from this generating function is (1 + cos nm)2 "t + o(2"). What happens is that although valid for
all positive n, this expression reduces to o(2") when n is odd. Better precision necessitates to look
for further terms in the expansion. The ideal algorithm outputs a list of asymptotic expansions
depending on arithmetic properties of n. Cancellation in this context is not a trivial problem. For
instance, no algorithm is known to determine whether a linear recurrent sequence takes the value 0
for some index. It is known that when such a sequence cancels infinitely often, the indices where it

finite union of arithmetic progressions that can be computed [1], but

cancels asymptotically form a
our problem is different since we are only concerned with indefinite cancellation of the dominant

part, which does not satistfy a linear recurrence in general.
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Generating Convex Polyominoes at Random
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of polyominoes with perimeter n. This bijection leads to a polynomial time algorithm
that generates polyominoes with fixed perimeter with uniform probability. The same
method can be used to produce random polyominoes with fixed area or fixed area and
fixed perimeter. Furthermore, we suggest a simple probabilistic algorithm with linear
running time for this task.

2 Counting Polyominoes

A polyomino P of perimeter n determines a smallest rectangle r( P) of perimeter n which
circumscribes it. A rectangle s of height 1 is called a strip. We consider each polyomino
as a sequence of strips (sy,. .. ,8k), where s; is the topmost strip and s is the downmost
strip of the polyomino. Fixing an embedding of a strip s we denote by L(s), R(s) the
horizontal coordinates of the leftmost, resp. rightmost point of s.

Definition 1 Let P = (s1,...,5) be a polyomino, s the downmost strip with L(s;)
minimal and s, the downmost strip with R(s,) mazimal. We partition the set (s, .., k)

as follows (cf. figure 1):
i. the top S1,. ..y Smin(i;r) »
i. the Interior Spin(i,r)41> - - -1 Smaz(lr) »
iii. the bottom Syac(i,r)+15- -+ Sk
We say the interior is of eastern type if | < and of western type if [ > r.

Note that the top is always nonempty while interior and bottom may be empty.

Given a polyomino it is an easy task to construct its partition into top, interior and
bottom.

We consider four different types of polyominoes.

(t) Polyominoes with empty interior and empty bottom
(s¥) Polyominoes with empty bottom and western interior
(i°) Polyominoes with empty bottom and eastern interior

(b) Polyominoes with non-empty bottom

Polyominoes of type t are called stack polyominoes and have been studied in [Del84].
In our bijection we will construct a convex polyomino P strip by strip starting from

the top.
Given a partially constructed polyomino P, determined by a sequence of strips s1,-;5;

we consider the set of all possible extensions of P to a convex polyomino P.

Lemma 1 Let P = (sq,...,8;) be a convez polyomino. Then the set of all extensions
(8j41---+8k) of P to a convex polyomino P = (sy,...,si) s determined by the type of P
and the last strip s;.

r l

top J l

interior !
bottom

Figure 1: Polyomino of western type
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Figure 2: The bottom case

We already are in the bottom case and hence the extending strips s; must be monotonic

increasing with respect to L(s;) and monotonic decreasing in R(s;) (cf. Lemma 1).

Now, fixing m = L(s;j41) — R(sj41) we have i —m + 1 possibilities to attach sj41 to
P. Let I denote the length of the path replacing the bottom line of (51, -+ Sj+1)- [ denotes
the length of the path replacing the bottomline of P. Hence [ =m—m+2+1 and

Ny(, 1) = (i — m + 1)Ny(m, [ =2 — 7+ m) for I > m, [+ meven. (1)

1

1

1]

m

Next, we count the number of extensions N;(i, [) of polyominoes with empty bottom
and non empty interior (type i). We have to consider all strips with R(sj41) < R(s;) in
the western case (L(sj41) = L(s;) in the eastern case). By symmetry we may restrict our
considerations to the western case.
If L(sj41) > L(s;) then the polyomino (51, $;+1) i of type b and analogous to the
first case we get
=1
> (m —m)Nb(m,i— 2—m+m)
m=1

extensions with L(sj+1) > L(s;)-

For the second part of the interior recursion we have L(sj41) < L(s;). We abbreviate
a = R(s;) — R(sjs1) and b= L(s;) — L(sjy1) (see figure 3). Then 0 < a < 7. The
parameter a will become one running index of the sum in our recursion. Fixing a, we
have to determine the feasible values of m.

Following the path from the left endpoint to the right endpoint of P in the polyomino

P we get ”
[=b+14+1+1+a.

Furthermore we have a +m = 7 + b, and hence

l+m=1+m—2a—2.

