the right-hand side being a rational function of the power sums of odd degree.

Proof. Theorem 3.9 shows that the function Zogzigk A p(n-1)+2iSk—2i may be expressed
in terms of Schur functions of the type S,(m)/1», Which all belong to Z[l/)l.,’(,/)g,’l/)s, 2ea]s On
the other hand, since X is finite of cardinality n, A p(n—1)42i(X) = 0 for all 2 > 0. i
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This is a summary of a paper [8] with essentially the same title and authors that has been
submitted elsewhere. The paper points out and extends connections between combinatorial
t-designs, representations of the symmetric group S, labelled by 2-part partitions, and the
classical Reed-Muller codes. Motivated by the representation theory of S, associated with
partitions having more than two parts, we then introduce T-designs and give a characteristic
free construction of “Euclidean geometry” codes.

The basis of this work is the poset of flags introduced in [7]. The incidence maps of this
poset are used to introduce Z-forms on certain classical QS,-modules in, and our principal
object of study Z Bk, is described in Theorem 3 and Corollary 4. The incidence maps are also
used to construct large collections of characteristic free parity checks.

Let m,n be positive integers. A partition A of n having (at most) m parts is a sequence
Ay« Am of non-negative integers such that 21 As = n. The conjugate partition ) to X is
defined by A, = [{A; | s < \;}|. The partition A is properif Ay > Agyq for all s. It turns out
that A = A" if and only if A is proper. The partition A dominates partition v of n (A I v) if

=1 As > Y!_, v, for all t. The domination relation P defines a partially ordered set (poset)
on the partitions of n. We say A covers v in case the interval [v, A] in this poset contains only
its endpoints. This means that equality holds for all but one value of t and the difference of
these sums is one for this value (and that the diagram of A [4] is obtained from the diagram of
v by raising one node to the t-th from the (t + 1)-th row).

There are three equivalent ways we think about the set underlying a natural permutation
Sn-module. The most combinatorial mode is flags or tabloids. A flag F with (at most) m parts
is a totally ordered collection {Fo,...,Fpn_1} of m subsets of {1,...,n} such that {1,..., n} =
Fo 2 ...D F,_,. The type of F is the partition typF of n with ¢-th term |AF;| where
BF=F _, \Fifor1 <t <mand AF,, = F,,_;. There is a natural (partial) ordering of flags
given by F < G whenever F; C Gy for each t. It is easy to see that this partially ordered set is

a lattice and F < G implies typF > typG. If the sets AF, are being emphasized rather than
Fi, the term tabloid rather than flag is used.

*This research was partially supported by NSA grant 904-91-H-0048.

329




The more algebraic mode is to use monomials. A mqnomial of degree.lesz than 1Ena Cz}rlz :scc}}l;
variable is an element of Z[zy,...,z,] of the form [Jzi ™ whgre ltS 7.6 b_err‘:ze. gk
monomial is associated with the unique flag F where F; = {s|1s > t}. s

4 . ' < .
“is a multiple of” corresponds to <. . o . N
i i tuple i = (41,%2,.--,%n) Wi
ost succinct mode is sequences. Aq n . h —
{1 Thenrg is associated with the monomial [Jzis~! (and so also with a.ﬂag). Und<er(thxs cor;e)
sp;).n.d.e,nce "is a multiple of” becomes the natural product order <: (315 orti) S 15505575
)

i ly if i, < j, for all s € {1,...,n}. . :
! arllfato%yz Bs f:lianote this lattice of n-tuples on the set .{1, ...,m} (alias ﬂag.s,tabgnd:, }?r
monomials) Trﬂe symmetric group Sy, acts as an automorphism group on the lattllcle ( t,t_) ¥y
place permutation since i < jimpliesir < jrforall € S, and gll i, _]b‘et B B F?‘r Z: e)}:;rn; ii)ci?oyf

N v 1 form an S,-orbit. By lin
i ts, the elements B” of B having type v form ! ' ‘
:}fl: af:ttizr OF? So’n B. the free Z-module ZB with distinguished orthonornzal':)}zlism B 1sta; nf}}:t
n , 1 i respect to the
3 f orthogonal linear transformations (wi

S -module and S, acts as a group o : 0 P e
forrdegenerate form (,) defined by the orthonormal basis). Th(} decorgp{m;lon ZB Sitgn@zr'r 1}316

: it1 int ts; is an ZS,-module decompo :

ranges over all partitions of n into m parts; .

