V‘/(“ 10w want to CO II k ] = = E {1
11 )llt € fOI edCh X 1 < k <p a.]l(l eal( h ] h(" 1 €l ()[ roots ()[ 1) (o)
b = 7 y ’ )]
In()dulu pk(Q)‘ Although all t he I()."l are root P P,(AJ!D) Il 1] y b > go 1
S i S 01 @ l 0. thI[ 4 (1065 not €nerailize we I

b ecalse 1n genelal P ® P h lle non-negative real roots. st ve a genera atllo. [0}
e as othe
T 1 £ l S We flI gl gen lll 10on f

Algorithm 5 ;

(m§ o |Z,(1§1)\]Iu;;bfz ?i rO()”tshof a given modulus) Let P € Q[z]. Given an integer q> 1

I Al i 3 sl ¢q, suc Eh(l.t my 4+ -+ Mg deg(P) by SORTBIHE 4 - er g2 1,

apply Algorithm 3 to the polynomial P = P totmet1(P) , compute myyy = [Z,41(P)]
my+-tmg .

)

Proof. If P(z) = [[;(z — o =
T (zl H,(; @;), then by (8) we have P = Th ot 12~ o a,..), where k
9 m,. ¢ — o<tggr \7 1y "y Ble Kk =
|ak I . th q. lnce.'all - - Iamll < Laml-}-]’ _ ... = |a7"1+7"-2| < e 2+'1a; ' .
gy » the roots of smallest modulus of P(z) are Qtj e, o, 1 <j<m e ~
=1 %, L) S$Mg4.

We can now give the generalization of Algorithm 4:

Algori .
gerg((;il/ih(zz(l(sm(-(q(_f-Al)s,t smallest moduli comparison) Let P and Q € Qlz]. Give 5
that (my + - + n:e)si. (ni) -tkhe number of roots of P (resp. Q) of modulus pi(PQ) for i £ty mtel-
; ) g ny+ -+ n,) < deg(P y i ok SR S
roots of P (resp. Q) of modulus /’(1+3%PQ)’E( ) + deg(Q), to find the number m, ., (resp. Pipss) 6

‘[fm1++m _d . %
g = deg(P) (resp. ny +--- +n, = o
Ng1 (Tesp. myy1) is given by Algori;hm 5. +n, = deg(Q)), then mgyy (resp. Ngt1) is 0 and

- Oth se P .
i erwise, these ’liftlltﬂs are obtained by applying Algorithm [ to P = P (P) ¢
n1+--.+nq(Q) and (2 = P"1+'“+nq+l(62) ® ’P7n1+...+7nq(P)‘ ke =tagiol ) ®

Proof. The firs i :
be the nurn?)err:i' F:;tttho}l;vm}‘:& Denote by. a; the roots of P and by f3; the roots of Q. Let M
B it 0 T o whose modulus is the smallest pi(P) stricﬁtly‘grea.ter tHan Vi (PQe) a 7{
B . ha’q }],14 q- thefsecori;l part follows from noticing that the polynomial Q has qbeeu btilill(f
s My roots of smallest modulus, namel el nittng L ’
s, ely B [1,2 % g [T 4" g, ,
d iy 1+t +

Bt <ny 4+ 40 o i=1 =
i< : M, Witing similas . ;
the result. ¢ + M,. Writing similarly the M, roots of smallest modulus of P, one deduces

By induction on ' 1
p21, using Algorithm 6, it is '
il : g n 6, 1t 1s now easy to find for each (¢, s - of
Becausé]kofzr‘rrlr(:d:l.l?s p}(Q),pg(Q), o pp(Q) with Q =TT, ; ij. Task 1?: th(li;lls)olt\}:dnumbel o
1 -+m, can take any value between 1 and n; and since the degree of ’P

1 (") Aleors
0 % A
k)» Algorithm 6 runs in exponential time as soon as p=2 eyt
sp>2.

