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THE CONJECTURE OF STANLEY FOR SYMMETRIC MAGIC SQUARES

Rong-Qing Jia
Department of Mathematics
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Edmonton, Canada T6G 2G1

In this paper we a j
pap nnounce a proof of Stanley’s conjecture for symmetric magic squares

St
(see‘[ 3.3.76], [Sta83., P-40] and [Sta86, p.262]). The solution of the conjecture is a nice
application of multivariate spline theory to combinatorics

1. Introduction

' An m X m matrix with non-negative integer entries is called a magic r-square of ord
m if every row and column sums to r € IN where IN is the set of o
Let H,,(r) denote the number of all magic r- iy
and Hj(r)

negative integers.
squares of order m. For instance, H (

- | . 1 7‘) == 1
7+ 1. It seems that MacMahon [Mac15, §407] first computed Hj(r):

+4 r+3
mm= ("1 +( T
4 4 * 4 )
Guided by this evidence, Anand, Dumir and Gupta [A

DG66] conj isa
polynomial in r of degree (m — I)? i ool

. ' Their conjecture was confirmed by Stanley in [Sta73].
mag;:x:‘ -1:1 :a:: :_;zjzj:r;cl I.I;atl‘lx with non-negative integer entries is called syn[imetm']c
B e of o i evel:y row.(and hence every column) sums to r. Let S (7)
T, S)('immetnc magic r-squares of order m. Carlitz [Car66] calculated
e v S_ ound that S,,,(.r) a?'e not polynomials in r for m = 3 and 4; rather,

n m(2r + 1) are polynomials in r (m
the case for all m. His conjecture was solved by S
obtained the following result.

=3 and 4). He conjectured that this is
tanley in [Sta73]. Later, Stanley [Sta76]

Theorem 1
- Let m > 1, and let S,,(r) be the number of Symimetric magic r-squares of

order m. = r
, m . Tht.en Sm(r) = Pp(r) + (-1) Q@m(r) for all r € IN, where P, (1) and Q. (r)
Polynomials in r with deg P, = (7). Moreover, " me

degQ <(m—l ey ) m—2
m: S 9 1 if m is odd; dengs( 9 )—1 if miseven. (1.1)
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In order to count S,,(r) it is important to find the exact degree of Q,,. Stanley con-
jectured that equality holds for all m in (1.1). He supported his conjecture by computing
Ss(r) and found that the degree of Q5 is 5. In [Sta83] and [Sta86] he raised this conjecture
again and again.

Note that each function S,, is a quasi-polynomial (see [Sta86, p.210] for the definition).
In his study of linear diophantine equations, Ehrhart introduced the so-called Ehrhart
quasi-polynomials (see [Ehr77]). The relationship between symmetric magic squares and
the Ehrhart quasi-polynomials of a certain type was discussed in [Sta86, pp.235-241].

We shall use splines (piecewise polynomial functions) to investigate this problem. This
approach was initiated by Dahmen and Micchelli in [DM88] and is totally different from
that of Stanley, who based his results on commutative algebra.

How are magic squares and symmetric magic squares related to multivariate splines?
Magic squares and symmetric magic squares both are special cases of magic labelings of
graphs (see [Ste66] and [Sta73]). Further, as indicated by Stanley [Sta73], the theory of
magic labelings can be put into the more general context of linear diophantine equations.
A study of linear diophantine equations naturally leads to truncated powers and discrete
truncated powers, which are typical examples of splines.

We shall adopt the graph theoretic terminology used in [Wil85]. Thus a graph G is
defined to be a pair (V, E), where V is a nonempty finite set of elements called vertices,
and F is a multiset of unordered pairs of (not necessarily distinct) elements of V' called
edges. Note that this definition of graph permits the existence of loops and multiple edges.

Let 7 € IN. According to Stanley [Sta73], a magic labeling of G of index r is an
assignment L : E — IN of a non-negative integer label to each edge of G such that for
each vertex v of G the sum of the labels of all edges incident to v is r (counting each loop
at v once only). We denote by Hg(r) the number of magic labelings of G of index 7.

Let K,, denote the complete graph on m vertices, i.e., the graph with m vertices in
which every pair of distinct vertices are adjacent, and let G be the graph obtained from Kn
by adding one loop to each of its vertices. If (aij)1<i,j<m iS a symmetric magic r-square
of order m, then we assign a;; (i # j) to the edge of G joining vertex ¢ with vertex j an’d
assign a; to the loop around vertex i. This gives a magic labeling of G of index r. In this
way we establish a one-to-one correspondence between the magic labelings of G of index”
and the symmetric magic r-squares of order m, and therefore S,,(r) = Hg(r).

