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POWERS OF STAIRCASE SCHUR FUNCTIONS
AND SYMMETRIC ANALOGUES OF BESSEL POLYNOMIALS

Bernard LECLERC {

Abstract. We present several identities involving staircase Schur functions. These identities are then interpreted
in terms of a sequence of orthogonal polynomials in one variable z, with coefficients in the ring of symmetric
functions. By an appropriate specialization these polynomials reduce to Bessel polynomials. This leads to a new

determinantal expression for Bessel polynomials and suggests that their combinatorics might be linked to Young
tableaux or shifted Young tableaux.

1 Introduction

Schur functions S7 and skew Schur functions Sy ;7 are indexed by partitions I or skew
partitions I/J, which are visualized graphically by a diagram of boxes. Several families of
Schur functions associated with special diagrams are known to satisfy particular identities.
Thus, Lascoux and Pragacz provided a determinantal expression of Schur functions and skew
Schur functions in terms of ribbon functions, which generalizes the classical decomposition
into hook functions given by Giambelli [LP].

In this paper we shall be interested in Schur functions whose diagram is a staircase. In a
recent article Goulden has provided a combinatorial proof of a formula expressing the square
of such a staircase Schur function [Go]. We shall present a more general formula, expressing
any power of a staircase Schur function.

An interpretation of these formulae in terms of polynomials is then given. Indeed, it
is shown that the family of staircase Schur functions Siz2. (E + ), n > 0, is a family of
orthogonal polynomials in the variable z, which may be seen as a symmetric analogue of
the family of Bessel polynomials. This provides a new determinantal expression for Bessel
polynomials. It also shows that the powerful machinery of symmetric functions might be of
some help in the study of this sequence of polynomials. Thus, using some classical identities
for Schur Q-functions, Thibon and the author derived the computation of the linearization
coefficients [LT], which had been conjectured by Favreau [Fa].

Finally, we show that our formulae are also linked to an old problem first studied by
B(’)rcha.rdt [Bo] and Laguerre [La], and further investigated by numerous authors including
_POIya [Po] and Foulkes [Fo]. The problem is to express any symmetric polynomial of n
indeterminates as a rational function of the power sums of odd degree, Set X = {w1,... . ;2 )}
The e}cpression given by Polya and Foulkes for the k** elementary symmetric polynomial
A(X)is the coefficient of (—z)" ¥ in the ratio 512..2(X=2)/S12..n—-1(X). We obtain a similar
€xpression for the complete symmetric polynomial Sx(X), and interpret this last formula in
terms of symmetric Bessel polynomials.

x_
1’ LITP, Institut Blaise Pascal, Université Paris 7, 2 place Jussieu, 75251 Paris Cedex 05



2 Schur functions and minors identities

In this section we shall define our notations and recall some basic facts about Schur
functions and minors identities. General references are [LS], [Mc] and [Le].

Let E denote a set of indeterminates or alphabet. The complete symmetric functions S;(E)
and the elementary symmetric functions A;(E) are defined by means of the generating series

Z SiEt = [ -te)™, (1)

e€kE

S AE) = [J(1+2e) . (2)
[ e€E

When there is no danger of confusion we shall omit the mention of the alphabet.
For I = (i1,...,in) € N, the Schur function St is defined by Jacobi-Trudi identity
S; = det[Si,+i—k]i<k,i<n - In other words, denoting by S the infinite Toeplitz matrix
[Sj=ili,j>0 where S = 0 for k < 0, Sy is the minor of S taken on the lines 0, 1,..., 7 —1and
the columns iy, +1,..., %, +n— 1. More generally, given J = (j1,...,jn) € N" one defines
the skew Schur function Sy, as the minor of S taken on the lines ji, j2 +1,..., Jnt+n-—1
and the columns ¢y, 42 +1,...,in +n—1,4. e Sp/y = det[Si+1—j,—k]1<k,i<n - Note that
this definition makes sense even if the sequences I and J are not arranged in increasing
order. However, by permutation of columns and rows one can always assume that I and
J are partitions i.e. weakly increasing sequences of nonnegative integers. A partition I is
represented by a diagram of boxes like those of section 1, having ¢; boxes on its first row, 12
boxes on its second row, etc.. |I| = i1 + ... + 1y, is called the weight of I. The skew diagram
associated with Sy, is the complement of the diagram J in the diagram I.

