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Non-crossing two-rowed arrays and
summations for Schur functions

(Summary)
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ABSTRACT. In the first part of this paper (sections 1,2) we give combinatorial proofs for de-
terminantal formulas for sums of Schur functions “in a strip” that were originally obtained
by Gessel, respectively Goulden, using algebraic methods. The combinatorial analysis involves
certain families of two-rowed arrays, asymmetric variations of Sagan and Stanley’s skew Knuth-
correspondence, and variations of one of Burge’s correspondences. In the third section we spe-
cialize the parameters in these determinants to compute norm generating functions for tableaux
in a strip. In case we can get rid of the determinant we obtain multifold summations that are ba-
sic hypergeometric series for A, and C, respectively. In some cases these sums can be evaluated.
Thus in particular, an alternative proof for refinements of the Bender-Knuth and MacMahon
(ex-)Conjectures, which were first obtained in another paper by the author, is provided. Al-
though there are some parallels with the original proof, perhaps this proof is easier accessible.
Finally, in section 4, we record further applications of our methods to the enumeration of paths
with respect to weighted turns.

1. Generating functions for non-crossing two-rowed arrays. We consider two-
rowed arrays P = (p | q) of the form

P-a P-at+1 ... P-1 P1 ... Pk ’ (1.1)
@ - 9k -1 - Gobt1 G—b

where a, k, b are some nonnegative integers and where the entries p;, ¢; are positive integers

such that both rows of the array are weakly increasing. (To be precise, if k = 0, i.e. the

‘middle part” of the array is empty, for a ¢ < min{a, b} we also allow the entries p_;,...,p_,

and g_;,...,q_, to be “empty”.) We say that P is of the type (a,b) and of the shape (a, k, b).

If both rows of P are strictly increasing then we call P a strict two-rowed array. Given an

array Py = (p(!) | ¢(1)) of the shape (a1,k1,b1) and an array P, = (p(? | q®) of the shape

(a2,k2,b7), we say that Py dominates (resp. strictly dominates) P, if the following three
conditions hold:

(D1) ay < ay and pgl) < p§2) (resp. pgl) < pgz)) foralll=—1,-2,..., —min{a;,a,}. (By

convention, these inequalities are also violated if pgl) should be an “empty” entry.)

1980 Mathematics Subject Classification (1991 Revision). Primary 05E05; Secondary 05A10, 05A15,
05417, 05A30, 05E10, 33D20..

Key words and phrases. Tableaux, plane partitions, symmetric functions, Schur functions, generating
fun_Ctions, skew Knuth-correspondence, basic hypergeometric series in U(n) and Sp(n), basic hypergeometric
Series for A; and C;.
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(D2) b < by and qgl) > qu) (resp. ql(l) > qu)) for alll = —1,-2,...,—min{by, b2}. (By
convention, these inequalities are also violated if qfl) should be an “empty” entry.)

(1) (2)
(D3) For each m, 1 < m < ky, there is an I, 1 < I < ky, such that p;° < pm’ and

2
g > ¢ (resp. p{") < pl7 and ¢ > gin)).

Let a = (ay,ar_1,...,a1) and 8 = (B, Br-1,...,P1) be r-tupels of nor%nega.tive lr;ltegers.
A family P = (Py, ..., Pr) of two-rowed arrays is ca}led of the type (a,,@) if PLlstf tile tgge
(i, Bi), i = 1,2,...,r. P is called strict if alull P,:, g = 1,.... ,T, are strict. .T e ;xm.y t is
called non-crossing (resp. strictly mon-crossing) if P; dominates (resp. strictly domina es)

‘ 3 i =1,...,r—1.

1 P1+Cl):1i ob}écts :)f interest are non-crossing strict families of two-rowed arrays (see the exam-

| ple in section 2) and strictly non-crossing (ordinary) tvx{o-rowejd arrays. If @ and 3 are par—-
titions, the most convenient way to look at a non-crossing St.I‘lCt family P = (Pl o ,17]’3) =
(D | M), ..., (" | ¢")) of the type '(a, B) is by rephr'asmg the three conditions (D1)-
(D3) of dominance in terms of the following three properties:

(NS1) The front part, the array (p(_ri_j-"l))i,jZl is a column-strict plane partition of shape
o' fv. ‘ ‘ N
(NS2) The tail, the array (q(_ri—1+1))i’]_21 is a tableau of shape ' /v. v is the same partition
as in (NS1). - '
. : RO ; .
(NS3) The middle part of P, interpreted as multiset {(pg ),q§ ) = .S r,2 1< ] S ks
can be viewed as a family of r pairwise non-crossing lattice paths in Z con31st.1ng of
unit horizontal and vertical steps in the positive direction, all of VV.hICh starting at
(0,0) and ending with an infinite horizontal part. (Thus the final points of the paths
) . . y
might be considered to be of the form (oc0,y;), for som(g)no(r})rlegatlve integers y;.)
s s 1 7 . )
This is seen as follows: For fixed 7 consider the points (p;”, ¢; 4 = 1eems ks N-ow
to these points apply Viennot’s [31] light and shadow procedure (with the sun b.emg
located in the North-West). For each i this yields a lattice path of the described
type. The condition (D3) (ordinary dominance) simply says that these r Paths are
pairwise non-crossing (from here we are lead to call the arrays under con31der”a.t10n
“non-crossing”), the first path lying “avove” the second, the second “above the

third, etc.