VZV}.;'er-‘ranI(/)dulegZB" is, by definition, the natural permutation S'n-.module of type Vb[3,d17.4.].

}n contrast to the Mobius function on the lattice of all partitions of n ordered by dominance,

the Mobius function g on (B, <) is easily computed.

; fi<]j i v j € B> Ifi,j € B” with
ition A\ A v if and only if i < j for some i€ B, ] 1J €
i (=1)t i is infimum of t distinct coatoms of [0,]],
i<jtheni=]j. Finally, p(i,j) = { 0 otherwise.

The context in which we work is generally the integral Hecke algebra of the natu.ral pertmu-
tation S.-modules. This means that the Z S,-endomorphisms of ZB are of centr}al l1)nt'eres :
’ Deﬁ;e ¢% and ¢ € Hom(ZB", ZB) and projection maps 7y € Hom(ZB, ZB ) by:

. g . |1 typ(i) = A,
P¢(n) = Z i, ¢¢n)= Z j and m(i)= 0 otherwise
typ(nuj)=¢ typ(nnj)=¢
for n € BY,i € B. In case v = &, we drop the subscript_{ and call)\z/)l" = z,bz andu;il::;ﬁé
incidence maps. Observe that (kermigf)* = (imm, @})*++; (kerm )™ = (immyg)
v 4% and Ty are ZS,-homomorphisms ' ]
tha‘;\quZ’slﬁf)I;zdulg P of the finitely generated Z-module M is ((:ialled ép}ztrte [2,61](2.53}]1 ;iet,}z
' 1 i is 1 ivalent to the condition that m
ient module M/ P is torsion free. This is equiva . ' . ‘ f
gu;t;e: Zm(:nue M Qnd tm € P and appears in [10] as ” P has index 1 in M”. We list some 0
the more i,mportant properties of pure submodules of a Z -module.

; ; tion
Lemma 2 LetQ be the field of rational numbers and K an arbztraryq{izlci. The}zz tl.Lte lz;ztge(:;zialtc‘l
] d the kernel of a Z-homorphism ¢ between finttely
of two pure submodules is pure an veen fintely Je S
; ; le of the free Z-module en
Z-modules is pure. If P is a pure submodu b
]Z:Z its rank equals its dimension when coefficients are eztended to K. If two pure szZZlOIfM
determine the same Q-subspace when coefficients are extended to Q, then they]:[olm.z u-re b
is Z-free and has an orthonormal basis, and N is an arbitrary submodule then 18P
NLL is the smallest pure submodule containing N.
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Takel € B*. Then the stabilizer of 1in S,, (Su)i == {0 € S, | lo =1} is the Young subgroup
associated with 1. If I' is a second sequence satisfying 1 =| AL N Al | for all nodes (3,7) in the
diagram of A, then I’ has type A’ and is called a conjugate of 1 [7]. For A proper, define

kp:= Y sgn(o)o € ZS, and ZBk, := (ZBryZS,)*tt.
UE(S,.)II

The (integral) Specht module S* := 7x(ZBk,) is the central object of study in the module
theoretic appoach to the symmetric group [3]. In this theory James defines a sequence of
modules S* when \; < v, for all # > 1. These (integral) James modules can be expressed in
the above language as (nkyZS,)tL where n € B is obtained from 1 by lowering entries from
(only) the first row of 1. An important result of (3] gives an algorithm for finding a submodule

series of an arbitrary James module whose terms are Specht modules when coefficients are
extended to a field K. This result holds also over Z.

Theorem 3 The module ZBky is a pure ZS,-submodule of ZB depending only on ) not 1
orl'. If X is proper and X ¢ and ¢ € Homgzs, (ZB¢,ZB"), ¥ € Homgzs, (ZB¥, ZB%), then
ZB’kx C (im@)* Nkersp. For \,v proper: ZB’k) # 0 if and only if X\ > v. For ) proper,
ZB¥kx =N ayen, ker meyp” = N xye ker meyp.

Corollary 4 (cf. [7, 2.6]) If p & X are proper then ZB"k, 2 ZB"k». The character afforded
by @B K 15 Y- n o ¢ nu ke {C} where the Kostka number ke, is the multiplicity of the irreducible

character {(} in QB”. For K an arbitrary field, the dimension of KB"k) is the degree of the
above character.

By extending coefficients to K, an arbitrary field, the module ZB¥«, and each of its sub-
modules can be viewed as a linear code in K B* whose block length is the cardinality of B” and
where (Hamming) distance is measured relative to the distinguished basis B”.