Schur functions may also be expressed in terms of elementary symmetric functions A;.
Indeed, defining by analogy the functions A7,y by Aj/; = det[A; +1—j, —k]i<k,i<n , one has
the relation

Arjg=Si~js~,s (3)
where I™ denotes the conjugate partition of I i.e. the partition whose diagram is obtained
by interchanging the rows and columns of the diagram of I.

Suppose F is a second alphabet and denote by E+ F the union of E and F. It follows from

(1), (2) that

Sa(E+F) = > Si(E)Sn—i(F), 4)
0<i<n

A(E+TF) = > A(E)An—i(F) . (5)
0<i<n

We shall also define the difference E — F by setting

P | PRy i Dees1 10
LSE-B = T MEP S

so that in particular

Ai(E) = (-1)'Si(-E) , (6)
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which is another way of expressing the duality between complete and elementary symmetric

functions. This yields a compact éxpression for the polynomial whose set of zeros is the
alphabet A of cardinality n

[[@=-a) =Y 2i(-1)AiA) = Z Sn—i(2)Si(—A) = Sp(z — A) e (-1)"Aq(A - 2).

a€A i

Taking different alphabets E; , ..., E, in the columns of the determinant of Jacobi-Trudi
formula, one gets a multi-Schur function Sy(Ey,..., E,) = det[Si,+1—x(E)]1<ki<n . An
example of multi-Schur function considered in this paper is the nt* orthogona.l—p(;lgrnomial
associated with the linear functional 4 of moments yu(z') = S;(E). (Note that, since the S;
are algebraically independent, one may always define a formal alphabet E by assigning to

each S; a given value S;(E) in a commutative ring.) Indeed this polynomial pn(z) has, up
to a constant factor, the expression

Sn(]E) Sn+1(]E) “e SZn——l(E) @™
Sn_l(E) Sn(]E) S2n_2(E) zn 1

Pa(z) = Spno(EE,... Ez) = , (1)

So(E)  SuE) ... Sei(E) 1

(see[Sz] 1:.).27). By subtraction of lines in the determinant, this polynomial may also be written
as z.m'ordlnary Schur function on the alphabet E — z. Indeed, one has p,(z) = Spn(E—2) .
This is a consequence of the following important lemma.

LE‘MMA 2..1 Let m, n be two integers m < n, F an alphabet of cardinality m, and
I=(i1,...,1n) a partition. Then

S, (E; — F) oo Siptn-1(En —F)

Sin+m(En - ]F)

SHEL, ... By) = | S ptmt1(Er —F) Sitm—1(En)
th+m-—1

Sil—n+m(]El )

Sionir(B) .. Si(En)

Proof. By (4,)c, we have Sk(lEj —F) = Sk(E;) + Sk-1(E;)S1(—=F) + ... + Sk(=F) . But
Sk(=F) = (—1)*Ax(F) = 0if k > m. Thus, the transformation consists in adding to each of
the first n — m rows a linear combination of the next m rows. 0

The Jacobi-Trudi formula expresses Schur functions as minors of the matrix S of complete
Symmet.ric functions S;. This shows that many algebraic relations for Schur functions may
be Olftamed by merely specializing the numerous identities satisfied by minors of a generic
matrix. We have shown elsewhere that a great number of these identities are easily derived

from a single one by Turnbull, that we shall now recall. We first need some appropriate
Dotations.
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Let M be an x oo matrix. We shall be interested in identities satisfied by maximal minors
of M. Let a,b,. .. ,c be n column vectors of M. The maximal minor of M taken on these n
columns will be denoted by either a bracket or a one-line tableau

[ab...c]=la b ... c|.

A product of p minors of M will be designated by a p x n tableau

c

b
[ab...c).[de... fl.[gh...]| = e
h

Q| Al

?