9 . o
2 Finding the real roots

:j‘l. attack : gl 1
ih amk 2‘ gl °n an int g or k', ]. S k <p, = ant to ﬁnd fOr each .D ; he num id
now ] S ve ege. we w 1,7 t l)e and

"€ sign of the s of i
e real roots of D; ; of modulus pi(Q). The following algorithm solves this problem
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Algorithm 7 (Real roots and their sign) Let P € Q[z] be a square-free polynomial. Gi'nf:u, an
integer ¢, the number m; = |Z;(P)| and the number n; € {0,1} of real negative roots of P of modulus
pi(P) for 1< i <q, with my+ - +my < deg(P); to compute the number pyy1 € {0,1} (resp. Ngt1)
of real positive (Tesp. negative) roots of P of modulus pyp1(P),

1. Compute the polynomial P= T’,,Ll+...+,,L‘,+1(P) and 141 by Algorithm 5.

2. If myyr is odd, then P has exactly one veal root of modulus pypr. To find its sign, compare the

smallest positive real roots v of P(z) and p of P(—z)
P(z) has no positive real roots, then pyi1 =m 4ty
(mod 2). Otherwise, cither p > 1 or P(—z) has no positive
14+n+--+ng (mod 2) and g4 =M 4ty (mod 2).

(mod 2) and gy = L+t

veal roots, and then p,p =

3. If myq1 is even, compute R(z*) = gcd(f’(z),f’(m;')). If its degree is 0 then pypr = Ngt1 = 0,
otherwise use Coste-Roy’s algorithm to compare the smallest posilive real roots v of B and p
of PQP. IfR has no positive real roots, then pggr = Mgy = 0. Ifrr = p then pypyr = Ng41 = il
Otherwise we must have 1> p and 50 pyp1 = Nyp1 =
Proof. First, note that P being square-free, py41 € {0,1} and ng41 € {0,1}. Let P = [L(z — ai).
The roots of P being either real or coming by pairs of conjugates, the number M = H;”:11+"'+111.,
real and its sign is the sign of (=1yat-*m, The polynomial P has 1mgqq 1oots of smallest modulus,
namely
M - «y, my+ - +FmgHlgigm+ + gy A g, (9)
so that if 1441 1s odd, then P lLas exactly one real root of modulus py1 (P) and P(;) has only one
real root of smallest modulus. Step 2 is now obvious.

When 1,41 is even, either pyp1 = g1 = 0 or pys1 = My+1
of R(z*) are the roots « of P such that — is also a root of P. Thus if deg(R) = 0 we cannot have
Pat1 = Ngp1 = 1 because of (9) . Otherwise, the smallest positive real root of R is the square of the
smallest real root 3 of P such that —f3 is also a root of P. The
being the square of the moduli of the roots (9), Step 3 is now clear.

For the same reasons as Algorithm 6, Algorithm 7 runs in exponential time as soon as p22

Tasks 1 and 2 have been solved, and we are now able to give the asymptotic expansion of the
coefficients of a rational function by Algorithm 2.

;8

. = 1 for conjugacy reasous. The roots

smallest positive real root of PoP

3 The numerical method

In the last section, we solved Tasks 1 and 2 using only algebraic tools, which is currently the most
natural solution to our problem from the computer algebra point of view. We shall now preseil
an alternative method showing that aumerical tools can be used reliably to perform our task 1
polynomial time. We only need to order the moduli of the roots of a polynomial and find which of
them are real. Although there exists algorithms which achieve these tasks (for instance, we CO8

use Graeffe’s method to approximate the moduli of the roots of @), it is cheaper to find directly al
the roots of ) with a sufficiently sharp bound on their errors. Our numerical method will depeté
on a complex root finding algorithm, that we first describe briefly.

3.1 A root finding algorithm

We want to find the complex roots of a polynomial with rational coefficients with arbitrary preci
Numerous algorithms exist to achieve this task, but only few of them are reliable. Newton’s M€
does not always converge; Traub and Jenkins’ method [9], usually used for root finding in cOmES
algebra systems, converges theoretically but it turns out that precision control s badly handi€
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by Coste-Roy's algorithm. If r > p orif

10 @ yields

practical implementations. Besides, i i

P : > s. Besides, its complexity is k i

practica. mpl ! ides, 1 np y 1s not known to be polynomial. ‘ i

o la.lg,dalgouthm for whlch the precision control has been ca.refurl)ly}:tufll'l Ial IWe e follo }'lere
Al i |ai| denotes the norm of the polynomial P = ay + - - etully studied. In the following,

of a theorem from [12] is the followirg result. ’

Proposition 1 (Pan) Let P

| Le € C[z] be « monic polynomial, n = deg
P ‘(:fm-be 'compute(l with absolute error e > 0 usiﬁg 6?g;l{f), rn —l d‘e'&(P) ol A'” e it
e gn(nlog(n) + log(|P|/¢))] arithmetic