<h
I

Figure 3: In the interior case
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From this relations we derive the number of polyominoes with fixed perimeter n con-
sidering all possible strips s; and counting their extensions. Thus, we have proven the
following theorem

Theorem 1 The total number of convez polyominoes of perimeter n s

Po= 3 Ny(, D). (4)

m+2+i=n
]

Remark 1 [t is easy to see that Ny(m,l) = (7::_11). Ezplicit formulas for N; and N; should
provide a bijective proof of the total number of polyominoes.

3 Constructing the bijection

The considerations in the last chapter induce a tree, where the leaves are the polyominoes
of a given perimeter, interior nodes are partially constructed polyominoes and the root is
the empty polyomino.

The numbers Ny, N;, N; and P, associated with the interior nodes, resp. the root, give
the number of leaves of the corresponding subtrees. Now, consider an embedding of such
a tree in the euclidian plane. This gives rise to a linear order on the leaves and hence a
numbering of the polyominoes of perimeter 7. Obviously, for any given node, the set of
numbers of the leaves in its subtree is an intervall.

In order to compute the number of a given polyomino and vice versa we have to fix an
embedding. To do so, we fix some ordering of the summands in the equations (1) — (4).
Furthermore, we compute the table of the numbers Ny(mn, i), Ni(mn, 1), Ny(n, 1) for m S
even and 741 < n—2, and the total number P, of polyominoes using formulas (1) — (4).
Note that this table can be computed in O(n®) and requires O(n®) memory, for the size
of the numbers is bounded by In(P,) = O(n).

Our algorithm to compute the bijection between the polyominoes of perimeter n and
the intervall [1, P,] proceeds as follows:

Given a polyomino p = (s1,...,8;) we compute the partition of the polyominoes
of perimeter n induced by their first strip. The ordering of the terms in (4) yields a
partition of the interval [1, P,). Thus s; determines an interval I;. Applying this procedure
recursively — always taking into account the type of the already touched part of p — we
end up in a leaf of the tree with interval [4570¢

On the other hand, given a number j in [1, P,] we compute the partition of the interval
[1, P,], fix the corresponding strip s and proceed recursively.

The depth of the tree and its maximum degree is bounded by 252. Hence the above
computations can be performed in 0(n?), (O(n?) using uniform measure).

An example computation can be found in figure 4. There, we fixed the ordering of the
summands as they occur in the formulas.

To generate random polyominoes of perimeter n we proceed as follows:

Calculate the table and P,, compute a random number j < P, and apply the above
procedure.
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Theorem 2 A random 3 ;
. polyomino of perimeter n ) )
preprocessing time and O(n®) memory requirement.can = e Oy wo oA

Ihe same techni '
que can be uSed to com y i i
) ) pute random pol ominoes Wlth ﬁxed area A

In the first case th 3 : :
by O(A*) and O(A3) m. . . e preprocessing time is bounded
O(An%) memory_( ) memory is required. In the second case we need O(An*) time and

[1,120]
|
| ! | | |
['] IIZ IE C | ] C ]
|

(1,52]  [53,88] [89,109) [110,119] [120, 120]
bottom interior (west) interior (east) top

T

,? ;P A=y e I e Tt
| | | | l |

(89,89]  [90,92]  [93,93] [94,94] [95,95]

|

(102,107] [108,108] [109,109]

[ 1
bottom interior
—— |
| | |
[90,90) [91,91] [92,92)

Nontrivial values used in the example :
* Ny(1,9) =52, N,(2,8) = 36, N.(3,7) = 21, N,(4,6) = 10
* Ny(3,5) =1,N;(2,4) = 3, Ni(1,3) =1,Ny(3,5) = 6

Figure 4: Computing the 91st polyomino of perimeter 12
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4 A probabilistic algorithm

The algorithm developed in the last chapter has a huge memory reguiremelnzmlz‘z(r)te};e;
i ithmetic is necessary to compute random poly .
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by the boundaries of convex polyominoes encoded as sequencgs ;)f Ifleft’ I:nleg OI;Viou;s)
babilistic algorithm we first collect so
and 'D’own moves. To develop a pro : o wun
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erties of these cyclic’'LURD’ sequences. 5 . - : .
Ic);?lsex polyominoes of perimeter n as a pair of a number k in [0, %] and z?r (})1 1 strlngi }fe;t;
size n — 6. To generate a random polyomino we first guess a pair (k,s). len, we i
if this pair corresponds to a word of the language defined by the convex polyominoes.

it is, we decode it.

