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THE COMBINATORICS OF ¢—-CHARLIER POLYNOMIALS
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ABSTRACT. We describe various aspects of the Al-Salam-Carlitz g-Charlier polynomials. These in-

clude combinatorial descriptions of the moments, the orthogonality relation, and the linearization
coefficients.

1. Introduction.

The Charlier polynomials C2(x) are well-known analytically [4], and have been studied com-

binatorially by various authors [8], [12], [15], [16], [19]. The moments for the measure of these
orthogonal polynomials are

(1.1) Hn = ZS(TL: k)ak,

k=1

where S(n, k) are the Stirling numbers of the second kind. The purpose of this paper is to study
combinatorially an appropriate g-analogue of C%(z), whose moments are a g-Stirling version of
(1.1). It turns out that our g-analogues are not what have classically been called g-Charlier; in
fact they are rescaled versions of the Al-Salam-Carlitz polynomials [4]. Zeng [23] has also studied
these polynomials from the associated continued fractions. While studying these polynomials, we
use statistics on set partitions which are ¢-Stirling distributed.

In the ¢ = 1 case, the linearization coefficients are given as a polynomial in a, whose coefficients
are quotients of factorials (see (4.4)). This has a simple combinatorial explanation. However, in
the g-case the coefficients are not the analogous quotients of g-factorials (see Theorem 3). They
are alternating sums of quotients of g-factorials, and thus a combinatorial explanation is much
more difficult. We provide such an explanation in this paper.

The basic combinatorial interpretation of the polynomials is given in Theorem 1. Several facts
about the polynomials can be proven combinatorially. The statistic for the moments is given in
Theorem 2. The linearization problem is discussed in §4 and the linearization coefficient for a
product of three g-Charlier polynomials is given in Theorem 3. Some comparisons to the classical
¢-Charlier are given in §5.

We use the standard notation for g-binomial coefficients and shifted factorials found in [11].
We will also need
1-4¢"
1-q°

[nlg =
and

[n]lq = [n]q[n - g~ [,
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-Charlier polynomials. .
" V,I\;: ?ieqﬁri t?le q-Clll)arlier polynomials by the three term recurrence relation

n—1 .
(2.1) Cosi(z,0;q) = (& — ag™ = [n]g)Cn( ;@) =~ alnlad Ca-1(7,0;9)
; = ; - 1‘ . .
Wh;f ; C—lé xli:;(f )to_ s()h:vr:dtlcl’aoéa;’h(::s? polynomials are rescaled versions of the Al-Salam Carlitz
is no
polynomials [4]

z 1 ==
(2.2) Cnlz,0a; q) = a,‘nUn(E — a(l— Q) a(l - q))

Since the generating function of the Up(z,b) is known [4], we see that

o) tn _ (at)oo("i'i_a)oo.
(23) ,;)Cn(xaa;Q)'(—q_)—; = (t(a:— T__1:‘;))00
This gives the explicit formula
k—1
=3[ corra3 T o
(244) cn(z,a,q)—;[k]q( " *q Izlom 4

. . tin
Clearly, we want a g-version of [15], which gives the Charlier %olé'n{olm;als a.sn? gex{zﬁ'a ;n(gl

early, s s » . (B 0) - c B = .

i ichted partial permutations, 1.e. pairs {5, d), B S by e
f“‘}Ct“m . w:;gt}ilofl Ofl n] —pB. Thus we need only interpret the 1nd1.v1dual ter;ntshlen (- Stilling
o o abl')rf:ra.ri:l::ial interpretation. The inside product can be expanded in tter;.nsn oa - gm)(a) e
- f the first kind. We let cyc(o) be the number of cycles of a permu ation o i
Itlllllmbersb(;r of inversions of o written as a product of disjoint cycles (increasing minima,

e num

i le).
first in a cycle) o

H(w _ [Z]q) = Z (__l)k—cyc(a)qinv(a)mcyc(a)‘

1=0 g€Sk
For the sum over k in (2.4), we sum over all (n — k) subsets B C [n]. Let

inv(B) = gZres®™Y,

so that the generating function for these subsets is

[Z]qq(";k).