) 5 : ;
+ a,z". An immediate consequence

Unfortunately, t g : .
¥, the constant term in front of the time bound is very high and therefore the result

SeeIns be Ollly Ot t retl l . = b 1
ems to }leo etica lmp rtanc F T ques
i orta € f or 1nst an(:e, thlS alg()rlt,hln 1911?5 on FFT technl ues,

3.2 Necessary precision

. .
1€ reason Wl[y we can r ,Iy on num ,I‘]Ca-l m ,th dS to s lVe our t a.Sk I. S tha.t tWO diifﬂe
€ € etno S0 erent roo S

of a polynomial with integer coefficients ca
recie. g ethicients cannot be too close. The following result [11] makes this

Proposition 2 (Mahler) Let P
. o Z) = 1 S t—
degree n. > 0 with integer (:oejﬁciffgttl. Tllzur:_ e gl

ai # o
where M(P) = |a,| [T, max(1, |a;]).

From this we deduce the following theorem.

(2 — a;) be a polynomial of

= i — ay] > VB2 (P)

IheOIeIIl 1 Lft 1 (Z) bﬁ a ?)()IJITL()”ll(Ll lU7tIL Znt(f{/ﬁ’ C()Cﬁl(,l,l = (l &,(P) > 0 a7 d X
f7t.5) n eg (2SN

roots. Define £(P) to be the following quantity B
V3
KZ(P) — T [TL(TL o 1)/2]—[n(n+l)/4+1] X M(P)—n(n,'2+2n—l)/27 (10)

then |oy; ; ;
loi| # o] = ||| = ||| > k(P) and |S(ew)| is either 0 or larger than k(P).

Proof. Let C be th i
. Le e leading coefficient of i
iy o Cbe leading coefficien of P. We first prove that the 14
bive i.etsé}(le 'c?lafj)‘ has integer Cf)efﬁments. We can suppose that the ol pr?gyn'mlm]gl'@(h? i
coefhde.n“ gec to its coefficients is 1. The polynomial P ® P has for l‘O(}))t o | $m, did
; lents are integers, and from classical results . it
Qo e g » and ssical results on the resultant algorithm, its leading coeffici
B 1p 1ynomlaJ Ga(P)(z) = C?[I;(z — ?) has integer coefficients, is ; (I'Ot(?fﬁment
¥ P, we deduce that the quotient C* I [u:(z — i) = [C™1 e )] bas o
lg)er coefficients and therefore, so has its square root lf‘? all aéaj) N [C" ™ [Tic(2 — uex;)]? has inte-
¥ %éft)(lz)t which implies it has integer coefficients e
e T . s . . g ‘..
] ¢ and y be two distinct roots of Q. Since M(Q) < M(P)"*!, Mahler’s result applied
. s result applied

o, 1<i,5<n, it

le = yl>7 = VBn(n +1)/2 VAR pp(p) et 0=nint1)2)

- — e . ..
b wethave lolzét T;e_r(l)((;tisz Ioi P \lwth distinct moduli, then [a;|? and |a;|? are two distinct roots of Q
) ) ] t : .

il°1 27, hence ||ai| — ||| 2 v/ (|| + |ej]). As |a;| and || are smaller than

M(P), we finally deduce

(11)

“ail-la' 2__)——n P
last part of th e e v ]” ( ) ( ) e —
€ theor 21N Can b > deri e(l a,nalogousl from the in quahty |a (e7 a2| > D
y ] 11 HER 2

sharper lower bound on RICH]

bheed thig g :
; sharper bound si
e nce we

ca.nlbe derived by considering only the polynomial P. We do
need to compute the roots with an absolute error k(P) to sort
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3.3 Numerical algorithm

(I\ 1 ”leSP es “S we Now give all dl '()(ll N WIIC erio S T€ dl y asKs ‘ 3 d 2 y pl cly
& 3 ’b lll 1uch p lf 11 l.ll )l T l\
< llg > resu 3 an l) llf‘l

numerical methods.