R Ry

tx, D

v u
Lo
U1 L DO
l

<—k—>

Figure 5: Some properties of an LURD encoding

Lemma 2 Let P be a con;;exlpolyo(rir)zivz;l)eoi:;;irzez;r’z,}s?)]tzh; cg’/[c]l;c} ZIb({gRg;;)quf::n;e
;‘Zi(;fzzgnf)}:‘z, bl(;zan:;?ZfI;fR) )dego,tt::, the cyclic *UD’ (’LR’) subsequences of T, then the
following holds (cf. figure 5):
i.l=r>0u=d>0
#i. There is a unique L =: Ly (R =: Ry) with successor R (L) in Tpy, and its successor
inT isaU (D).
iii. There is a unique U =: Uy (D =: Dy) with successor D (U) in Typ and its successor
inT isan R (L).
w. The smallest rectangle Q circumscribing P is of height u and width .
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Note, that every LURD-sequence with these properties represents a closed walk in the
rectangle @, that touches every side only once in the correct order and has no reverse
step. Obviously a LURD-sequence with these properties encodes a convex polyomino if

and only if the induced path is simiple. In the following we consider LURD-sequences as
words starting with the first U =: ;.

Checking simplicity of a LU RD-sequence can be done in linear time using the algo-

rithm in figure 6. We start at the downmost leftmost point and construct the left and the
right side strip by strip.

Function CHECKSIMPLICITY
(0) I=0,r=0

(1) Fix the left side: While the first entry is an 'L’ ('R’) remove the first entry and
change ltol—1 (I+1).

(2) Fix the right side: While the last entry is an 'R’

(’L’) remove the last entry and
change rtor —1 (r+1).

(8) Start next strip : If / < r then remove first and last entry and go to (1).

(4) Check : If the sequence is empty then return SIMPLE else return NOTSIMPLE.

Figure 6: Checking simplicity of an LURD-word

We will prove that in most cases LURD-sequences with (i)-(iii) encode simple paths.
Thus, to generate convex polyominoes at random we might generate uniformly distributed
LURD-sequences with (i)-(iii) until we get a simple path. Instead of trying this, we
eliminate the corresponding redundancy.

In order to achieve this we consider words on the alphabet {V, H} and map the LURD-
sequences to vertical-horizontal-sequences writing an 'V for every 'U’ and ’D’ and an ’H’
for every 'L’ and 'R’. In addition we store the number of 'L’s before the first 'R’ (the
distance of the starting point Up to the left side of the rectangle). This enables us to
reconstruct the LURD-sequence from the corresponding VH-sequence. We can encode
LURD-sequences as a pair of a binary string of length n and a number & in 0,...,2-1.
To eliminate some more redundancy of this VH- k-encoding we observe the following:
Lemma 3 Let T be a LURD-sequence with properties (1)-(iii), S its VH-k-encoding,
h (v) the number of "H’s ('V’s resp.) in the VH-sequence then:

.. kb and v are even.

ii. After the k-th and after the k + A-th H’ there is a 'V",
wi. After the 3-th and after the last *V’ there is an 'H’.
w. The first symbol is a 'V’,
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With this information we can reduce our encoding to a binary string of length n - 6
i 2, Tod we first remove 4 redundant letters of our encoding using
and a kin 0,...,%. To do so, R
(43) and (44i). Moreover, (2) allows us to forget aboutdthe last letter Ap T
i i i ili 3 have to consider two cases.
tring, the parity bit. To utilize (iv) we : 3 :
Zntryg of the remaining string must be a 'U’ and we can dele.t‘e it. If k —bQ ther:t ;isna.
minor problem. The first *U’ has already been deleted using (zz) To get a 1n§ryt t g
of length n — 6 we delete the first entry and store this information in k. If the first entry

is an "H’ we change k to %, else we leave k unchanged.

LURD-sequence | VH-k-sequence Step 2-3 Encoding

ULURURDDDL | 1 - VHVHV HVVVH | 1- VHHVVV | 1 - HHVV

UURURDDDLL | 0 - VVHVHVVVHH |0- VHVVVH | 0- HVVV

URUURDDDLL | 0 - VHVVHVVVHH | 0- HVVVVH |5 - VVVV

URUURDLDDL | 0 - VHVVHVHVVH | 0- HVVHVV | 5 - VVHV

1- VVVHVHHVVH |1-VVVHHV |1- VVHH

] S S

0 - VVHHVHVVVH |0- VHHVVYV | 0 - HHVV

Figure 7: Some k — V H sequences and their decodings

Unfortunately, the conditions (i) to (iv) are not sufficient 'to characterize t}tlethI}{(;
sequences induced by LU RD-sequences. The last two examples in figure 7 can not be
encodings of LURD-sequences with the properties of Lemma 3.

Lemma 4 Let S be a VH-string of length n, 0 < k < 5 — .1 wi'th yr.operties (z)-(;v)ft’;;z
S is a VH-k encoding of an 'LURD’-sequence with properties (i)-(i1i) of Lemma 3

only if

v. The k-th *H’ occurs before the 3-th 'V’

vi. The k+ &-th "H’ occurs before the last "V

vii. The %-th ’V’ occurs before the k + %-th 'H’.