We have established the following theorem.
Theorem 1. The g-Charlier polynomials are given by

cyc(o) inv(a)+inv(B) o | n—cyc(a)alBl,
Culz,0;0)= Y S zvllq (-1)
BC[n] 0€S.-p

= Z Z w‘J(B, G)zcyC(d) :

BC[n) 0€G._B

C i v ing 'T heorem
A ombina.torial pI‘OOf of the three-term recurrence relation (21) can be given using
1. Anin olution is necessary. For more deta.lls, we refer the reader to [ ]

144

such that there is exactly one 1 in each column. 0-1 tableaux were introduced by Leroux in
I:i) establish a g-log concavity result conjectured by Butler [3] for Stirling numbers of the second
nd.

3.’ The moments.

An explicit measure for the g-Charlier polynomials is known, [4]. It is not hard to find the nt?
moment of this measure explicitly. The result is a perfect g-analogue of (1.1)

(3.1) " n =3 Sy(n, k)ak,
k=1

where S,(n, k) is the ¢-Stirling number of the second kind, given by the recurrence

(3.2) Sq(n, k) = Sq(n — 1,k — 1) + [k];Sq(n — 1, k),

where S,4(0, k) = 8o k. In fact, one sees that [13]

(3.3) Sq(n,k)=(1—_—%ﬁ'—lj’§(k:j> [k"_”]q(—l)j.

7=0 "

Clearly (3.1) suggests that there is some statistic on set partitions, whose generating function
is pn. This statistic, rs, arises from the Viennot theory of Motzkin paths associated with the
three-term recurrence (2.1) [19]. We do not give the details of the construction here.

However, let us quickly review some combinatorial facts about g-Stirling numbers that shall

be useful to us. Set partitions of [n] = {1,2,... ,n} can be encoded as restricted growth functions
(or RG-functions) as follow: if the blocks of 7 are ordered by increasing minima, the RG-function
W = wWiwsy...w, is the word such that w; is the block where 7 is located. For example, if

T = 147|28|3|569, w = 123144124. Note that set partitions on any set A can be encoded as
RG-functions as long as A is a totally ordered set.

In [20], Wachs and White investigated four natural statistics on set partitions, called s, Ib, rs
and rb. They are defined as follow:

Is(m) = ls(w) = Z {j : § < ws,j appears to the left of position 7},

=1

Ib(m) = lb(w) = Z [{j : § > wi,j appears to the left of position 3},

i=1

n
rs(m) = rs(w) = Z [{j : j < w;,j appears to the right of position i}|,

i=1

n
rb(m) = ls(w) = Z [{7 : 7 > wi,j appears to the right of position i}|.

i=1

Thus in the example, Is(r) = 13, Ib(1) = 7, rs(x) = 7 and rb(r) = 11. They showed, using
combinatorial methods, that each had the same distribution (up to a constant) on the set RG(n, k)
of all restricted growth functions of length n and maximum &, and that their generating function
Wwas indeed S,(n, k) for rs and Ib (respectively q(;)Sq(n, k) for ls and rb).
We also use another encoding of set partitions in terms of 0-I tableauz. A 0-1 tableau is
apair p = (X, f) where A = (A\; > Ay > ... > Ak) is a partition of an integer m = |\| and
= (fis)1<ji<x, is a “filling” of the corresponding Ferrers diagram of shape A with 0’s and 1’s

[17]
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There is a natural correspondence between set partitions 7 of [n] in k blocks and 0-1 tableaux
with n—k columns of length less than or equal to k. Simply write the RG-function w = w1Wz ... Wn
associated to 7 as a k x n matrix, with a 1 in position (i,7) if wi = J, and 0 elsewhere. The
reduced echelon, of rank k, with exactly one 1 in each column. A 0-
adrant) is then obtained by removing all the pivot columns and the
Figure 1 illustrates these manipulations for

resulting matrix is row-
1 tableau (in the third qu
0’s that lie on the left of a 1 on a pivot column.

x = 1247|39(12)|568(11)|(10).