g()ll 1m umerica € = . S{ e-free (Lecom] S1Lton O ,ht, po l/'ll()lllt(l
i : e (4 Square € (l :COTIPOS e
ur arm s { 0om ute ’ , Q ] : { 3 ’ 1 1.9 ’ II()(ZU.I(I,. Py (Q)
( 5 0 )( C ( y ) and f ,(,(’] ( ,IL > nu b ’, 001LS f 7 C q
.S 1o C p % T ea ,}I, 1, in l 4{)7 eachn t ' ’( 7’ wmber of 1 ts o I) )T S
07 (l ”le numbm 0’ t}lCSC lll,(lt are 1(,,’(I,l (llo?l([ ll)lt}l, thC'l YnSs.
an T8 S

0 te 1 €7 = inf ay 3 ) )/,f"l'(f Y D,"/D[»'() '125 ll(.”i"f,'d
1 F T C(I,Ch ('L ]) C()Tnp’ll 3 hC 7L'U,mb o )’i‘j 1nt(k1{) (1.,’[) (Dz‘_;DL,l) wh ( J
. i ) bl #

! (Dis D) = [ 4+ 1y/2) w44 AL,
N kt) — "5 17

= + =11 i the only polynomial).
ith d = deg(D; ;) + deg(Dxk ¢). (Take Dye=1 if D ; is the only polynom ) d
with ¢ i 2 . e .
5.J . roots of the polynomuat Li;
i ; ute ach (i, j) the roots of 1 D
Usi ; thm [12], compute for each (v,
2. Using Pan’s Algori
absolute error €; = YVi;/ | -
Let « 3 3 anations fou it Step 2. 1
' D; ., B a root of Dy, & and B their approzimations joun(.l It o gb" thf
R - b? e o/f2 1[;, " Ial = l[ﬂ f’l;(‘ the inequality between || and || is 5{[“)16”, Y
A b i v, . of oots of re sorted.
I ll[:“ b<t Z::'n |’(AY‘ and lm This way, all the moduli of the roots of () are
il1,Leq1aLa S ‘ A isfies |S(a /2, then a 1s not
t of some D;;. If its approvimation & san(s;ﬁ.f:;;elts)((y)l > %2
of some Dij. 1 pro: . '
" 6tl Ob;h:r;(::)e o is real, and its sign 15 groen by the sign of R(& | 1
P o L t appli ch of the polynomials
f. Th lidity of this algorithm results from Theorem 1 applied to each o 1
. The validi s algo el
DI-‘(-’B;c , and D; ;, and from the inequalities:
ij Uk, i

(i,j) # (k,0) = M(Di,_’/'Dk,t’)SM(Q)giQI’
' - . Ql-
V(,5),  M(Di;)<M(@Q)<1Q] + the sign of o (when s

y step 4, the fact tha .

. T is due to Mahler [10]. In Step 4, fact that the sign of « Pl
The 1_116(111;1d.11.ty I\(ﬁ(%();\) |1C-‘Z.L:1Its- from the inequality |o] = 7i;- (;Fhlh l::{? inequality

: > sign of 3 esults » ol gy (Thie Talier

ig:le):xl:r:lpel:%rom the inequality |af > 1/M(D;,;) which 1s easily |

opos t n ]. l L !: !: € (A ” (]f,( f (2
P 10 A g07 'LtlL"lL (") TUNS 11 LIUMNE O n lO > lO 1) IQH U?Il 216 1 LE J7 €E O
I p 1

Proof. Apply Theorem 1 to each of the polynomials D;; with € = €.
I . 3 i

l t] o sect | S e prese te W (5 S eve \l S l 2 lll pl'ﬂctice thmf
1 S WO secllol Wi 1038 c a hl Ve TH.L' KS 1 anc . 3 1 ]
1 e la 3 i 5 e P resent .ld WO 1M .tllo(l., thdvt ac o . 2 o
t Wl (0] l[‘let’ 'l.() lb al ‘f‘ a Wt‘lll]’y € ;(pl”l]%‘i ve. Ve I)I'(“.,Sellt hel‘e il.IlOtll(“/I 2!1801 ] LhAI]-l, l V.V 111(11 W( 0' lrkoo'i Onl liko, S h i
(l V‘. . -lt'o S a:](’l‘ hiCh .lC I]ll,lch (lui k ] 8 AIlO ;h L ﬂvd a1l Elrg > 10, 15 > &
the I‘a,t 1‘()1[& hl[l(, 1018, I W 3 S CKe €. V. t e 118 new dl 1k tl 1 s the

t, \M l tl N i e re.viOlls
we w whetne WOTrKs O (0} (5 €s €. E i o Oi t/h g p
. . Ot‘ ) ) we can revel 0 one (
k h th T i rk.‘ I 1L 1, h =11 1t does 1 3 :