In order to establish lower bounds on the minimum distance of these codes, we construct
parity checks with disjoint support. But care must be taken to insure that they are nontrivial
in all characteristics. For this purpose, the characteristic functions of subsets of elements of
the lattice introduced at the begining of this section is ideal. The simplest possible decoding
(threshhold decoding) method appears in case the partitions » and A have just two parts.

Theorem 5 Leti,j € B withi < j and set 9,(i,j)={n|nnj=i, typ(n) = v }, v,(i,j) =

{n|nui=j, typ(n) = v }, and use the same symbol to denote the sum of all elements in
each of these set. Then

¢ V(i) = 3 6,(k,j) and 0,(i,j) = Y. u(i,k)m,¢7P®) (k).
ke(ij) keli,j]

If X < typ(j) then ®,(i,5) € (ZB r2)*. If A £ typ(i), imm, ¢ C (ZBky)t. Pe(j) :=
{9,(1,5) - u(i,3)m.6¢G) |1 € [0,d), u(i,j) # 0, ®,(i,J) # 0} forms a set of parity checks for
Bk orthogonal on T,¢%(3) (in Massey’s sense [9, p389)).
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Unfortunately, the claims concerning minimum weight and simple decoding algorithms mad'e
in [7, 3.4] assumed that in P,x(j), p(i,j) # 0 for all i € [0,j]. As shown in Lemn}a 1, this
assumption is only correct for 2-part partitions. On the other hand, one of our main results
provide proof of one of the claims made originally in [7, 3.4].

Theorem 6 The minimum weight of K B'k) equals the weight [,>1 shs,
A long recursive argument gives more explicit information than has been available heretofor.

Theorem 7 The codewords of Specht module S* with minimal weight are the K-multiplies of
the A-polytabloids.

We note that Theorem 7 does not extend to ZB"«). Indeed, let A = {4 2} an.d v ={33}.
Then 126 — 125 — 346 + 345 = (126 — 136 — 126 + 135) + (136 — 345 — 135 + 345) is the sum of

two generators and has minimal weight by Theorem 6, but is itself not a generator.

When m = 2, each tabloid j € B may be identified with the {c-set that ‘is its second row,
or equivalently, with the k-set of positions of sequence j where j has entries 2. (The k-set
associated with j € BY is also denoted by j.) Note that for m = 2_, the natural product orde:é
of the lattice (B, <) then becomes set inclusion. Now any multiset (?f k-sets of {1, ...,n}4s
an element of ZBY. For this reason, a wide variety of combinatorial constructions may be
i ed in our context.
mteIrrI: roertder to motivate this, consider a simple example. Let A = v = {4,3}. Then KB* can
be regarded as the set of K-linear combinations of the 3-sets of the {1,...,7}. Theorefm 5.5
provides seven parity checks for the Specht module K Bk = 5> orthogonal on 567 It is well
known [4] that S* has dimension 14 and we showed that S* is a (35, 14, 8)-code in Theorem 7.
This code is very easy to implement because each message syml?ol can‘be correctly decod'ed by
a simple majority vote of such parity checks. This GF(2)-code is obtainable as a truncatlo.n of
the classical Reed Muller code R(3,7) with parameters (128,99,8) and. that any two 2-designs
with parameters (7,3,1) (also known as Fano planes) have as their “difference” an element of
this Z-code. It follows that a Fano plane is uniquely constructible from any 4 (but not any 3)
lines. More generally we have:

Corollary 8 A t-design S is uniquely reconstructible if fewer than 2¢ blocks are lost.

Remarkably enough this result is, in some sense, best possible. Ind‘e.ed, 'consider the sum
S € ZB*? of the 7 lines of a Fano plane above. Let o be any transposition in the‘ symmetric
group S7. Then S7 is again a Fano plane on the same points but with a slightly dlfferen't line
set and S — §7 is of weight 8 in the Specht module ZB*3k43, so is actually a polytabloid by
Theorem 7. ‘ .