Let G be an arbitrary graph. Suppose the vertices of G are numbered {1,2,..-,7“}
and its edges are numbered {1,2,...,n}. The incidence matriz M of G is the m X#

matrix whose (i,j)th entry is 1 if vertex  is incident to edge j, and 0 otherwise. Supposé

s he
L: E — IN is a mapping assigning a label 8; € IN to edge j (j = 1,...,n). Let f be t
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column n-vector whose jth coordinate is Bjs 3 =1,...,n. Then L is a magic labeling of
index r if and only if J satisfies the/§ystem of linear diophantine equations

MpB =re,

where e is the column m-vector whose coordinates are all 1.

In general, a system of linear diophantine equations is of the form
Mp = q, (1.2)

where M is an m x n integer matrix, a is an integer column m-vector and one seeks
solutions 3 in ZZ", the set of integer column n-vectors. For a given a € ZZ™, we denote by
t(a| M) the number of non-negative integer solutions 8 € IN" to the system (1.2) of linear
diophantine equations. Thus, from the above discussion we see that Hg(r) = t(re|M).

The function t(-|M) : @ — t(a|M) (a € ZL™) was introduced by Dahmen and
Micchelli in [DM83]. They pointed out that ¢(-|M) is the discrete counterpart of the
(multivariate) truncated power introduced by Dahmen in [Dah80]. Following their lead,
we call t(-| M) the discrete truncated power associated with M. It was Dahmen and Micchelli
[DM88] who first revealed the close relationship between linear diophantine equations and
discrete truncated powers. Thus the theory of multivariate splines developed in the past
decade can be applied to linear diophantine equations.

2. Discrete Truncated Powers

Let M be an m X n integer matrix. The columns of M are integer vectors in IR™,
the m-dimensional real linear space. We use the same letter M to denote the multiset
of the column vectors of M. Throughout this section we assume that M spans R™ and
the convex hull of M does not contain the origin. The latter condition guarantees that
t(a|M) is finite for every a € Z™. For a multiset Y of elements of R™, we denote by #Y
the number of elements of Y, by span(Y) the subspace spanned by the vectors in Y, and
by cone(Y) the cone {Zer ayy : ay >0 for all y }. Note that if (1.2) has a solution
B € IN™, then a must lie in cone(M). In other words, t(a|M) = 0 for a ¢ cone(M).

Let S denote the linear space of all mappings from ZZ™ to the complex field C. An
element of S is called an sequence. Given y € Z™, the backward difference operator V,
i8 defined by the rule

Vofi=f-f(-3u), fe8.

“ The following difference formula was given in [DM88|:

Vyt(|M) =t(:|M\y) forye M, (2.1)
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and this can be proved by a simple combinatorial argument. It follows from (2.1) that
Vyt(-|M) =t(|M\Y) forY C M (2.2)

ere Vy = Vi
" Thel:iifferl;:lxi/ceeyfor;ula (2.2) motivates us to define two sets. The first is the set V(M)
consisting of those submultisets Y of M for which M\Y does not span IR™. The second
set c(M) is the union of span(M\Y') where Y runs over Y(M). A connected component of
cone(M)\c(M), according to [DM88), is called an M-cone. Let Q be an M—cone.' Th'ex‘l 'for
any Y € Y(M) and a € Q — cone(M\Y'), we have a ¢ cone(M\Y'), because 2 is disjoint
from cone(M\Y), and therefore t(a|M\Y) = 0. This and (2.2) together yield

Vyt(a|M) =0 for a € Z™ N (Q — cone(M\Y)).
Thus we are led to the following system of linear partial difference equations for f € S:
Vyf=0 forallY € Y(M).

The solutions to this system of difference equations form a linear subspace of S, which we
shall denote by V(M). The space V(M) was first introduced by Dahmen and Micchelli
in [DM85]. The following theorem is a modification of [DM88, Theorem 3.1], which is

important to our study of discrete truncated powers. Also see [Jia93al.

Theorem 2. For any M-cone (2, there exists a unique element fq € V(M) such that fg
agrees with t(-|M) on Z™ N Q, where Q denotes the closure of Q2.

Given 6 = (0y,...,0,,) € (C\{0})™, we denote by 60 the sequence defined by
am 0% =67 05 fora=(a1,...,am) € Z™.