To denote certain alternating sums of products of minors, we shall use tableaux with boxes
enclosing some particular vectors. They are defined in the following way.

Let T be a p x n tableau and A a subset of elements of T. Given a permutation o of
the elements of A, denote by o(T') the tableau in which the elements of A are permuted by
o. Now, boxing in T the elements of A, we get a new tableau 7 which will represent the
alternating sum of all the tableaux o(T'), taking into account the fact that a permutation
of elements of the same row gives a trivial action. More precisely, 7 = Y sign(o).o(T) ,
where o runs through the cosets of the symmetric group &(A) modulo the subgroup of the
permutations which leave unchanged the rows of T'.

Let ix, k = 1,...p denote the number of elements of A lying in the k** row of 7. The
number of terms in this sum will be (i1 +...+1,)!/i1! ... %,!. In particular, if all the enclosed
elements of 7 lie in the same row, it reduces to the single tableau T

Toillustrate these notations, let us write a well-known minor identity (Pliicker’s relations)
and then its transcription with tableaux.

Let M be the matrix

a b ca d & f 1
M=1a by co dy e fo
a3 by c3 d3 es f3

We have
ap by c| |di er fi er. b | |di a1 fi
az by c|.|d2 e fo| — |e2 by ca|.|dy az fz
a3 by c3| |d3 es fs es by c3| |d3 a3 f3
h b a d e1 a ap e1 f d b a
— f2 b2 Co | . d2 €9 as = ag €2 fg s d2 b2 C
fs b3 c3| |d3 e3 a3 a3 e3 fs| |d3 b3 c3

Denoting the column vectors of M by a,b,c,d,e,f, this identity written using tableaux
takes the following form
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@ b c a e f
d [e d b cf
It is readily deduced from Turnbull’s identity, that we shall now state.

Let 7 be a tableau and denote by A the set of its enclosed elements. Let B be the set
of elements of a given row, for example the first one, which do not belong to A. Finally let
C denote the set of all other elements of 7. One can build another tableau v equal to 7 by
merely exchanging the roles of A and B as shown by the following diagram:

| B A | B

S I

More precisely, we have

THEOREM 2.1. (Turnbull’s identity, [Tu], p.209.)
Let k be the number of elements of A.

) IFfk>n,7=0.

(il) If k < n, and v is built by

a. ezchanging each element of A which does not belong to the first row, with any
element of B; ’

b. bozing the elements of B;
c. removing the bozes of the elements of A;
then T = v.

For instance, taking n = 6, k =4, A = {a,b,c,d}, B = {a,B,7,8,€}, one has

@B a g v § ¢ a b cd [{] m@
=kl @ f g b il=@ B f g h il=v.
d 7 I m o ¥l J kK I m o

] V\;e shall now deduce from this identity some formulae for the power of a staircase Schur
unction.

3 Powers of a staircase Schur function and s

mmetri
Sk y ric analogues of Bessel

Let p(k,m) denote the staircase partition (m, 2m,..., km). The n

th
admits of the following expression: power of Spkm

THEOREM 3.1.

(Sp(k,m))n - Z (_1)|P(n—1,m)|‘-l1| Sp(n+k—1,m)/[ Ar,
ICp(n—1,m)
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where Ay 1s the minor taken on the lines iy + 1, 13 +2,..., i,—1 +n — 1 of the following
(m+1)(n—1) x (n — 1) matriz:

Spk=1,m)/1m  Splk=1,m)/12m41 oo Sp(k—1,m)/1n=timn=2
So(k=1,m)/1m=1  Sp(k—1,m)/12m p(k—1,m)/1(n=1)m+n-3

Sp(k——l,m) Sp(k—l,m)/l"“"l Sp(k—l,m)/l("—2)('"+1)
0 Sp(k_l’m)/lm “e Sp(k—l,m)/l("'z)"'+"—3

M = 0 Sp(k=1,m)/1m=1 Sp(k=1,m)/1(n=2m+n=1
0 S pthe=1m) Sp(k=1,m)/1(n=3)(m+1)
0 0 p(k=1,m)/1(n=3)m+n—4
0 0 ... So(k—1,m)

Note that we allow the first parts of I to be zero. Before proving the theorem, let us illustrate
it by a few examples.