> call KNo =] =} D

g ations of the roots of @
i ick te approximations o N
18 is essentially numerical. We compu 0% s of the 2o i
metho ’I‘;hflib (Iin ezh;){:;;;i:}:?n witl? a relatively crude a.bsohl\)te ;arxlm (i,oi?;};Iallaiese et
using a root Iindin + cases though, everything can be deducec hese cxbi
the pre[v“])uj\segtllqn)l; 1;23 I;lao\:;i ;d:(:t ﬁndlijné algorithm and demonstrated the following
In [17], A. Schonhage gave a

We ca®
Theorem 2 (Schonhage (S ; ; le >0 We
b A wonic polynomial, n = deg(P), and
0 Let P (L[z] be a monic poly i
rer ( (& hag )

compute n complex numbers vy, Un such that (
lP—(z——'ul)...(z—‘U”)‘ < € |P|/))]
‘ () » 3 )'l > ( 4 log( € .
thin the time bound of O [(n”*log(n) + log(|P|/€)n*) log(n log(|P|/€)) log log(n
we
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ftancs has for generating function

Although this bound seems slightly weaker than the previous one in Proposition 1, this one is in

terms of bit complexity. Note that this algorithm does not approach directly the roots with an
absolute precision e. But from inequaljty (12) one can derive absolute error bounds on the roots
of P. This algorithm was optimized by Gourdon [8] who implemented it in MAPLE; the program
gives the right result in a reasonable time. We shall rely on this method to approximate roots of
polynomials.

Let Q(z) = [k D:f,j be a square-free decomposition of the polynomial Q). Using Schénhage’s
algorithm, we compute for each (7,7) approximations &1,...,&, of the roots of D; ; such that
|Di,;(2) = [Tx(z — v&)| < € (we can assume D; ; monic), with ¢ = 10~", where n = deg(Q). We have
already seen that from this we can compute for each root «y of D; ; an absolute error bound 7, > 0
such that |&x —ak| < 7. Suppose that the absolute bounds 7 determine which roots are conjugates,
which roots are real and what their sign is. To achieve Tasks 1 and 2, it then remains to compare
the moduli of the non-conjugate roots. If again, the absolute error bounds 7, make it possible to
decide these comparisons, then we have finished. Otherwise, we have a certain number of couples of
non-conjugates and distinct roots (o, 3) of Q such that, if & and 3 are the approximations of « and
f# found and 7 and 7’ the absolute error bounds found for these approximations, ||&| — l[)’” <747
We call these couples candidates. In this case, we use Algorithm 9 (see below) to test the equality
of the moduli of the candidates. If all the candidates have the same modulus (this is often the
case), then we have solved Tasks 1 and 2. Else, this algorithm failed and we use one of the previous

methods discussed in Sections 2 and 3. The underlying idea is that it is very unlikely that two
non-real roots of distinct moduli have the same argument.

Algorithm 9 (Equality of candidates) Let P = Mo (z—a)
We are given approzimations &;, absolute error bounds T,
I<j<n, the number s; of elements of the set I = {4,]||&

be a square-free polynomial € Q[z]
such that |&; — o;| < 75, and for each 7,
| = lagl] <7+ m).

1. Compute the square-free decomposition P & P = PiPZ=:s P,

2. By Sturm sequences [19], compute for each k the number my of non-negative real roots of Py.

3 f (a) my + 2my + -

“Frmy =mn, (b) for al (i,5), either T; N I'i=@2orly =T}, (c) for all
£, bmy = [U5|=gl‘,-|,

then for all j, all the elements of L; have the same modulus.

Proof. Since P® P = [1:;(z — aie;), the |a;|? are roots of it. If my + 2mg + -

“+rm, = n, then
these are its only positive roots. The result is now obvious.

> Examples

Denumerants (4, p. 108]: the number of ways to make n francs with coins of 1, 2, 5, and 10

. 1
f(z) = (1=2)(1—22)(1 - 2%)(1 — z10)°

€ ten singularities have the same modulus, but 1 be
*mposition (3) produced by Algorithm 1:

ing a singularity of order 4 is isolated in the

1/100 7/100 91/400 . 21/50 4B° - 38+ 28 -6
(-2 " (1= 23 (=22 1-2¢ PB4 5410 100(8 — z)
M 5 170" + 903 + 17T + a+1 o — 27a° — l4a* — 33a + 3
05+2a1+2aa+202+2a+1=0 2000(2—' b 0)2 500(2 . a)
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From this we deduce easily the first terms of the asymptotic expansion of [2"]f(2):

n®  9n?