Proof: (v), (vi) and (viz) correspond to the fact that a path induced by a LURD-
sequence hits the sides of the rectangle in the correct order. To prove sufficiency, we
construct the path induced by the LURD-sequence. First, we draw a rectangle of lenght
% and width % and start at the bottomline at the point with distance k from the left side.

Now, we do left and up moves for each ’H’ and *V’ until we hit the left boundary. Then,
we switch to right and up moves etc. O

In order to generate a random polyomino of perimeter n we repeat the algorithm in

figure 8:
Function GUESSPOLYOMINO:

(1) Choose a number & in 0,..., 2 and a binary string of length n — 6.
(2) Generate a VH-k encoding of length n using (iv)-(i).

(3) If (v),(vi) or (vii) does not hold, then return fail.

(4) Construct the LURD-sequence using the method in the proof of Lemma 4.

(5) If the path induced by this sequence is not simple then return fail else return the

LURD-sequence.

Figure 8: The main loop

Theorem 3 i. If the function GUESSPOLYOMINO returns an LURD-sequence then
this sequence encodes the boundary of a conver polyomino.

i. Every convez polyomino is generated with uniform probability.

it. The function GUESSPOLYOMINO returns a polyomino with asymptotic probability
0.5.

w. The function GUESSPOLYOMINO has linear running time.
Proof.

1. This is a direct consequence of the Lemmata 1 - 3.
ii. Fixing the perimeter 2n + 8 we select k in 0,...,n+4 and a randomstring of length
2n + 2. A polyomino is output of this algorithm if and only if the correct pair was
choosen at the beginning, thus every polyomino has the probability W'

We have Py,15 = (2n + 11)4™ — 4(2n + 1)(%"). Using (**) > £ for n > 4 a simple
calculation leeds to a probability of less than 0.5. On the other hand, utilizing Ster-

ling’s formula we get (*") < ﬁ; for large n which implies an asymptotic probability
of 0.5.

iii.

iv. This is trivial.



The convergence of the probability towards 0.5 is veryl fast.h It is chus p;)ss;bizrgz
i i 1 ithm. However,
lyominoes effectively with our algori
generate large random po : : el el
] 5 tangle standing on a corne
dom polyomino tends to look like a rect :
El‘alrllis is nfc))t Zurprising, since the interpretation of a random 0-1 sequence as a left-up walk

will asymptotically yield a diagonal.
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Quantum Letter-Place Algebra
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Abstract

A quantum analogue of the supersymmetric letter-place algebra of Rota and his
school is presented. Although it is significantly different than the ordinary letter-
place algebra, it still possesses the most important combinatorial structure: standard
quantum left (resp. right) bitableaux form a linear basis of the quantum letter-place
algebra. The quantum straightening formula holds for quantum letter-place algebras.

0. Introduction

In [DKR] and [GRS], Rota and his school systematically developed the theory of the
supersymmetric letter-place algebra. Although the algebraic structure of the letter-place
algebra is isomorphic to the algebra generated by all minors of a generic supersymmetric
matrix, the invention of the so-called letters and places distinguishes the letter-place algebra
with its broad applicability and rich combinatorial structure. For this reason, this algebra
has been widely applied, and proved to be an effective algebraic-combinatorial tool so far,
to different areas like classical invariant theory ([GRS], [KR], [Hul]), representation theory
([BPT], [BT]), resolutions of certain algebras and modules ([AR]
([RS], [Wh]), rigidity theory ([WW]), etc.

In the present paper we use Manin’s approach of quantum groups to develop a quantum
analogue of supersymmetric letter-place algebra. Generalizing Manin’s definition of quan-
tum general linear supergroups, we define (supersymmetric) quantum letter-place algebra
Super[L|P], by requiring that both the left co-representation 7; from the quantum letter
algebra super(L], to Super[L|P], ® Super[P], and the right co-representation 7, from quan-
tum place algebra Super[P], to Super[L], ® Super[L|P], are algebra homomorphisms. In
the case that L = P, the super bialgebra Super[L|L], coincides with the quantum general
linear super(semi-)group E, defined in [Ma2]. Hence Super[L|P], can be also viewed as a
Supersymmetric analogue of the quantum linear semi-groups M, (q). Again, as an algebra,
Super[L]P]q is isomorphic to the algebra generated by all (left or right) quantum minors
of a generic quantum supersymmetric matrix. However this quantum letter-place algebra
is significantly different than the ordinary letter-place algebra. For examples, one has to
distinguish between “left” and “right” quantum biproducts, although it turns out that they
ouly differ by a scalar multiple, and only left-sided (resp. right-sided) Laplace expansion
holds for left (resp. right) quantum biproducts (Proposition 4). No clear relation has been

, [BR]), projective geometry
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