EXAMPLE 3.2. We take n = 3, m = 1 and k = 4. The theorem states that

(S1234)° = Z (“1)3_”' S1234s6/1 AT ,
IC12

where I runs over the set {00, 01, 02, 11, 12} and A is the minor taken on the lines 7; + 1,
19 + 2 of the 4 x 2 matrix:

S123/1 S123/18 Si23a/1112 S1234/1114
S S 2 S S
Mo | Sz 123/1 _ 1234/1111 1234/1113
0 S123/1 Si123a/1110  S1234/1112
0 S123 S12aa/111(-1)  S1234/1111

The second expression of M shows more clearly the regularity of its columns (we recall that
for any partition J, the determinants S;j/1110 and S;/111(-1) are null having two identical
rows). Expanding this sum and the determinants A; yields the following relation:

(81234)° = S123456 S123 S123/111 — S123456 S123/1 S123/11 + S123456/1 S123/1 S123/1

—S123456/11 S123 S123/1 — S123456/2 S123 S123/1 + S123456/12 S123 S123 -

EXAMPLE 3.3. We take n = 2, so that theorem 3.1 reads

(Sapadl = D, (1Y% B eranfi Sath myfim=i
0<i<m

which is the formula investigated by Goulden [Go] for the square of a staircase Schur function.
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Proof of Theorem 3.1. We shall apply Turnbull’s identity 2.1. Set N = k + (n—1)(m +1)
and consider the N x oo matrix

So S1 52 S; 100 0
0 Sy S S 01 0 0
0 0 o0 o0 ... 0 0 0 — 1

Let 0, 1, 2, 3,... denote the column vectors of the left part of M, and 1*, 2*, 3* .. N*,
denote the %ast N column vectors of M. For brevity we shall write mp = pm + p — 1. The
Schur function S,k ) may be expressed as a maximal minor of M in n different ways

Sp(k,m) =[m; my ... my (k+l)* (k+2)* N*]
=[01 (ml—l) my mog ... Mk41 (k+m1+1)* (k+m1 +2)* N*]

:[0 12 ... (m,,_l —1) Mp—1 My ... mk+n_1],

so that its n*® power is equal to the product of these n minors

(Spk,m)" =
my ... mg (k+1)* ... N*
0 ... (m-1) my Mkl (k+my+1) ... N*
0 (mn~1 = 1) Mp—-1 coe Mign—1

Now, recalling that a tableau having two equal letters on the same row is equal to zero, we
may box the letters my, ma, ... ,my in the first row, the letter my; in the second LOW; < s 4
the letter myy,_1 in the ntk row, and apply Turnbull’s identity. This yields

S o (k,m))"

CESY N
B 0 (ml—l) my (k+m1+1)"‘ N*
0

(mp_y —1) Myp_1 -+ [MEgn—q]
mg ME41 s Mk4n—1 (k+n)* @
(mi-1) my ... [E+1) (k+my+1)* ... N*

(Mmn-1 —1) My . [EFn =D
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This last tableau represents a sum of products of Schur functions of the following type

ESpntk=1,m)/1 Spk=1,m) /131 - Spk—1,m)1in1 -
The coefficient of a given Sp(nJrk_l’m)/I in this sum is in fact a tableau having n — 1 rows
with only one letter boxed in each row, that is a determinant of order n — 1. There is no
difficulty in recognizing this determinant as the minor A defined above. []
The formula for the square of S,(x 1) may be presented as the computation of a determinant

of Schur functions
So(k—1,1) Sp(k+1,1) —{S )2 . ®)
p(k,1)
Sp(k=1,1)/1  Sp(k+11)1

The same may be done for theorem 3.1, which has also a determinantal formulation. We
shall write for brevity p(k) in place of p(k,1).

THEOREM 3.4.