A similar interpretation holds for strictly non-crossing (ordinary) families P = (Pi,. . ., P

This time the conditions (D1)-(D3) can be rephrased in the following way.

—1 . 8 48 e
(SN1) The front part, the array (p(_rj 1+1))w_21 is a column-strict plane partition of shap

a/v. (v is allowed to differ from 0 only if the middle part (see (SN3)) of Pis em.pt.y-)
(SN2) The tal, the array (q(_rj_zﬂ)),-)jZl is a tableau of‘ shape ,B/u v is the same partlt;o;

as in (SN1). (v is allowed to differ from 0 only if the middle part (see (SN3)) o

is empty.) - ‘ . .
(SN3) The middle part of P, interpreted as multiset {(pgz),qﬁl)) l<i<, 1< JChS k;r}e,

can be viewed as a family of 7 pairwise non-touching path-like objects, whi Wmit

called pathoids by Kulkarni [21]. This is done in the same way as before. We o

the details. . N
Finally let x = (21,%2,...) and y = (y1,¥2, - .. ) be two infinite sequences of mdetermmII ]
We define the weight wy y(P) of an array P of the form (1.1) to be the product Hzeecon"
where ¢ runs over all elements of the first row of P and 7 runs over all elements of the s
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row of P. The weight wy y(P) of a family P = (Py,...,P,) is defined to be the product
over the weights of all arrays of P, Tl ey s (P,

Now we are in the position to formulate the main theorems of this section.

Theorem 1. Let a, B be partitions. The generating function 3 wy y(P) for non-crossing
strict families P of the type (a, f) is

lgqs,ettSr(fa°+s—ﬁ'—t(x, y))v (12)

where fr(X,¥) = 31 extm(X)ex(y) with en(2z) being the elementary symmetric function of
order n in the variables z;, z,, . . . .

The generating function Y Wx x(P) for non-crossing strict families P of the type (a, B)
with the additional property pg-i) > q](»i), v=1,...,randj=1,...k;, is

lgi‘ﬁy(faﬁs—ﬂt—t(x, X) = fo,+s+p.+1(X,X)). (1.3)

Theorem 2. Let «,f be partitions. The generating function ) wy y(P) for strictly
non-crossing families P of the type (a, B) is

IS%?ttsr(gaa-f-s—ﬂ:—t(x,Y)), (1.4)

where gm(X,¥) = > hktm(X)hi(y) with hn(z) being the complete homogenous symmetric
function of order n in the variables z;, z,, . . ..

The generating function Y wy (P) for strictly non-crossing families P of the type (a, 3)
with the additional property pg-’) > q}z), t=1,...,randj=1,... k; is

det (9o, +s—g. (X, X) = ga, +s48+1(X, X)). (1.5)
1<s,t<r

SKETCH OF PROOF. We imitate the usual procedure with nonintersecting lattice paths
([12], see also [28, section 1]. For the proof of (1.2) we consider strict families P =
(Py,..., P.) of two-rowed arrays where P; is of the type (@oiy +0(i)—14,8:),i=1,2,....,r,
for some permutation o € &,. As with nonintersecting lattice paths we set up a weight-
preserving involution on the crossing families of two-rowed arrays (where “crossing” means
a violation against one of the conditions (D1)-(D3)), such that the corresponding permu-
tations differ only by a transposition. After having observed that for ¢ # id there are no
non-crossing strict families of the above type, the usual arguments lead to (1.2).

In order to prove (1.3) we consider strict families P = (Pr,...,P;) of two-rowed arrays
where P, is of the type (ni(ae@y +0(i))—4,8:),i=1,2,... , 7, for some permutation o € &,
and n; € {-1,1}, ¢ = 1,...,r. Also here we give a weight-preserving involution on the

crossing families (where “crossings of the main diagonal”, i.e. violations against pgi) b q](vi),
have to be considered, too) such that either the corresponding permutations differ by a
transposition and the corresponding 7;’s are identical, or the corresponding permutations
are identical and exactly one of the corresponding 7;’s changes its sign.

The proofs for (1.4) and (1.5) are similar. Only at all places the roles of weak and strict
order have to be exchanged.