110100100000
001000001001
000011010010
0 0000O0O0OO0O0100
i3
1[t]o[1]o]ofo]0
ojo[1]o]1
1{of1]of1]o
o[

Figure 1: Correspondence between partitions and 0-1 tableaux

We define two statistics on 0-1 tableaux ¢: first, the inversion number, inv(y), which is equal
to the number of 0’s below a 1 in ; and the non-inversion number, nin(y), which is equal to
the number of 0’s above a 1 in ¢. For example, for ¢ in figure 1, inv(p) = 7 and nin(yp) = 8.
Note that an easy involution on the columns of 0-1 tableaux sends the inversion number to the
non-inversion number and vice-versa. We call this map the symmetry involution.

It is not hard to see that the inversion number (respectively non-inversion number) on 0-1
tableaux corresponds to the statistic Ib (resp. Is — (';)) on set partitions.

Similarly, permutations o of [n] in k cycles can be encoded as 0-1 tableaux with n— k columns

of distinct lengths less than or equal to n — 1. The correspondence is defined by recurrence on 7.
Suppose o is written as a standard product of cycles. If n =1, then o = (1) corresponds to the
empty 0-1 tableau ¢ = 9. Otherwise, let 0 € Gpy1 and let ¢ denote the 0-1 tableau associated
to the permutation o in which (n + 1) has been erased. There are two cases. If (n + 1) is the
minimum of a cycle in o, then o corresponds to ¢. If (n+ 1) is not the minimum of a cycle, then
it appears in o at a certain position i, 2 <1 <n+ 1. The permutation o then corresponds to the
0-1 tableau ¢ plus a column of length n with a 1 in the (i — 1)-th position (from top to bottom).
For example, o = (1,3,4,7, 2)(5,6)(8) corresponds to the following 0-1 tableau.

1

0
0
1
0
0

l._.oooo

o]

Figure 2: Correspondence between permutations and 0-1 tab

o

leaux

1 tableaux cor-

sformation, the inversion number on 0- :
heir generating

It is not hard to see that under this tran
tations, as defined in section 2. Thus, t

responds to the inversion number on permu

functions are the g-Stirling numbers of the first kind cq(n, k).
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In [6], de Médici i i
o the[ Jniﬁed (;3_ llc;s; tz:lx;juLZIr)(;:;); azl}:/esltlgatetti. q land P, ¢-Stirling numbers from the point of view
' . . In particular, th i i
a c;rtamfnum}ll)er of identities involving ¢-Stirling numi));:lzroved SRS T asmateally
ow, for t i ial i i :
e combinatorial interpretation of the moments of the g-Charlier poly ial
nomials in

p 1 # 9
lelllls ()f Sel artit 0) , W (] d t o st t
ns (7' ) € nee W a lstlcs. The number Of blOCkS blOCks(ﬂ) 1S one and

Theorem 2. The ntt
he n** moment for the q-Charlier polynomials is given by

f = z a#blocks(w)qrs(w)‘
N n€EP(n)
we mention irli istri
T ;aci,/ i::lz::)}t' to}fher g-Stirling d¥stnbuted statistics have been found [20]. It i
e ez b Bl G eory naturally gives a so-called “hard” statistic (rs), not a;n y
i o g ariations on the rs-statistic can be given from the M,t ki the,
stic i1s not among them. It can be derived from the Motzkin pat(})lsza,:slogia tthii,
ate

with the “odd” polynomials for (2.1).
4. T i i
he orthogonality relation and the linearization of products

Let L be the llllea u p y p
n nal on ()1 . g g p
1 h orres OndS to inte ratin Wlth respect to
T f Cth om als t atgc C

(4.1) LICHC® (2)) = o
The g-version of (4.1) is (Ca(z)Cr(z)) = a™n! 6 .
(4.2) Ly(Cn(2,6;4)Crm(, 35 9)) = a"g(3) [n]l g8 .