S (k—1) 0 0 0 Sp(k+1)
Sy L = 0 Sp(k+2) Sp(k+1)/1
Setkyy e 0 o Setkrnn Seky 2

Sp(k-1)/12

Sp(k—l)/lz"—‘* Sp(k_l)/12n—5 Sp(k+n—1)/1""1 Sﬂ(k+2)/12n—4 Sp(k+1)/l2n-3

= (Sp(0)"™ Sotk+1) Sp(k+2) -+ Sp(ktn-2) -

EXAMPLE 3.5. For n = 3 and k = 4 one has
5123 0 0 512345

5123/1 0 5123456 512345/] — (51234)3 Sisae
Si2aiz S123 Si2zase)n S12345/12
Si23/13 Si23/1 S123456/12 S12345/13

EXAMPLE 3.6. For n = 4 and k = 6 one has

S12345 0 0 0 0 S1234567
S12345/1 0 0 0 S12345678  S1234567/1
Si12345/12  S12345 0 S123456789  Si23asers/1  S1234567/12
S12345/18  S12345/1 0 Si23456789/1  S12345678/12  S1234567/19

S12345/14 S12345/12 S12345 S123456789/12 S12345678/13 S1234567/14
S12345/15 S12345/18 S12345/1 5123456789/13 S12345678/14 S1234567/15

4
= (S123456)" S1234567 S12345678 -

Proof. The proof of this last example will illustrate enough the principle of our computation.

We consider the 12 x 30 matrix

So 51 Sz Sa 517 1 0 0 csm 0

0 So S1 9, S¢ 01 0 ... 0
M: 0 O S() Sl 515 0 0 1 0 s

0 0 0 o Ss 00 0 .. 1

whose column vectors are denoted/.O, 1, 2,...17, 1*,2* ... 19*. The determinant D of
example 3.6 is represented by the following tableau

0135 7 9 11 [ 9 100 11 1o9°
01235 7 9 11 13 B 11* 19
D=012345791113 15 [99]
1 357 9 11 13 15 17 {09 11* 12°)
1 3 79 11 13 15 17 0 [I17 12
1 3 7 9 11 13 15 17 ¢ 2 [12%]

Now we transform this tableau by Turnbull’sidentity and note that all boxes may be removed
because of the presence of identical letters

0135 7 9 11 I3 o 1oF 11* 12*
01235 7 9 11 13 O3 11 19*
p-|01 234 5 7 9 11 13 15 [0
1357911 13 15 17 [ 11 12°
13579 11 13 15 17 0 [ 12°
1 3579 11 7 8 9* 100 11* 1o
01 357 9 11 13 9 10° 11 1o
01 235 7 9 11 13 15 11 19
0 1 234 5 7 9 11 13 15 17
1135 7 9 11 1315 17 0 11* 12¢
1 357 9 11 13 15 17 0 2 12
1 3579 11 7 8 9* 100 11* 190

= (S123456)* S1234567S12345678 0
We shall end this section with an interpretation of theorem 3.4 in terms of orthogonal
polynomials. First we shall give an immediate generalization of formula (8).

PROPOSITION 3.7. For 1 Sp<k+1 we have

Sptk=1)  Sp(ks1)
p(k=1)/17 Sp(kt1)/17
where p(k) is short for the partition 12.. . k.

Proof. This is an instance of Pliicker relations. We consider again the matrix M of the
Proof of theorem 3.1 » taking N' = k + 2. The determinant to be computed is then represented
by the 2 x (£ 4- 2) tableau

= Sp(ky Sp(ky1e-1

0 135 .. 2k-1 [

13857 ... 2%+1 [N=py||

(-1)P




Applying Turnbull’s identity, this tableau is transformed into

(Cap|l L8 & o -1 BESL
Bl @ .. N (N-p)r
0 1 38 5 ... 2%k—1 2k+1
= (=1)P 5.5 N
( 1) 135 7 ... N* (N—p)* p(k) Pp(k)/1p-1 D

From this proposition we deduce the following result:

THEOREM 3.8. Let E be an alphabet and let us denote by 7y the polynomial of degree k:

7k(z) = Spk)(E — z). Then . satisfies the three term recurrence relationship (k > 1)
Sok-1)(E)Trt1(z) + 25500 (E)mi () = Spii1)(E)me—1(z) = 0 .