B 421
600 200

1200

(1" _
80

>

250
chZ;"(z4+z3+z2+z+1) 2

Sum of powers of Fibonacci numbers

sequence yield another linear recurrent sequence.

5i3 :E (5) By
1 — (=1)*Ly_akz — 22

k=0

, if pis odd;

E-1 o (_1\k e/ P
5-P/2 Z <[’>(_l)k 2— (=) L2 g S__)_-—(—’ii ,if pis even;
=0 \k T— (1L uz+2*  1— (-1

the tenth powers of the Fibonacci numbers, which we give in compact form to our algorithm:

29 _ 87 25 — 4047 27 4 42186 2" 4 205690 25 + 42186 24 — 4047 z* — 87 242
1189210 — 489529+ 8321523+ 58250527 —

is the denominator of f and P is the following polynomial:

P() 1088331670771 147618897967 25161090223051 , =~ 473498073791 ,
= — 2z _—
# 1606555078 1250000 | 128854687500000 ~ * 98535937500000 4692187500000
48654728411, 178616503 2060862361 o 4085959559 7
541406250000 8789062500 541406250000 4692187500000
. 383607377 1645213621 496515521 o
_Z z - 5
7579687500000 1675110937500000 46065550781250000

This decomposition implies that all the singularities are simple poles.
algorithm is to determine the number of real and complex roots of each modulus for the
of the roots. This is done
that all the roots are real, and yields their signs.

are
: P(p1) i1 P(=p2) P(p3) 1
Mf(z) = o + ()T =g Yo\ )
[ ) /’1+1 /’2+1 /’:s+1 3
with p; ~ 0.00812, p, =~ 0.0212 and p3 =~ 0.0753.

A large problem This combinatorial problem was considered in [5]. Starting with

down a sequence of
Thus the second word is 11 because there is one 1 in “17.
word is 21, and so on. The first few words are: 1, 11, 21,
then consider the sequence of lengths of these words: 1,2,2,4,6,6,6,8,.
this sequence is rational of degree 79! From the table in [5, pp. 177-178],
this fraction by solving a linear system. The numerator is found to be

Then we have two 1s, hence ¢
1211, 111221, 312211, 13112221, .-
.. What happens 1

Plz)=14+2— 2B S5 462+ 8210 — 10212 — 5217 + 2 + 4215 4 210 + 42 4
L0519 _ 4720 — 2257 — 3027 + 422 4 524 4 38220 4 1727 — 682 - 9827 4 227° — 1.
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3 =3 ==
e+ AatT)H4 cos|(n + 2) arg(a)] n+O0(1).

Since rational functions (when they are regular at in-
finity) are closed under Hadamard product, and the sum of a sequence is obtained by multiplying

its generating function by 1/(1 — z), many operations that can be applied to a linear recurrent
We consider here Yj_; F{. It is not difficult (te-

dious, rather) to show that the generating function of F? has the following expression for fixed p:

where L, denote the Lucas numbers. From this we construct the generating function of the sum of

151451325 — 151451325+ 58260524+ 8321523 — 489524 — 89z+1

The first stage of the algorithm produces the decomposition f(2) = Lq(a)=0 P(a)/(e — z), where

The next stage of the
first modul

by a numerical evaluation of the roots with error bound 10~* which shows
For instance, the three first terms of the expansiol

1, we write

words by counting the number of contignous identical digits in the preViOl}llS V;gf rd
e thi

that

it is possible to comP

17 + 711&.