The bijections of this section are inspired by ideas from [18]. 0
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2. Summations for Schur functions “in a strip”. In this section we relate Theo- O‘I}{” anq the tail as ‘téblea}l 7 of shape f'/ ;’1 alf eXPlaine‘{ (1;1) (Nil) and.(l\j(SO%), respectively,
rems 1 and 2 to summations for Schur functions. In the following given a partition u the where v 1s some partition. In our example the front part #(®) and the tail #(°) are as follows,
symbol y' denotes the conjugate of u, as usual. The number of odd parts of 3 is den<.)ted by 4 ;,
oddrows(u), the number of odd parts of u’ is denoted by oddcolumns(p). (This terminology 70 2[5 and 700 _ 31316 .
stems from visualizing partitions as Ferrer’s boards.) T e

[}
Theorem 3. Let o, be partitions. Next write ¥ and 7 as multichains in Young’s lattice, i.e. as sequences of partitions, the
length of the sequences being determined by m + 1, where m is the largest element in P.
Z sa/p(X)sr/a (¥) = deett(r(fa,ﬂ—ﬂ,—t(xa)’)) (2.1) For the tableau 7 this is standard (cf. (23, pp. 4/5; 26, pp. 12/13]), for the column-strict
MAr<r - plane partition # the i-th partition in the sequence, ¢ running from 0 to m, corresponds to
det (fp-x(s:r)-}-s——t(xax) the shape of the column-strict plane partition that results from # by deleting the numbers
1<s,t<r {1,2,...,m — i} in #. So in our example the sequence for 7#(%) is 0,0,0, 1, 1,21,211, while
Z sa(x) = —fpxts=n+s+1(X, X)) c=2r the sequence for 7(%) is 0, 0,0,2,21,22,32. (Here we use a short notation for partitions. For
A A1 <c,oddrows(A)=p ep(x) 1<dsett<r(fs—t(X, x) = fote(%,%)) c=2r+1 instance, 211 is short for (2, 1,1), 0 is short for the empty partition.)
(2:2)
33221 3293 3292 393 399 99 ”
Z sx/8(X)sx/a(y) = lgity(gaﬁs—m—t(xv)’)) (2.3)
AL <r - N
1 88t (Ipxto=n+o—d(x, ) o :
Z sa(x) = —9px(s=r)+s+t(X, X)) c=2r 39312 21 3 1
A,8(2)<c,oddcolumns(A)=p hp(x) det (gs_t(x7x) o gs+t(x7 X)) c=2r+1 -
1<s,t<r © _ 5 1 — 9
(2.4) 3231 9 T = T =
1 4 213
where x is the usual truth function, x(A) =1 if A is true and x(A) = 0 otherwise. i . 209 305

REMARK. Identity (2.3) is due to Gessel [10, Theorem 16, cf. the paragraph just before 2 _1J 4] |
Theorem 16], while (2.4) is due to Goulden [14, Theorems 2.4 and 2.6]. Clea'rly (2.1) and (22) - .
follow from (2.3) and (2.4), respectively, by application of the homomorphism on symmetr?c 1
functions that interchanges the roles of elementary and complete homogenous symmetric
functions (cf. [23, pp. 14/15]). However, it is our goal to give combinatorial proofs for all of 211 21 1 I 0 0 0
these identities. .

Figure 1
f of (2.1) we set up a “part”-preserving bijection between ‘
noiif;iii; sFtrlijc}:ofz(z)rl;.ililz(s)r?Ja zrz);)’l, 5 ( ; Pr)) of the tipe (I()Jl, B) :nd pairsg(w, 7'.) of a col}xmn- 1~\Iow we are able to fill tNhe appropriate Fo.min—Roby ;_)icture. The lower border correspon.ds
strict plane partition 7 of shape A/#' and a tableaux 7 of shape \/a’, with A being a to(:;, tg? right border to 7, the (s, t)-entry in the matrix corresponds to thfe nu‘mber of pairs
partition with A; < r. (Of course “part”-preserving means that the multiset of .the elefneflts (p; 1¢; ) in the middle part of P that equal (s,t). The left-hand diagram in Figure 1 shows
in Py, ..., P, is identically with the multiset of parts in 7 and 7.) This bijection is a variation

the Fomin-Roby picture corresponding to our running example. The subdivision of rows
and columns that contain “multiple entries” is done in direction South-East, (and not in
direction North-East as in (26, section 4.1]). Figure la contains the “subdivided” Fomin—
Roby picture that corresponds to the diagram in Figure 1. Also, in the diagram we are
Working upwards and to the left (and not upwards and to the right as in [26, section 4.1)).
"The rules for the algorithm are the same as in [26, Example 2.6.3]. From the upper border,
I the same way as explained above, we read a column-strict plane partition 7 of shape
AIB', from the left border a tableau 7 of shape A\/a/, where \ is some partition. Examining
the properties of this mapping it is not too difficult to see that thus we indeed obtain a
Part-preserving bijection between non-crossing strict families P = (Py,..., P,) of the type

of Sagan and Stanley’s [27] skew Knuth correspondence. In the explanation of the bijection

we refer to the Fomin—Roby [26, section 4.1; 8] description of the skew Knuth correpond(ir)lce-
The bijection is best explained with a running example. Consider the family P\ =

(Pl(o), PZ(O), P3(°)) where

245 0 1245

(0) _
ol M 12357 By = 234"

It is a non-crossing strict family of the type (a(®), 3(®)) = ((3,1,0), (2,2, 1)) .NOV~V, g“;‘:n &
non-crossing strict family interpret the front part as column-strict plane partition 7 of shapé




(a,B) and pairs (7, 7) where 7 is a column-strict plane partition of shape A/B' and 7 is a
tableaux of shape A/a', with \ being a partition with A\; < r. The pair (7(®), 7(9)) resulting
from our example is exhibited in Figure 1.