S p y )
mce the 0] Ilomlals Cn(:E, a, q) and Lq have COmblﬂa«tOrla.l deﬁ.nltlons fIOIIl IheOIemS 1 a.nd 2

. as a combi
18 ()(SSII)I)e to Iesla.te 4 O b na.torlal problem. Vbe can glve an lIlVOluthn WhICh then

A more general ion i
. question is to find L(C? (z)C¢ . C8
alent to finding the coefficients a,, in tfle'g)gpins’;:)?) el

Cr(@)Cry(2) - C,_ (2) = an,C2, (2).

This had b iiecti
Moreover, i?r:hiogi :Slieg?l?ly f9tr some clas§es of Sheffer orthogonal polynomials in [7], [9], [10
[14] ermite polynomials, some remarkable consequences have béen %ounli'

For the Charlier polynomials, it is easy to see that

(e}
(4.3) E L(Ce (z)C2 cs —-tm —tnk =i
Ny, ,nEp=0 ( ni ((L‘) n2 (.'l:) T ng (m))nll' o nkk' = 60(62“1"" ekt ‘tk))v
where e; is the elementar i
i y symmetric function of degree 7, [18]. In thi o
;, [18]. In this case L(Cg C2, - Crn.)isa

POIHIOHlla.l mna Wlth p g a.t()rla. €r p[etatlon Of thls coetiicient
ositive lIlte er Coefﬁclents a Conlblll l int fﬁ
3 1

has been given ([12
s given ([12] and [22]). For k = 3, (4.3) is equivalent to

" & l(n1+nz—ns)/2]
L(Cy (z)C2 (z)C2, (z)) = : ™t InyIng!
One can hope that L,(C 1=0 (ng —ng +1)(ng — ny +1)(ng +ng — ng — 20)!°
e tha . '
- 4(Cny (2)Ch,y (z)Cry ()) is simpl i i i
atistic, of the g = 1 case. Howevezr this';; . aile. F;?I; ){a?n V;;:ghted version, with an appropriate
Ly(Ca(z)Cs(z)Ci(z)) = a(q® +2¢ + 1)a? + A +¢% — ¢—1)a

NOnetheless W V : (0) L C x,a C Z,a Cn ,a Wthh S equiv-
, We ha. e an exact formula f n
[ ]. q( nl( ) )q) 2( ’ ’Q) 3( ) ’q))a i i q i
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Theorem 3. Let ng >n1 2 N2 > 0. Then

ni+nz—ns

; fny—3llq [ n
Lu(Co(2)Coa(2)Crs (&) = Zam+qu(q _ 1)1—1[21__]__ [l —21']‘1

[n1 - l)q
1=0 3=0
n1] [ ng—l+3j ] [1]tqln1 — il [nl +ng — "3~ l] ,
q
q

(4.5) [nallq [ j ng—ny1+J P [ns —n2 + g I

where

K=(l'2j) + (";) +i(-na—j+ 1)+ (;) 4 ("2 _2l+j)

+(ng—n1+5)(ng —n2+1) + j(na —n2 +1).

Sketch of the proof. Define

L (nl n2 'I’L3) = {((Bi,U,’,);’Il') = ((Blaal)a(—BZaU?)’(BSaUS);W)l.
T (B, 0;) is a partial permutation on the set {i} x [ni],
Ve

and 7 is a partition on the cycles of 01, 02 and o3 }.

f 1, (o}
p S al I‘d T ON h C y C. 2
Note thaat the leXIC()gra. hlc ()l‘der on palrS (l, ]) lndu(:e a '()t order O the leS ol O

. e an talk about R 2
and 75, a?cording to tge:r I;,un'llr‘l}llae. ﬁ’fslfcef:;fco(ljl‘)wfe(t;ters of w correspond to the positions o)f Stftcliz
RG-functl(.)n BESOQIATE t (c) c((f ) to the positions of cycles of color 2, and the.laslt ?1/10(3? vt
of color 1 m e ne)lc 3f (:0120r 3. We will denote by wa, Ws and we resPeCtlvle y - + OP} letters
t(t)” b POSIUOJ: ) O;i;):llss we will use the notation S upp(w) to denote themderlyng ee
of w = waWpWe- )