+13231 = 37232 + 45233 54 34 35 36 X
g - ;Ll 472 v 12:8 = 34:9 = 82::37 + 1728 4+ 89239 4 13240 — 34242 _ 89,43
g + + 31277 — 1282%° — 1429 4 492°° 4 56251 4 74252 — 99253 _ 9055 — 43,55
+332°% + 47257 — 412%8 4 182%9 4 50250 — 10251 — 13252 — 9,63 _ 17254 4 38,55 4 "
68_ i ’ . : — 1 _ . Z’ ::2)‘)__4 163 l 67
+82°% — 425 — 2027 _ 1927 4 28272 4 30273 — 22,74 — 18,76 4+ 1277 R

and the denominator is

16 517 >
52" — 8z +7z18+219+8210

— 5222 A 82’23 1952 4525 26 s .
1 — 42" — 2% +182% — 427 4 257 — 13,7 - 7,7 : :
— 6236 — 4537 4 135 ¢ ? 3230 — 7237 41923 — 1423 4 14,3
6% — 4257 4 13258 _ 0599 _ 7,90 4 4,41 _ g,42 | 7,43 | 5 44 745 142°% + 142

Qz)=1-2-22 -2 4+ 24 +325 - 27— 28 43,134 3,14 _ 9,15 _

1 8249 _ 7,50 + 162°1 — 6252 — 7,53 54 | .55 5 F L T 20k
7 72°% — 62°% + 32°5 4 192%0 — 5257 — 5258 _ 14,59 1 8,60 4 9,61

+ 7202 _ 5,03 64 _ .65 G 5
29 4 2 82%° + 14250 — 11257 4 1628 — 18259 4 9,70 _ 9,71 4 6,72,

OD = S p = -
e Of the nice theOI‘PInS m [5] Stateﬁ- tllat th]S (leHOIIllnatOI 18 aCtllaHy lll(le PIldth Ot th? starting

string, provided it different from “22”. Thus i
; > . Thus in the leading : ic i
the constant factor depends on the initial string. AR GRS ot S S ey

Despite the large deg  thi i
; - e degree of this denominator, it turns o
. ; s out that the as 1 ST
too difficult to find. For the sequence we consider, the decompositio}:(:i§}1,;75t?flc erpansion s et
P(z)

= F(a)
Q(z)

)
«

R(z) +

Q(a):() e

where R is a polynomial induc '
ik ] . iced by the first terms, 4 3 ;
250-digit rationa icletits e st terms, and F is a pol 1 af deor .
only ilrgl’;erle:gz(zln(id i(})eff;icleglts.l This means that all t’he singularitig)s éz}goi?rsélgtpiiﬁleelz l Wlt'h
. n the first order estimate, it then remai o - o0e
B et e : 2, 1t then remains to determine th - of roots of
the::e Ii)oltlioi(lll:m' Ats expected since the Foefﬁcmnts of the generating functioi Ial,‘xl'erxn be{'t(? s Ot’
algorithm [8] WE O:tl:f real number. Using the program of X. Gourdoh based on RObé 1}‘1"“, ;)ne ?t
R inds of thé orv‘dixj 1012‘,‘8 the; -t}’vo smallest moduli are approximately 0.767 and 0 861 LW?tr];ldge \
feal). Thus [Z”]j(z) F(7 V‘)’U_c"h_lshows that the root of smallest modulus is a.lon(; (alid thel-:kr)?:-
4 i ~ L{p)m m ~0.767119 and F ~ - A
the int i 67119 and F(p1) ~ 1.566. All the
interval (0.767,1.151), showing the need for caution with) numerical es‘tit:leagez AR

Conclusion

Algorithm 8 sl imp i
e t}:o(l)ll(()l ré?tpl)rec)llllyiglllelltg(l blindly. Although its complexity is polynomial, the constant
R con.lpute s ptotsl ion 1 18 very la.x.'ge. Thus in our last exa,lnplé above ,theJ reckis"m
. > roots would be approximately 522000 digits. Instead, one S',houlj(lpu " 111911
. Instead, one shou se this

algorithn 1 er 1 ve St wyele] €erica. ogra
1 as a. llpp g bou l(l 1 1 a i g
[ ] .11 a,da, htati = plogranl ba..'ed on a 5 (l num ,I'i l pr gr 1T hu(-h

Noathgda[?i%?;tthm S})l, increasing the precision if necessary.
 Heteat p.osvivtei-v:,ve I;f(ie\{el' used the fact that in combinatorial contexts, the generating f
l ... oy po mod;lfl?:' 'C}?lllts and thus by Pringsheim’s theorem (see [26]) one'of’tﬁeiié qirlllr?c_
The computation of the fi lts 1?? positive, the other ones having arguments confmeﬂsurabl‘e vx;ithgw
o ion of blrb -order estimate could take advantage of this extra inforrnatioxi "
IVed. . & bpe ufgﬁl ; ixln 0f ‘lé.near recurrences with rational coefficients is not yet corﬁpletel
e a5y mptotic ox al;q' : ’IP}ia( ice to hz?,ve some c':ontrol over the periodicities that may oc - o
pansions. This problem is exemplified with the following generating 'furl}xlctibocllll'1 "