In other words (wk(z))k>0 18 a family of orthogonal polynomials.

Proof. The expansion of 7y is obtained by considering it as a multi-Schur function and
expanding this determinant along its last column. Indeed, by lemma 2.1,

mk(z) = S12..k0(E, ... . Ez) = Y Spp wpni(E)(—2)" .

0<i<k
By linearity we deduce from proposition 3.7 that

Sptk=1)  Sp(k+1)

mh—1(z) mhya(z)| —zS,(k) Tk(T)

which is the required relationship. []

Thus, theorem 3.8 states that the elimination of 2° between 74— (z) and 741 (z) produces
a polynomial proportional to zmi(z). As a consequence the elimination of z°, 2!, 22 between
Tk—1(2), Tk+1(2), 2TE42(2), 2%mk—1(2) Will produce a polynomial proportional to 23 (z).
This elimination is expressed by the following formula

Sp(k-1) 0 0 Sp(k+1)
Sp(k-1)/1 0 Sp(k+2)  Spk+1)/1
Spk-1)/12 Spk-1)  Spk+2)/1 Sp(k+1)/12
T-1)(2) 2*me-1(z) —zmrta(z)  TEga(a)

= —(Sp())? Sp(kt1) 2Tk (2)-

Picking up the coefficient of 23 on each side we find again the case n = 3 of theorem 3.4.
And this process may clearly be carried out for larger values of n.

The computation of the moments of the sequence of orthogonal polynomials (7rk($ )) k>0

will result from the following identity. We shall denote by p(n) + m the partition
(1, 2,....,n—=1,n+m).
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THEOREM 3.9. Let k, n be integers such that 1 < k < n. There holds:

Sp(k)/l"'l Sp(k+1)/1k-l Sp(n)/l“‘l
Semytr Spkanyr o Sy
: : = Sok=1)Pp(k)+(n—k+1)Sp(k+1)Sp(k+2) - - - Sp(n_1)
Sotky1n=t Spktny/in-t . Spinyjan-s

where Potk)t(n-k+1) = Locaicn—te1 Ap(k)+2iSn—ks1-2i.
EXAMPLE 3.10. Forn =6, k = 3 one has

S123/12 S1234/12 S12345/12 5123456/12
S123/18 S1234/18 S12345/13 5123456/13
S123/14 S1234/14 S12345/14 5123456/14
S123/15 S1234/15 S12345/15 5123456/15

= SI2P12751234512345 >

where Pi27 = A12354 + A1255% + Agar.

Proof. The proof is similar to the proof of theorem 3.4, the only difference being that one
has to apply Turnbull’s identity several times in order to obtain the required factorization.

CORROLARY 3.11. The n** moment of the sequence of orthogonal polynomials (mr(z)) >
is the sum of all hook Schur functions of weight n + 1: pu(z™) = s J. Sti(n+1-i)(E) . =

Proof. Let gi(z) denote the monic polynomial ak(z) = Sy (E — z)/(=1)%S,1)(E).

Theorem 3.9 may be seen as the resolution of the linear system in the unknown an:

= Zanqu(z) . (9)

k

The result is that an; = Ppkt1)+n-k(E)/Spk+1) - Let p be the functional on Gym(E)[z]

associated with the sequence of orthogonal polynomials (Wk(:l:)) k>0 In fact p is defined
up to a constant factor, so that we can add the condition #(1) = Si(E). Then, recalling
that by definition #(qr(z)) =0, k > 1 and applying 4 to the equality (9), one obtains that
K(@"™) = Poy1(E) = 0<i<n S1i(n+1-i)(E) , the last equality resulting easily from Pieri rule
for the multiplication of a Schur function by an elementary symmetric function. [

Remarks. (i) It has been shown in [LLT] that the symmetric function

Z Ap(k)+2iSn—k+1-2i
0<2i<n—k+1

1s Eothu.lg but t‘;he. Schur P-fur.lction Ppy(ky+n—k+1. More generally there exists for every Schur
unction a similar quadratic expansion in terms of ordinary Schur S-functions.