f a word w.
° From Theorems 1 and 2, we deduce that

| B; 0',‘);71’),
1y (2)Cna (2)) = > wq((Bs,
(4.6) Lg(Chn, ()Cry (2)Crns (oo s
where
s(m) #blocks(‘n)'
(4.7) wq((Bi 0:); ™) =wq(Bl,a;)wq(Bz,a2)wq(B3,a3)q” a
3 q 1) )

o] @ i . For q = 1,
i i al in the variables a and ¢ :
. h ((B;,0;);7) is a signed monomi ne B f o and (46) is
e gt it o s couterblacd B the posrs codicnt o1 L,
B ReE 43 i Indeed, in that case, 1t 18 ‘
" ith positive coefficients. In s sits (B o) ) are
a Z:elﬂf:::{lg:;eve?sing involution on Lq(nl,ﬂz,n;;) (cf [5]) whose fixed p ((Bsy0i)s
pr
characterized by ) )
; = ity, for i = 1,2,3 wWyWe)
1)) % N gdand a;;)i((}gl\zllyy;ﬂb and wc’) c,or;tains all distinct lettel('s, and) 39 upp(wa) € Supp(Wewe
H) a8 Wore e d Supp(w.) € Supp(waWs))-
ctively Supp(ws) C Supp(waw) and e ’
I(dresf'i (4 4); easily follows from w;-counting these fixed pomtst ative weights can still be
entity t‘he eneral g-case is much harder, and although most neg S rom the cardinalities
HOY;’GZ e;’ someg negative weights remain. The sign of wo((Bi, 04); ) comSively apply five weight-
BERAC 3 : each one
A ing involutions ®; to Lg(n1,n2,73), eact R h that By OF
P}flesewm3_251:)‘;:"6{‘5}128;ﬁ::{086t of ﬁxezl points, Fiz®s, contains no ((Bi, 0;); ) suc
the precedl .
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Bj is non-empty or such that any permutation o; is not equal to the identity. Hence the negative
part of (4.6) is due only to B; # @.

We do not describe the involutions here due to lack of space. Let us mention though that
some of them are quite straight forward, while some others use more sophisticated techniques,
such as interpolating between the statistics s and Is on partitions and encoding as 0-1 tableaux.
Interpolating statistics were studied at length by White in [21]. We need a bijection ¥g from

this paper in order to describe the exact set of fixed points Fiz®5. More precisely, define ¥; :
RG(n,k) - RG(n,k), 1 <i < k—1 as follow:

i) if w € RG(n,k) has a letter 7 to the right of the first occurrence of (¢ + 1), then the right-

most letter ¢ is switched to (i + 1) and any (i + 1) to its right is changed to i. For example,
‘1’1(111212332122) = 111212332211.

ii) if w doesn’t have a letter 4 to the right of the first occurrence of (41), then all (i +1)’s to its
right are switched to i’s. For example, ¥;(1112232) = 1112131.

For convenience, we will set ¥, : RG(n, k) — RG(n, k) to be the identity. Now, given S =
{51 <s2<...<sm} C[k], ¥s is defined as follow:

Vs = (T0Uy_,4 o...o\Il,l)o(lIIko\Ilk_lo...olIl“)o...o(\Ilko...o\Ilsm).
The final set of fixed points Fiz®5 contains all ((Bi,04); ) € Ly(n1,n2,n3) such that

Fix.1 B1 = B3 =,
Fix.2 0; = Id for 1 = 1,2, 3,

Fix.3 wq (respectively w.) has all distinct letters and Supp(wa) C Supp(wew,) (respectively
Supp(we) C Supp(waws)),

Fix.4 for § = [#blocks(r)] — Supp(w.), the word Wy = bybs . .. 5n2_|32| in Us(waws) = wabp has
all by’s > 4.