It is well-known that the skew Schur function sy/g can be either defined as generating
function for tableaux of shape A\/(' or as generating function for column-strict plane par-
titions of shape A/B'. (There is also a bijection basing on jeu de taquin which settles this
equivalence of definitions for the Schur function.) Thus the above bijection by (1.2) proves
(2.1).

332771 (372371 [372% 32221 [3%227 [32° [3221 [327 [321 [32 32

32231 [32%1 [32% [32°1 [323 [2* 291 |23 271 (22 22
X

32%1 [2°1 [2° 241 2t 2% 271 (23 271 (22 22

32312 [2%17 [2%1 2517 281 {2%1 2717 [271 217 |21 21

3251 [2%f1 [2* 291 |27 23 221 22 21 2 2

X

21 [2%f1 |2¢ 231 |29 2° 271 |22 21 2 2

2317 [2317 251  [2717 271 [2%1 [21% 21 11 1 1

231 [2°1 |28 271 [22 22 21 2 1 0 0

X
2717 [2217 [2%21 |217 21 21 11 1 1 0 0
X
221 [2%1 |22 21 2 2 1 0 0 0 0
X

211 211 211 11 1 T 1 0 0 0 0

Figure la

For the ¢ = 2r case of (2.2) we use a bijection due to Choi and Gouyou-Beauchamps [6,
proof of Théoréme 3] (cf. [18, Proposition 32] for a detailed description) between tableaux
with p odd rows and with at most 2r columns, and pairs (P, S), where P = (P, .. . Pr)is
a non-crossing strict family of r two-rowed arrays of the shape (0,0), and S is a p-subset of
{1,2,...,h — 1} where h is the smallest element of the first row of P,. (Also here 0 denotes
the empty partition. But in this context of course it means that it is coded by the r.—tuple
(0,0,...,0).) Clearly S can be put at the beginning of the first row of P, thus forming ai
array of the type (p,0). Thus one obtains a bijection between tableaux with p odd rows

and at most 2r columns and non-crossing strict families of the shape ((p,0,. .. ,0),0). Use 1

of (1.3) with this shape establishes the ¢ = 2r case of (2.2).

For the ¢ = 2r + 1 case of (2.2) we use a bijection (cf. [18, proof of Theorem 21, last
paragraph]) between tableaux with p odd rows and with at most 2r + 1 columns and pairs
(P,S) where P is a non-crossing strict family of r two-rowed arrays of the shape (0,0) and
S is a p-subset of the positive integers. By (1.3) with o = 8 = 0 this yields the ¢ = 2r + 1
case of (2.2), where S produces h,(x) and P produces the determinant.

The bijections for establishing (2.2) base on one of Burge’s [5, p. 22] variations of the
Knuth correspondences [17].

The arguments for proving (2.3) and (2.4) are similar. O

Also (1.3) and (1.5), for generic a, 3, have interesting interpretations in terms of tableaux
generating functions. For example, we can prove the following theorem.

Theorem 4. The generating function y w(t) over all oscillating semistandard tableaux
r= (W), 7: 8- a (cf [30, 11, 26]), with at most r rows equals (1.5). The weight w(7) is
A2 (2i=1)) | (2i-1) _(2i-2) _
defined by [] :z:lz I+ 3

3. Norm generating functions for tableaux. Given a tableau 7 we define the norm,
n(7), of 7 to be the sum of all the entries of 7. In this section we list several results for norm
generating functions that are obtained from (2.1)-(2.4) by specializing the indeterminates
x and y. Clearly, whenever we set z; = ¢™ and y; = ¢™ in (2.1)-(2.4) we obtain a
determinant for the norm generating function for some family of tableaux (resp. pairs of
tableaux). However, the cases of interest are only those where the determinant simplifies.

For the simplification of the determinants we use special cases of the following lemma from
(18, Lemma 34].

Lemma 5. Let Xy, X>,...,X,, Az, As,...,A,,C be indeterminates. If py,p;,...,pr—1
are Laurent polynomials with degp; < j and p;(C/X) = p;j(X) for j =0,1,...,r — 1, then

13%?}9 ((Ar +Xo) -+ (A1 + X )(Ar + C/X,) - (A + C/Xy) - pe—i (X))

= J] xi-xp0- /X X)) [[AT []piea(-40) . (3.1)

1<i<j<r i=1 i=1

with the convention that empty products (like (Ar + X¢) - (Asq1 + Xy) for s = r) are
equal to 1. (The indeterminate A;, which occurs at the right-hand side of (5.5.1), in fact is
superflous since it occurs in the argument of a constant polynomial.) A Laurent polynomial

1s a series p(X) = ?—]_-M aiz', M,N € Z, a; € R. Provided ay # 0 the degree of p is defined
by degp := N. a

By this lemma we arrive at multifold sums. They are basically basic hypergeometric series

for A4, respectively C,. Sometimes even these series can be evaluated. These computations
are very similar to those in [18].