(1) It is easily checked that Sp(ny/1m = Sp(n)/m- It follows that the polynomials

?}f(z) = S,(x)(E + z) are equal to the polynomials mx(—z), and therefore also satisfy a
ree term recurrence relationship:

Sp(k-1)(E)Br+1(2) ~ 2S,(4) (B) i (z) — S p(a11)(E) b1 () = 0 .
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They are orthogonal for the moments v(z™) = (=1)" X o<i<n Sti(n+1-i)(E) -

We must now insist on the differences between the two Schur function expressions of
orthogonal polynomials hithertoencountered. Asrecalledinsection 2, the family of orthogonal
polynomials associated with a given functional 4 may always be represented up to a constant
factor by the sequence of rectangle Schur functions Spn(E — z), n > 0, where E is the
alphabet formally defined by Si(E) = w(z*), & > 0. In contrast Schur functions of the
type S12.m(E — ), n > 0 or Si2..n(E + ), n > 0 represent only particular families of
orthogonal polynomials. Indeed, the recurrence relationship of theorem 3.8 is not generic,
for the coefficient of 7,(z) in this relationship is of the type anz while the general form of
this coefficient is @z + Bn. The following example shows that these polynomials may be
seen as symmetric analogues of Bessel polynomials.

EXAMPLE 3.12.

Let € be the alphabet formally defined by Sk(£) = 1/k!, k > 0. It is a classical result
that for any partition I of weight n, there holds S;(€) = fr/n!, where fy is the number of
standard Young tableaux of shape I, i.e. the dimension of the irreducible representation of
S, indexed by I. It follows that the moments associated to the sequence (¢k(1)) >0 8re
equal to v(z") = (—2)"/(n + 1)!, that is, are equal to the moments of Bessel polynomials
(see for example [Ch]). The corresponding polynomials (suitably normalized)

yn(z) = S12..0(€ + 2)/S12..0(E), n =0, (10)
are therefore the Bessel polynomials. The first ones are

yo(z) =1,

n(z) =1+z,

y2(z) =143z + 3z2,

ya(z) =1 + 6z + 1522 + 152°,

ya(z) =1+ 10z + 452% + 1052° + 105z*.

Formula (10) provides the following determinantal expression

/10 1/3! 1/50 ... 1/2n—1)! (=)
/00 1/20 173! ... 1/(2n—=2)! (—z)*!
4 /10 1/4! ... 1/(2n=3)! (—z)"?
w@= ] Cm-n+1r|, e :
el : : : : :
0 1/n! —z
0 1/(n—1)! 1

There exists a fairly extensive literature devoted to these polynomials. For a detailed
account up to 1978, the interested reader is referred to [Gr]. We shall also mention the
recent work of Dulucq and Favreau who have presented a combinatorial model for these
polynomials, based upon weighted involutions [DF].
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Note that our point of view provides at once a q-analogue for Bessel polynomials, by

merely replacing £ by the alphabet £, = 2 i ;
s g ¢ by the alphabet £, = {1, ¢, ¢2, ...}. More precisely, settingv = z/(1 —¢q)

Yn(2:9) = ¢()S12. n(E +0)/S12..n(E,).

yn( q) g p y la.lS max Who 1ILS are p()lyn()lllla S q
I he X are or tllo Onal Ol nom y Se COCﬁCIe t
9 l m q. The

yo(z,q) =1,

yi(z,q) =1+ z,

y2(2,9) =¢+ (1+ ¢+ ¢*)z + (1 + g + ¢*)2?,

¥3(2,9) =¢° +9(1+ )1+ g+ ) + (1 + ¢+ )1 + g+ ¢* + ¢* + ¢*)a?
+(1+a+¢)1+q+¢* +¢ +¢*)eb.