A combinatorial t-design is a collection of k-sets of an n-set with the propert:y that eac S;
(t < k < n/2) is contained in a constant number A of element§ of .the collection. Delsarl]:: {ni
21.9] observed that the sum of the blocks of a combinatorial ¢-design is an elex.nfent of t.he am 'leto
space of the Bose Mesner algebra of the Johnson Scheme J(n, k) that has trivial prOJectIZn 1 s
the first through ¢-th representation (eigenspace). He then took this property to define t- CSIglll!
in arbitrary Q-polynomial association schemes (those in which the representations are naturally
totally ordered).
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In contrast to the Johnson scheme, our incidence maps arise most naturally in the coherent
configuration Homzs,(ZB, ZB). Since B is an S,-orbit, this coherent configuration has the
sets B” as its fibres and we have been working in the fibre Homygs,(ZBY, ZB") which is itself
a (non commutative) association scheme based on the Young subgroups of fixed type v. The
trivial S,-representation in ZB" is spanned by ”the all ones vector” J¥ := 7ru¢{"}(0) which
generates (by inspection) a pure submodule that is clearly analogous to the 0-th eigenspace for
the Johnson scheme.

But the representations of Homzs, (Z B, Z B¥) are not totally ordered! Instead they possess
domination as a natural partial order. In an effort to extend the combinatorial interpretation,
we are led to define a 7-design of type v is a subset S C BY such that ¥ (S) = A\ J7 for
some integer A > 0 and, to avoid degeneracies, we require that 1, > n/2 and 7 D v. (As above,
we use S to denote both the set S and the sum of all elements of S.) In order to maintain
the convenient notation of the subject, further omit the first part of 7 and » writing simply
“Ty,..., Tm-design of type vs,...,v," rather than the more formal {r1,72,...,Tm}-design of
type {v1,v2,...,um}.

Higher type designs are best viewed in the“flag mode”. Thus, for example, a 1, 1-design S
of type a, b, consists of a set of blocks, each of which is an ordered pair (X,Y) of sets, such that

YeXC{l,...,n}, | X[=a+b, | Y [=band mf_py 1y be 40t (5) = ) gln-211)

for some integer A. This means that for any ordered pair of distinct points (z,y) the number
of blocks (X,Y) with z € X, y € Y is always ), independent of the choice of (z,y).

Since every t-design is automatically a ¢ — 1-design [9, Thm. 2.9], it is natural to ask if a
7-design is also a A-design whenever A B> 7. The Z-algebra A generated by {m,¢*, T2} C
Homgzs,(ZB, ZB) is of central importance to address this question and to develop a theory
of 7-designs analogous to that of ¢-designs. Unfortunately, the basic relations and structure
constants of A are not as straightforward as in the Johnson scheme. For example, the intervals
(1122,1233] and [1122,3123] contain a different number of tabloids of type {21%}.

We call a triple (A, p,v) of partitions balanced if there is ay,, # 0 so that r,¢* T =
axuy Ty @, or equivalently, myi# Y = aypuy maYY. Thus ay ,, is the number of m € B* such
that n > m > 1 for arbitrary chosen n € B” and 1 € B* with n > 1 and the requirement that
@ruw 7# 0 implies that A By D v.

Given partitions A B v there are many (but as shown above, not all) intermediate partitions
p for which (X, u,v) is balanced. For instance, suppose ), u and v are partitions of n and
As=p,=v,forallt —1+#s+#t, and that A_; > pt—1 > vs—1. Then for 1 € B}, m € B* and
n € BY, the condition 1 < m < n implies that the associated flags L = {Lo 2 ... 2 Ly},
M={M;2>...2Mu 1}and N={N,D...D N1} coincide except that Ly C M, C N,
(or equivalently that the sequences 1, m and n coincide at all entries different from ¢ — 1 and
t). Ignore the entries not in Li-1\ Liyy and reduce to the situation of 2-part partitions. By,
for example Wilson [10, 3.1], (A, p,v) is balanced and ay,, = ("")“).

He=At
Extend this example by defining the natural balanced sequence {\®} of partitions \® from
A to v whenever \ D v. Set A(H) := v, for s < t and A := ), for s > ¢. Then A® is actually a
P.al‘tition of n just in case ,\?) =N = Yt As — Yot Vs Indeed, ,\$" = A+ Yot ds —vs 20,
since A B> y. Moreover, \() > A\(t+1) for all ¢ > 1. Thus, for example, the natural balanced
Séquence from {51} to {2212} is {51} b {24} b {23} b {2212}.
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Theorem 9 Let A D> 7 B v and take L < T for typeL = A and typeT TL T. Le.tt{/\(‘)gr,”‘lf
t < r, be the natural balanced sequence of partitions ]:rom A to T.(t)Then there exists ammql e
h_ain} of flags L = L < ... < LM = T with LO of ?ype Al Moreove.r, for; mple,
:r # = 1, Ve L m@ . Suppose (A, T,v) is Ifala.nced and.S" is a T-design of
tg;pe Ve Ti;en S is a A-design of type v and Ay = A;a},/ax s, is given explicitly.