From (2.1) we derive the following results.

Theorem 6. Let a be a fixed partition. The generating function Y ¢™™)+7™ for pairs
(r1,73) of tableaux where 71 is of shape X\ and 7, is of shape A/a' with A\ being some
Partition with \, < r, and where the parts of 7, are = m; (mod a) and between m;
and m, (My — 1)a, and where the parts of T, are = m, (mod a) and between m, and
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me + (My — 1)a, is

Z SA(qml,qu-a, o ,qm‘+(M‘—l)a)S,\/a/(qm2,qm2+“, B .,qmz'*'(Mz—-l)a) -
A <Lr

_ e (%) +miai/a aki(kitoitpu—1) +
_q 2 ((2) ) Z Hq W= [ k ]qa

k1,...,kr 20 1=1
ki L)
7 kbbbl { ;Y

: H lej +kj+5 — i —ki—i]ga, (3.2)
(4% ¢°) My +r—ai—ki—i 16 i<y

where 1 := (m1 + m2)/a, (4; @) = (45 0)oo/(A9"; @)oo With (A;¢)eo = [[Zo(1 ~ Ag’), and
[n]q :== (1 — ¢™), by definition. An alternative expression for the right-hand side of (3.2) is

ey ((%)+miai/a ak;(kitoai+p—1) M,
N )

k1,..,kp 20 t=1

[M1+Z—1} . =
. laj+kj+j—ai—ki—i)g . (3.3
[My +7—a; — k; — i]4e [a+k + 17— 1]ga! 1<11<I]<r s e (39)

If my + my = a the identities (3.2) (respectively (3.3)) reduce to

M;—1 - 20— Msa—
S (g™, gt g Mg (gemm g2amm | gMaama )
A Lr

[Ml +M2 +Z'_ 1]q“!

. 155 1(( +m1a,/a) . [ O
= T et o] —o—1]ged
11—[1 M2+a'+2_1]q“![Ml+r_a'_z]q“!1§i11gr (3.4)

In particular, for o = 0 this can be written as

Z S)\(qml’qm1+a7 o ’qm1+(M1—1)a)S/\(qa—m1’q2a—m17. B ,qM2a~—m1)

A Lr

1<i<My 1<5<M,

1]
rtiti—dle (54
[Z +7 = 1]q“

REMARK. The special cases a =1, my = my =1, M7 = M, of (3.2) and a = 2, m; =1,
M, = M, of (3.5) first appeared in [18, Theorems 20, 9].

SKETCH OF PROOF. In (2.1) set z; = ¢™ (=D for s = 1,..., My, z; = 0 for i > M,
and y; = qm7+(i_1)a for+ = 1,..., M2, y; = 0 for : > M,. With these specializations
the elementary symmetric functions reduce to ¢-binomial coefficients times some power of
q (cf. [23, p. 19, Ex. 3]). Next to each of the entries (which are g-binomial summations)
of the determinant one of Heine’s 5¢;-transformations [9, Appendix (II1.2)] is applied. In
the resulting determinant we use the linearity in the rows to take out the summations, thus
arriving at a multifold sum of determinants. The determinants are evaluated by taking
some factors out of the determinants and then applying Lemma 5 with C — 0, X, =
_q—a(k£+a.,+a)’ A = q—a(M1+t)7 Pi—l(X) - H;ZQ(qa(Mg+y—j) —+-X). This gives (3'2) after
some simplification. The expression in (3.3) results from the following A, analogue of one
of Heine’s 5 ¢;-transformations [9, Appendix (II1.2)], newly discovered by Gustafson (16],

X; o
= (H k- M) I e
E1yeoke >0 (Dr: (CXi)i, 1icier 1— %

(Cq"""/B)oo (BZX:)oo
H (Zqz r)oo CX )oo

1-i (ABZ/C)k, (BX;)x, 1 — Kighi—ki
2 (qu( )( ) (Dk: (BZXi)x, ) 1 —I—X?

1y ke >0 1<i<j<r - X

If my +my = a, .e. p =1, due the g-binomial coefficient the series in (3.2) only consists
of the term for k; = - = k, = 0. This immediately gives (3.4). For a = 0 the product can
be written in the form (3.5). a

Now we turn to implications of (2.2).

Theorem 7. The generating function Y ¢™(") for tableaux r with p odd rows, with at
most ¢ columns, and with parts = m (mod a) and between m and m + (M —1)a, for ¢ = 2r
is

5,\(qm, qm-{-a, . qm+(M—l)a)

A, A1 <2r,0ddrows(A)=p

= q“('&)“"l’ Z H qak iki—14p-x(i=r)+p) | ~H +1
k; 4

ke >01=1

(qu(M+r+p ai=r) ki), 4 )M r—p-x(i=r)—ki+i—1

(q v q )M+r—p~x(z=r)-—k;—1
II b xG=r)+ki+i—p-x(i=r)—ki—i

1<i<j;<r

II bxG=r)+k+i+p-xG=r)+ki+i+tp—1., (3.6a)
1<i<j<r

where u = 2m/a, and for ¢ = 2r + 1

+ M-1
Z SA(qqum a?"'qu+( )a)
A A1 <27+41,0ddrows(A)=p

= g2 (@)+me [1‘; ]