For an integer vector y € Z™, V,00 = 0 if and only if ¥ = 1. This motivates us to

consider the multiset
Myg:={yeM: ¥=1}. (23)

It is easily seen that 80 € V(M) if and only if My spans R™. Let

A(M) := {0 € (C\{0})™ : span(M,) =R™}. (24)

The structure of V(M) was clarified by Dahmen and Micchelli in [DM85] as follows.
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Theorem 3. A sequence f € V(M) if and only if it has the form

fl@)= > 6°po(a), acz™

0€A(M)

where py is some polynomial in m variables of degree < #My — m for each 6 € A(M).

If M is the incidence matrix of a graph G, then the set A(M) as defined in (2.4) has
nice properties as shown in the following theorem (see [Jia93b]).

Theorem 4. Let G be a graph with m vertices and let M be its incidence matrix. If the
column vectors of M spans R™, then

6=(01,...,0m) € A(M) = 6j=1lor —1 forallj=1,...,m.

The proof of this theorem is based on the observation that there is a one-to-one
correspondence between the edges of G and the columns of M. Let e; denote the ith
column of the m x m identity matrix and let ei; =ei+ej 1,5 =1,...,m. Suppose the
vertices of G are labeled as vy,...,v,,. Then a loop around v; corresponds to e;, and an
edge joining v; with v; corresponds to eij. From the definition (2.3) of My we find that
e; € Mg implies 6; = 1, while eij € My implies 6;0; = 1. Let Gy be the subgraph of
G which consists of all vertices of G and all the edges of G corresponding to the column
vectors of My. Then the incidence matrix of G is My. From the above discussion we see
that if Gy contains a loop around v;, then 6; = 1, and if Gy contain an edge joining v; with
vj, then 6;0; = 1, i.e., 0; = 0‘-‘1. Furthermore, if there is a path in Gy of length k& from v;
to v;, then

0;, if kis even;
bi= {0;‘, if & is odd. (2.5)

It is easily seen that the column vectors of M spans IR™ if and only if any connected
Component of G is not bipartite. Let K be a connected component of Gy. Since My spans
R™, K in not bipartite; hence K contains a circuit of length k with k being an odd integer.
This circuit passes through a vertex, say v;. Then by (2.5) we have 6; = 6!, since k is odd.
It follows that 8; = 1 or —1. Let vj be an arbitrary vertex in K. Since K is connected,
there is a path in K from v; to vj. By (2.5) we have 6, = 6; or §; = 671, This shows that

bi=1o0r —1 for any vertex v; in K. Evidently, this conclusion is valid for any vertex in
Gy.
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3. Symmetric Magic Squares

Theorem 5. Equality holds in (1.1) for all m.

Sketch of Proof. The cases m = 1 and m = 2 are trivial. In what follows we assume

that m > 3. Let G be the complete m-graph with a loop attached to each of its vertices,
o . . (m+1

and let M be its incidence matrix. Then #M =n := ( 2 ) and

Sm(r) = Hg(r) = t(re]M), reIN. (3.1)

Obviously, e lies in cone(M), hence there exists an M-cone Q such that  contains e. B_y
Theorem 2, one can find an element fo € V(M) such that fo agrees with ¢(-|M) on Q.

Since  contains re for all 7 > 0, we have
t(re|M) = fa(re), reIN. (3.2)
By Theorem 3, fo has a decomposition of the form:

fa(@ = > 6°ps(a), aez™ (3.3)
0€A(M)
where pg is a polynomial of degree < #My — m for each § € A(M). By Theorem 4,
6 € A(M) implies that all the coordinates of 6 are either 1 or —1. Let A+(Af1 ) denote the
set of those elements of A(M) which have an even number of negative coordinates and let
A_(M) := A(M)\A+(M). It follows from (3.1)—(3.3) that

Sm(r) = Pp(r) + (=1)"Qm(r) for all r € IN,

where

Piilr) = Z pe(re) and Q.(r) = Z pe(re). (3.4)

0€AL (M) 6€A_(M)
Evidently, e € A4 (M) and M, = M. By [DM88, Proposition 5.3], the leadin‘g part
of p. agrees with T'(-|M) on Q, where T'(-|M) is the truncated power associated with M
From this fact we can prove that p.(re) is a polynomial in 7 of exact degree #M‘ -m th;l
a positive leading coefficient. Moreover, for any 6 € A4 (M)\{e}, it can be easily prove
that My # M. Hence by Theorem 3 we have

degpo < #My—m < #M —m for 0 € Ay (M)\{e}.