Theorem 10 Let p = {1 — 1,72+ 1,73,...,7m}. Then a 7-design S of type v is uniquely
reconstructible from {meip?(S) | € Bu}, if fewer than [,y s™ blocks are lost.

It is clear that the required list of“6-shadows” in Theorem 10 is much to large. At least the
¢ for which there is a ¢ such that ({,&,v) is balanced are unnecessary.

Exactly what a minimal sufficient list might be is a very interesting question.

We turn finally to Geometric codes and come at last to the “algebraic mt?de” of presenting
the natural permutation representations of S, that was briefly In.entloped earlier. Because some
treatments of the classical Reed-Muller codes are based on functions, it seems necessary to.post
an immediate WARNING. Our polynomials are not functions, rather they are fo”rmal as in [1,
4.3] and in order to emphasize this we use the language of “‘generatmg functions”. y i

‘ Let Z[z, €,]<™ denote the Z-polynomials in n variables {z;} of degree less than m in
OO 1 degr . :
each variable. Recall that the monomial p(n) := [] a:j" € Zlz1,. -, xn]' is issoaa:;id :vlth
the sequence n = (n4,...,n,) and the associated tabloid has s-th part {j | n; = s}. The type
i here v; =| {j | nj = s} |.
o nTl}ieVd‘zgree ('3(31/) L{Z(z ~ 1)v; of p(n),n € B” depends only on v (and equals the length of
a covering chain from {n} to v in the domination poset of partltlo.ns of n). Unfortunately, t};e
ossible types v for which 8(v) = k do not seem easy to describe in gel.lera,l and consequently
Elear connections with, for example, the polynomial codes of K'asaml, Ll.n' an(‘1 Peters(cimd[Sb] are
awkward to establish. However, because the number of parts in a partition is bounded by m
i is discussion, we are able to make some connections. .
" t’}Il‘lﬁe ilxsuc:;ldence’ map ¥” takes n € B to the the sum of all sequences that are termwise, less
than or equal to n. (or equivalently, all tabloids where j appears in a part no higher than n;).
duct
These sequences are enumerated by the pro N ' N
(choices for first position)(choices for second position) ... (choices for n-th position):

A4z +...+z7)A+z2+...+252) ... Q+zo+...+277).

Since this formula makes no explicit mention of v, the Z-homomorphism
n
n nj\ k
Vi Z[T1y. .y 20)<™ = Z[21,...,2,]<™ defined by »([[27’) = [[¥(=}’) = Hk§=ox

is a global algebraic version of the incidence map . THe othn?x_* 1iilfz':jdence map ¢ is given by the
Z-homomorphism ¢ where ¢([1z;’) = [1¢(z}’) = [12; ¥ (2] ).<p o

Let C, denote the cyclic group of order p. Then Z [+ szl mle;.y ei g
the group algebra ZC}. In case p is prime, a t-flat is a coset of a su grou;})? o eaé,h .
order p* . It is helpful to extend this geometric language to' the general cass. or g
T C {1,...,n} of cardinality ¢, define the associated. coordinate t-space to be }/)I(HEigortd b
¢(ﬁ,gT 2271). And say a coordinate t-flat is anything of the form (monomial)

t-space) € Z[zy,...,z,)<P).
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Theorem 11 Let w(r) = {n — r (r-2 r} and set E, = Muw(r) kermp = (im@” | v B w(r))L.
Then v & w(r) if and only if O(v) < (p—1)r. EX is generated by the characteristic funtions of

the coordinate (n — r)-flats. Let K = GF(p). Then E, ®z K is the p-ary (n —r —1)-th order
Euclidean geometry code over K.

Of course the Euclidean Geometry
a multistep majority decoding scheme
quite instructive to compare this schem.
with the case p = 2.

codes are well studied in their own right and they admit
which yields complete decoding in case p = 2 [9]. Tt is
e with our poset approach. For this we content ourselves

Corollary 12 Letp =2 and K be an arbitrary field. Then the code E, ®; K admits a complete
(n —r)-step majority decoding scheme.
The“v-puncture” of this multistep decoding algorithm survives from (7, 3.4].

The presentation of a reasonable decoding algorithm for the general K B¥k,
remains open and seems to be a difficult but worthwhile problem.
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