Z ank (k=10 [ w+ 1] [P TR D Y it

k; a. ga .
9° ky,....ky >0i=1 (q yq )M+r—k.~-—z

II ki+i-ki-ile J] j+i+ki+titu—1)pe, (3.6b)
1<i<j<r 1<i<j<r

In case 2m = a the identities (3.6a,b) reduce to

[M + 27"]
A1 <2r,0ddrows(X)=p [27‘ o p]q2 [T . P]q2 q? [M +A24_7" A P]
q2

il-:[l [i]q2 lﬁil_]"[SM [Z +j]q2 (37 )




and

3 oy _ gt [M] T+l [r+it+ile
> (@ M) =q Il — II Tl
Plp lle 1<i<i<M Jlq

A, A1 <2r+1,0ddrows(A)=p = < < (37b)

where without loss of generality we let a = 2..
In case m = a the identities (3.6a,b) simplify to

M
z 5A(‘1»92a---7q )

A1 <2r,0ddrows(A)=p
[M+2r]
S [M] T E I Ztiti g,
[2r+plg L P q[M+A2Jr+p] I I (R
q

and

Z sx(g, %, 4™) =q(PJ2rl) [M] H M, (3.8b)

= [+l
2,21 <27+1,0ddrows(A)=p 71<i<j<M
where without loss of generality we let a = 1.

SKETCH OF PROOF. To prove (3.6a) we do the same as before in the 1?6r00f ofz(?%z_
The only difference is that now Lemma 5 with C = 1, X, = g P x(s=r)Fhatstn/2-1/2)

Ay = —qrCMw241/2=0 b (X) o= ( TThmy (/A5 1/3) T+ X0~ T, (/4 +

X) Hg=—i+2(Ai - 1/X))/ (X — %) has to be applied. Obviously, the p = 0 case of (3.6a)

immediately yields (3.6b). For m = 2a, i.e. 4 = 2, due to the q—binon.lial coefficient the sums
in (3.6a,b) reduce to the respective terms for k; = --- =k, = 0. ”:[‘hls leads to (3.7a,b2. For
m = a, i.e. p = 1, the sums in (3.6a,b) can be evaluated by a special case of Gus.tafS(.m s [.15,
Theorem 5.1] C; 61 summation (see also [22; 18, subsection 5.6]). After some simplification

one arrives at (3.8a,b). O

REMARK. Identity (3.7) is a refinement of the MacMahon (ex-)Conjecture whi.ch was
first proved in another paper of the author [18, Theorem 11]. (The MacMahon Conjecture
was proved by Andrews (4], Macdonald [23, pp. 51/52, Ex. 16,17}, and Proctor [25, Propo—
sition 7.3].) Likewise, identity (3.8) is a refinement of the Bender-Knuth (ex—)ConJecturﬁ
which the author also first proved in the same paper [18, Theorem 21]. (The Bender-Knut
Conjecture was proved by Andrews (3], Gordon [13], Macdonald [23, Pp- 51-53, Ex. '16,18.],
and Proctor [25, Proposition 7.2].) As was remarked in [18] by summing the expressions in
(3.7) respectively (3.8) with respect to p we get new proofs of the MacMabon respe.ct:lfe}t’
the Bender—Knuth Conjecture. We formulate the MacMahon Con:](%cture in an equivalen
form. The original formulation is in terms of symmetric plane partitions.

Corollary 8. The generating function for tableaux with at most ¢ columns, and with
only odd parts which lie between 1 and 2M — 1, is given by

e % 1], [c+i+j—1g
3 aled =R ] EEHE

P e =1 1<i<i<M ‘
e (MacMahon Conjecture)
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The generating function for tableaux with at most c columns, and with parts which lie

between 1 and M, is given by

H [C + Z + ]— 1]q )

— Bender-Knuth Conjecture
[f+5= l]q ( J )

1<i<i<M

SKETCH OF PROOF. In order to obtain the MacMahon Conjecture the sum over all p of
the expressions in (3.7a) is evaluated by a special case of the very well-poised ¢ ¢5-summation
(cf. [9, Appendix (II.21)]) while the sum over all p of the expressions in (3.7b) is evaluated by
the ¢-binomial summation (cf. [2, (3.3.7)]). Similarly, in order to obtain the Bender—Knuth
Conjecture the sum over all p of the expressions in (3.8a) is evaluated by the g-Kummer
summation (cf. [9, Appendix (I1.9)]), while the sum over all p of the expressions in (3.8b) is
again evaluated by the ¢-binomial summation. O

Finally we turn to the implications of (2.3) and (2.4). In the same special cases as before
we can get rid of the determinants thus arriving at A,- respectively Cr-type sums. But
unfortunately here it does not seem to be possible to find any nontrivial cases in which these
sums can be evaluated to result into closed forms. But it should be noted that these sums
are finite.