(=221 =27

Cquivalently v, = 2u,,_

(] + n—2 — 21 ' 1 _
P are 2,2, 5 4 9 6,1 Un—y = &lys + 2y, uo = us = 2,up = 5,u3 = 4. The first few

15 i
» 8,25, 10, .... The first-order asymptotic approximation obtained
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from this generating function is (1 + cos nm)2 "t + o(2"). What happens is that although valid for
all positive n, this expression reduces to o(2") when n is odd. Better precision necessitates to look
for further terms in the expansion. The ideal algorithm outputs a list of asymptotic expansions
depending on arithmetic properties of n. Cancellation in this context is not a trivial problem. For
instance, no algorithm is known to determine whether a linear recurrent sequence takes the value 0
for some index. It is known that when such a sequence cancels infinitely often, the indices where it

finite union of arithmetic progressions that can be computed [1], but

cancels asymptotically form a
our problem is different since we are only concerned with indefinite cancellation of the dominant

part, which does not satistfy a linear recurrence in general.
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Generating Convex Polyominoes at Random
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Abstract

We give a new recursi
_ ursion formula for the numb '
e : ; for the number of convex polyomi i
peret pOIy;;)n?nthls vae ‘derlve a' bijection between an intervr;ll };f nlantiisa.lwm}l ﬁ;(ed
e ;)e; of given perlm(?ter. This provides a possibility to gen m:m e
e ndom in polynomial time. Our method also 1i Eon st s
' v:}x: when fixing both, perimeter and area rpples for fred area
n the second :
part of the paper we present a simple linear time probabilisti
ic

algorithm which unife
; ormly generates co i ;
asymptotic probability 0.5, nvex polyominoes of given perimeter with

1 Introduction

Unlt SquaIeS havlng thelr Vertlces at nte €T pOlntS mn the alteslal I)la,]le are ca. led Cells.
g C
p y Inois a Connected ﬁnlte Subset Of Cells m the gIId. Ihe Ilulnbel 1
A 01 om Of ce ls 1S the

p y 1no. Ihe length Of the bounda.ly 11 1 p ] 5 .
area Of the 01 omino 1S Ca ed ts e lllleter

[¢) yo oes nha b N y .
IO t (o} pOl tS (o) n
I 11110€ h ve been Studled essentlall f I tw n f view Ihe queStIO

how to tile the pl i
plane with polyominoes i
Sl es is adressed (among others) i
Ominoe]s ot [BZ I(l)’;il]er II;axlld several authors treat enumerative quesst)ic:rllls [2;:81]’ '[Cong()]
et m,a [ ° 69]). There, two polyominoes are indentical if ‘cheier'mng o
e pping one to the other. The asymptotic behaviour of ety i
iy (Cfs s{ege;z:; 8a]pp[llllca.tlons to problems arising in percolatirorcx) t(lzleer;am' e
: : u in88]). Fo i
enuﬁeraltlon L L ;ee [Delg)ll T a survey on recent results concerning the
polyomino is called convex, if th r i
s tersect i i
o ein ion with any horizontal ical line i
Rl years ago MP Delest and G. Viennot ([Del84]) found (t?}r1 e
yominoes of perimeter 2n + 8 is given by P,,,5 = (2n+ 11n)4" a:(;he nu)mzber
= —4(2n+1)(3).

Ihe pl‘oof O 1 ectl ve a. t (o) Y% y
fthls formula iS not b“ i
. lJ C nd huS dOeS not pro ide a pOSSlbilit to genera.te

)

In thls aper we esent a NewW recursion 1or a 10 ‘ € nu l)e] }
p p T pr sen f mul f T h num
n

Ominoes i : .
of given perimeter n. We will construct a bijection from {1 of convex poly-
Ve

., P,} into the set

su porte € (serman R i € FOrSChUH sgemeinschaft SF B 3()3
eseaICh ASSOClathD (Deutsch
supp‘)lted by the Gelma.n IlesealCh ASSOCIa‘loﬂ (DEUtSChe Fotschungsgememscha.ft) )