This together with (3.4) shows that the exact degree of Py, is n —m = (7).
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Now let 6 € A_(M) and consider t(-|Ms). By an argument similar to that used before
we have

t(relMg)=Pg(r)+(—1)'Q9(r), reIN (3.5)
where
Por)= > (re) and Qo(r)= 3 ge(re) (3.6)
§EAL(My) EEA_(Mj)

and g¢ is a polynomial of degree < #(My N M¢) — m for each ¢ € A(Ms). Evidently,
e € Ay(Mp) and 6 € A_(Mj). From (3.6) we can prove that ge(re) and Py(r) have the
same leading term, and gy(re) and Qs(r) have the same leading term. Since 6 has an odd
number of negative coordinates, we can show that t(re|lMg) = 0 for odd 7 € IN, and hence
Py = Qp by (3.5). Thus gg(re) and ge(re) have the same leading term. But ge(re) is a
polynomial in 7 of exact degree # My —m with a positive leading coefficient, and therefore
so0 is go(re). On the other hand, t(-|Mp) = Vi m,t(-| M) by (2.2). This formula relates pg
with gg, so we can prove that for each 6 A_(M), pe(re) is a polynomial in r of exact
degree # My — m with a positive leading coefficient. Thus by (3.4) we have

deg @ = max{#My: 6 € A_(M)} —m.

If m is odd, then the maximum of #Mp for § € A_(M) is achieved when 0 = —e. In this
case, #M_, = (';) If m is even, then the maximum of #M, for 0 € A_(M) is achieved
when all but one of the coordinates of 8 are —1. In this case, the maximum of # My for
0e A_(M) is ('"2_1) + 1. This shows that equality holds in (1.1) for all m.

The details of the proof of Theorem 5 will appear in [Jia93b).
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ABSTRACT. In the first part of this paper (sections 1,2) we give combinatorial proofs for de-
terminantal formulas for sums of Schur functions “in a strip” that were originally obtained
by Gessel, respectively Goulden, using algebraic methods. The combinatorial analysis involves
certain families of two-rowed arrays, asymmetric variations of Sagan and Stanley’s skew Knuth-
correspondence, and variations of one of Burge’s correspondences. In the third section we spe-
cialize the parameters in these determinants to compute norm generating functions for tableaux
in a strip. In case we can get rid of the determinant we obtain multifold summations that are ba-
sic hypergeometric series for A, and C, respectively. In some cases these sums can be evaluated.
Thus in particular, an alternative proof for refinements of the Bender-Knuth and MacMahon
(ex-)Conjectures, which were first obtained in another paper by the author, is provided. Al-
though there are some parallels with the original proof, perhaps this proof is easier accessible.
Finally, in section 4, we record further applications of our methods to the enumeration of paths
with respect to weighted turns.

1. Generating functions for non-crossing two-rowed arrays. We consider two-
rowed arrays P = (p | q) of the form

P-a P-at+1 ... P-1 P1 ... Pk ’ (1.1)
@ - 9k -1 - Gobt1 G—b

where a, k, b are some nonnegative integers and where the entries p;, ¢; are positive integers

such that both rows of the array are weakly increasing. (To be precise, if k = 0, i.e. the

‘middle part” of the array is empty, for a ¢ < min{a, b} we also allow the entries p_;,...,p_,

and g_;,...,q_, to be “empty”.) We say that P is of the type (a,b) and of the shape (a, k, b).

If both rows of P are strictly increasing then we call P a strict two-rowed array. Given an

array Py = (p(!) | ¢(1)) of the shape (a1,k1,b1) and an array P, = (p(? | q®) of the shape

(a2,k2,b7), we say that Py dominates (resp. strictly dominates) P, if the following three
conditions hold:

(D1) ay < ay and pgl) < p§2) (resp. pgl) < pgz)) foralll=—1,-2,..., —min{a;,a,}. (By

convention, these inequalities are also violated if pgl) should be an “empty” entry.)

1980 Mathematics Subject Classification (1991 Revision). Primary 05E05; Secondary 05A10, 05A15,
05417, 05A30, 05E10, 33D20..

Key words and phrases. Tableaux, plane partitions, symmetric functions, Schur functions, generating
fun_Ctions, skew Knuth-correspondence, basic hypergeometric series in U(n) and Sp(n), basic hypergeometric
Series for A; and C;.
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