Theorem 9. Let o be a fixed partition. The generating function Y ¢™™)*72 for pairs
(m1,72) of tableaux where 7, is of shape A and 7, is of shape A/« with X\ being some partition
with £(\) < r, and where the parts of | are = m, (mod a) and between m; and m, +(M; —

1)a, and where the parts of 7, are = m, (mod a) and between my and mq + (M, — 1)a, for
My >r— o is

Z sx(g™, qm1+a’ o qm1+(M1—1)a)S/\/a(qmz’ qm2+a’ o ,qm2+(M2_l)u)

AEN)<r
qm1 E::l a;

(8% )b,y (@™ ™ 000,

3 fI sl bat (020 gty (gt gy, [T a-et*). 39
d (9% 9% )i, (g#Matmitma; ga), . -
ki,..k, >0 i=1 ’ J ¥ f1Li<i<r

REMARK. The restriction M; > r — a; actually is not a serious restriction. Obviously
the tableaux 7, have at most M; rows. Therefore, if My < r we may replace r by M; and
then apply (3.9).

SKETCH OF PROOF. We proceed in analogy with the proof of Theorem 6. In (2.3) set
g = gmt(i-Da for ; L...,My,z; =0for ¢ > My, and y; = ¢g™2+t(i-Da f5; ; — Ly s ooe s Mo,
Yi = Ofor ¢ > M,. With these specializations the complete homogenous symmetric functions
reduce to g-binomial coefficients times some power of ¢ (cf. [23, p. 19, Ex. 3]). This time a
limiting case of another one of Heine’s 2¢1-transformations [9, Appendix (IIL.1)] is applied.
In the resulting determinant we use the linearity in the rows to take out the summations
thus arriving at a multifold sum of determinants. Upon taking some factors out of these

: geterminantS, they reduce to Vandermonde determinants and are therefore easily evaluated.
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Theorem 10. The generating function b ¢™™ for tableaux T with p odd columns, with
at most ¢ rows, and with parts = m (mod a) and between m and m + (M — 1)a, for ¢ = 2r
and M > r is

m+a m+(M—1)a)
.

sx(g™,q 2 q

2, 2(N) SZr,oddcolumns(A):p
=

_ q [ goksrxti=n) (g*C—M); ¢*)k; (¢°™; ¢°)ks
(4% 4" =1 (™9 1, Fovoict (g% 9%)k: (g*MH2m)g,

o H (1 — g*ki=kD) H (1= gtWetBtam,  (3.10a)
1<i<j<r 1<i<j<r
and forc=2r+1land M 21

mp

sa(@™, g™ te,. .. gt Me)
A,l(/\)_<_2r+1,oddcolumns()):p
B il [M +p— 1] ) ﬁqak.»M(q““'M);q“)ki Ul
(4% 4*)p-1 (™54 P gy Soseia (g% ¢*)k: (¢*M+2™ )i,

x H (1 _ qa(kj—k;)) H (1 _ qa(k;+k_,')+2m). (311&)
1<i<j<r 1<i<j<r

REMARK. Again the restriction M > r is not serious since if M < r we may replace r by
[

SKETCH OF PROOF. We do the same as before in the proof of Theorem 9. Here the
determinants which have to be computed are

—at(m+k,) at(m+k,)
1Sds?tt§r 9 -9 )

This is done by using Lemma 5 with C =1, X, = g e(mtk) 4, — 0, pii(X) = (Xt -
1/X%)/(X — 1/X) (see also [24, p. 10, M. O

4. “Flagged” non-crossing two-rowed arrays and enumeration of nonintersect-
ing lattice paths with given number of turns. Theorems 1 and 2 can be generalized to
“fagged” families of non-crossing two-rowed arrays by using the same proof. By “Hagged”
we mean that the entries in the i-th two-rowed array P; of a family P are bounded by dif-
ferent lower and upper bounds. (This resembles the definition for flagged Schur functions
(cf. e.g. [32]) in terms of tableaux with different lower and upper bounds on the entries in
each row of the tableaux.) We do not have the space to write down the results. Instead, we
record three interesting applications of these results in the enumeration of nonintersecting
lattice paths with a given number of turns. These results are related to the computation of
Hilbert polynomials of determinantal ideals (cf. [20, 7]). Similar results can be derived for
the path-like objects that were called pathoids in [21]. For the interested reader we remark
that enumeration results for pairs of nonintersecting lattice paths with a given number of
EN-corners (see the definition below) of the “ypper” path and a given number of NE-corners
(see the definition below) of the “lower” path are given in [29, 19].