] 4 Expression of a symmetric polynomial in terms of the power sums of odd
egree

Let X. denote a finite set of variables X = {z1,...,2n}. Tt is well known that any
symmetric polynomial F(X) may be expressed as a polynomial function of the power sums
k(X)) = Y ex z¥, k = 1,2...n. It was shown in the last century that F(X) may also be
expressed as a rational function of ¥ (X), k = 1,3,5,...2n — 1 ([Bo], [La]). Pélya [Po]

and Foul‘kes [Fo], among others, have proposed explicit expressions for some particular
symmetric polynomials F(X). For instance

PROPOSITION 4.1. The kt* 'elementary symmetric function is equal to Ax(X) =
So(n)/1n=+(X)/Sp(n=1)(X) , the right-hand side being a rational function of the power sums
of odd degree.

Proof. For sake c?f completeness we sketch the proof. It is known that S (n-1)(X) =
[lic;(zi + 2;) . Taking an additionnal variable z we have also ’

Sp(my(X + 2) = [[(zi + =) [l +2) = S,(n_1y(X) D A TEAKX) .
i k

i<y

ghus, comparing the coefficients of 2" %, we get Ak(X) = Syny/m-1(X)/S, (n-1)(X) =
al,i(?t)s/gx—f(xt;?/sp(g_l)(X)(i. Finally, we recall that the staircase Schur functio’;l Sy(ny and
erivatives S, d onl the odd i t
: »(n)/1 depend only on the o ower s
subring generated by 1, ¥s, ¥s,.... [] ’ SR aR L S belong o e

Now theorem 3.9
Sk(X).

PROPOSITION 4.2. The kth

provides at once a similar expression for the complete symmetric functions

complete symmetric function is equal to

Sk(X) _ Eogzigk A,,(,,_l)+2,-(X)Sk_2,-(X)
Sp(n—l)(X) '
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the right-hand side being a rational function of the power sums of odd degree.

Proof. Theorem 3.9 shows that the function Zogzigk A p(n-1)+2iSk—2i may be expressed
in terms of Schur functions of the type S,(m)/1», Which all belong to Z[l/)l.,’(,/)g,’l/)s, 2ea]s On
the other hand, since X is finite of cardinality n, A p(n—1)42i(X) = 0 for all 2 > 0. i
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This is a summary of a paper [8] with essentially the same title and authors that has been
submitted elsewhere. The paper points out and extends connections between combinatorial
t-designs, representations of the symmetric group S, labelled by 2-part partitions, and the
classical Reed-Muller codes. Motivated by the representation theory of S, associated with
partitions having more than two parts, we then introduce T-designs and give a characteristic
free construction of “Euclidean geometry” codes.

The basis of this work is the poset of flags introduced in [7]. The incidence maps of this
poset are used to introduce Z-forms on certain classical QS,-modules in, and our principal
object of study Z Bk, is described in Theorem 3 and Corollary 4. The incidence maps are also
used to construct large collections of characteristic free parity checks.

Let m,n be positive integers. A partition A of n having (at most) m parts is a sequence
Ay« Am of non-negative integers such that 21 As = n. The conjugate partition ) to X is
defined by A, = [{A; | s < \;}|. The partition A is properif Ay > Agyq for all s. It turns out
that A = A" if and only if A is proper. The partition A dominates partition v of n (A I v) if

=1 As > Y!_, v, for all t. The domination relation P defines a partially ordered set (poset)
on the partitions of n. We say A covers v in case the interval [v, A] in this poset contains only
its endpoints. This means that equality holds for all but one value of t and the difference of
these sums is one for this value (and that the diagram of A [4] is obtained from the diagram of
v by raising one node to the t-th from the (t + 1)-th row).

There are three equivalent ways we think about the set underlying a natural permutation
Sn-module. The most combinatorial mode is flags or tabloids. A flag F with (at most) m parts
is a totally ordered collection {Fo,...,Fpn_1} of m subsets of {1,...,n} such that {1,..., n} =
Fo 2 ...D F,_,. The type of F is the partition typF of n with ¢-th term |AF;| where
BF=F _, \Fifor1 <t <mand AF,, = F,,_;. There is a natural (partial) ordering of flags
given by F < G whenever F; C Gy for each t. It is easy to see that this partially ordered set is

a lattice and F < G implies typF > typG. If the sets AF, are being emphasized rather than
Fi, the term tabloid rather than flag is used.

*This research was partially supported by NSA grant 904-91-H-0048.
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