As in [18] a point X of a lattice path is called NE-corner, if X is the end point of a step in
North direction and at the same time starting point of a step in East direction. Analogously,
X is called EN-corner, if X is the end point of a step in East direction and at the same time
starting point of a step in North direction.
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Al 4G i i
(gheore(;n 11. Let A; = (4] ,Ag)) and & = (Ef ),Egz)) be lattice points satisfyin
AD < 4D < <40 40 S 4 () () e
g R R T > A > > 47, and BV < EP < ... <
1y B3’ 2 EyY > -+ > E;”. The number of all families P = (Pi,...,P,) of non-

1 g .lat patbs 1 .A Ch he pa S 01 r 3.110 ethel (:Ollt t y
tel SCC‘EIH tice 1 . — é; su tha.t t th
1 7 1) g aln exac I

(t) s 8
S e ((F A0 (B a0
1<s,t<r ks +s—t k, - L (41)

kot kp =K

REMA'RK. A special case of this result is of relevance in the computation of Hilbert
polypomlals of determinantal ideals. In fact, Kulkarni [20, Main Theorem 5] derived this
special case (r = p, K = E, A; = (0,ap—iy1), Ei = (m(2)—bp—i+1,m(1))) from Abhyankar’s
formula [1, (20.14.4), p. 484], while Conca and Herzog [7] used it to give an alternative proof
of Abhyankar’s formula. A special case of the “pathoid” analogue of Theorem 11 o 1
related to Abhyankar’s formula (cf. [21, Main Theorem 7). o

(Eheor((;)m 12. Let (Jgi = (él)ﬁ'),Ag(‘;) and & = (Egi),Egi)) be lattice points satisfying
A SATS S AD, Ao AL > a0, B < BY < < B, B>
- # ¥ : : ; -
gz_ __P > E,"’, and 41 > Az. . Elf) > Eé'), : =1,...,7. The number of all families
= (P1,..., P,) of nonintersecting lattice paths P; : A; — &;, which do not cross the line

¢ =y, and where the paths of P altogether contain exactly K NE-corners, is

(t 3 s
> " (El)-A§)+s—t EM — A9 — s+t
L 1<s,t<r k,+5—t ks

krthe=K
(t) s K]
- (El A s G TN B~ A st
E,_t i . o 4.2
A(I’Z)[‘heor(t;;n 13. Let (':%i = ((ﬁg'),Ag':) and & = (Efi),Egi)) be lattice points satisfying -
E%Z) < A7 < () < Aj (,-) Ay (.)2 Ag ).2 Z A£r), Eil) S E§2) Ln: & Efr)’ Eél) o
25 >P. > E;”, and A > A9, EY > EP, i=1,...,r. The number of all families
=i(Piss - , Pr) of nonintersecting lattice paths P; : A; — &;, P; : A; — &;, which do not
cross the line z =y, and where the paths of P altogether contain exactly K EN-corners, is

(1) s 3
¥ det ((El — A pa B S B - AP — g4
L 1<s,t<r ka +s—t ka

kit ke =K
t
~ (EP—Ag’)—s-t+3)(E§‘)—A§’)+s+t—3
ks —t+1 ks+s—1 ))
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POWERS OF STAIRCASE SCHUR FUNCTIONS
AND SYMMETRIC ANALOGUES OF BESSEL POLYNOMIALS

Bernard LECLERC {

Abstract. We present several identities involving staircase Schur functions. These identities are then interpreted
in terms of a sequence of orthogonal polynomials in one variable z, with coefficients in the ring of symmetric
functions. By an appropriate specialization these polynomials reduce to Bessel polynomials. This leads to a new

determinantal expression for Bessel polynomials and suggests that their combinatorics might be linked to Young
tableaux or shifted Young tableaux.

1 Introduction

Schur functions S7 and skew Schur functions Sy ;7 are indexed by partitions I or skew
partitions I/J, which are visualized graphically by a diagram of boxes. Several families of
Schur functions associated with special diagrams are known to satisfy particular identities.
Thus, Lascoux and Pragacz provided a determinantal expression of Schur functions and skew
Schur functions in terms of ribbon functions, which generalizes the classical decomposition
into hook functions given by Giambelli [LP].

In this paper we shall be interested in Schur functions whose diagram is a staircase. In a
recent article Goulden has provided a combinatorial proof of a formula expressing the square
of such a staircase Schur function [Go]. We shall present a more general formula, expressing
any power of a staircase Schur function.

An interpretation of these formulae in terms of polynomials is then given. Indeed, it
is shown that the family of staircase Schur functions Siz2. (E + ), n > 0, is a family of
orthogonal polynomials in the variable z, which may be seen as a symmetric analogue of
the family of Bessel polynomials. This provides a new determinantal expression for Bessel
polynomials. It also shows that the powerful machinery of symmetric functions might be of
some help in the study of this sequence of polynomials. Thus, using some classical identities
for Schur Q-functions, Thibon and the author derived the computation of the linearization
coefficients [LT], which had been conjectured by Favreau [Fa].

Finally, we show that our formulae are also linked to an old problem first studied by
B(’)rcha.rdt [Bo] and Laguerre [La], and further investigated by numerous authors including
_POIya [Po] and Foulkes [Fo]. The problem is to express any symmetric polynomial of n
indeterminates as a rational function of the power sums of odd degree, Set X = {w1,... . ;2 )}
The e}cpression given by Polya and Foulkes for the k** elementary symmetric polynomial
A(X)is the coefficient of (—z)" ¥ in the ratio 512..2(X=2)/S12..n—-1(X). We obtain a similar
€xpression for the complete symmetric polynomial Sx(X), and interpret this last formula in
terms of symmetric Bessel polynomials.
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