Clearly, for such elements, the weight (as was defined in (4.7 )) reduces to
we((Bi, 3) : 1) = (—1)|Bal ginv(Ba)+rs(m) 4| B+ #blocks(r)
By wg-counting this fixed point set, we find

ni+n,—ng [ s

(4.8) Lg(Cn, (2)Cn,y (z)Cny(z)) = Z Zzan3+l(_l)l_quK[n3]!q [lisz

=0 8=0 5=0

[n_lL[ns—n1+sL [ ng—l+s ] [1)lq[n1 — 5] [nl +n2'—n3—lL,q

j s—3j ng—mi+s| [ng—ny+1l g

where

KK:(’;I) + (l;s) +i(-ng—s+1)+ (;) ~ (s;j) — (5= 7)(ns —ny +j)
+ (nz _2l+s> +(n3 —n1 4+ 8)(ng —nz +1) +j(ng —ng +1).

Evaluating the s-sum by the g-binomial theorem

(which has a simple bijective proof) gives (4.5)
and thus Theorem 3.

O

Note that if we take nz =0, the set Fiz®s is easily seen to be empty unless n; = ng. This
Proves the orthogonality relation (4.2) and Theorem 2.
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i -Charlier polynomials. _ . .
> VTVhe (r:xl;:ltcta;eqresults of the previous sections with those for the classical ¢
e Co!

mials [11, p. 187] N
(5.1) en(mia;9) = 201(¢7 ", 2;0;9,—¢"" " /a).

Charlier polyno-

The monic form of these polynomials, ccn(z;a;q) satisfies

con1(;;4) = (@ = bn)cen(%; 03 ) — Ancon—1( 4 9),

2 n

o _
where g

—1—-2n -n =
A = _aql—Zn(l g™+ aqg”™), bn=aq +q¢ " +tagq
n

A CaICUIathII (See [11 p- 18‘]) Shows that the IIlOIllentS fOI‘ these pOlyn()mlalS are
]

iid .
[l = H(l +agq™*).
=1 '
d a so that b, and )\, are g-analogues of a +n and an respectively.
n

We need to rescale T an d multiply a by (1 — g), and call the resulting monic polynomials
an

If we put = 1 + 2(1 — q), i
Ca(z;a;q), the explicit formula from (5.1) is

k-1 ) )
A (g a) = —n2? n n (—a)”"kq(k;l) H(qzz _ [1]q)
(5'2) C"( ’ ’q) 1 kz=;) [k] q =0

. ; .
The three term recurrence relation coefficients ar

—1-2n - 1-3n 1 1— q)q—-n)'
(5.3) by = g~ "[nlg(1 +a(l — g)g™™) +ag7 7", An=ag [n]q(1 + a(
A calculation using the measure in [11, p.187] gives
3 -()-ng (n,§)a.
Pn = q 1/q\"
(5.4) e ;

i 5.2) and (5.3)
i find ¢-Stirling numbers for the moments. Zeng [23] has also derived (5.2) (
?gzntl‘::econtinued fraction for the moment generatmi funct(x)(;r;.mn
' We see that the individual terms in (5.3) do not have c

. ios % ion for its co
. i lve a sign-reversing involution ) it hoieing
Vlen?So i)th;oryetrﬁzlsgs:g: can givi combinatorial interpretations of (5.2) and (5.4), bu
.4). Non

t sign. This means that the
mbinatorial versions of (5.3)

and
perfect analog of Theorem 3.

6. Remarks. - ,
in some corollaries of Theorem 3. i
iy Let > ng > > ng. The coefficient of the lowest power of a, a™ in
4. Let n; > 2 ... 2 T e :
go(rcouzgy C,,) is a polynomial in g with positive coeflicients. oG i sl
q nyYng ¢ . o in L ] n )
he coefficient of a a(Cn,Ch,
5. Let ng > n1 > ng. T ; ‘ ( oy
?Oroll)l:fg"z'"s'“ times the coefficient of a™%*, for 0 < i < [(n1 + n2 n3.) /2] .
q f of Corollary 5 is analytical, but we would like to have a combinatorial exp
Our proof o

i ? i terms
of; this “Sin:r;ﬁ:g’ iI;,r;)(I)): l:: optimal set of fixed points, in the sense that there aiz s’;:)ll ST(:lmi- .
th 1:’.10:3(TntcealL eaéh ozher when we proceed to wq-coun{t(iélgz;}f F m‘p;'zlg‘;ra‘:;agf . o, w= 12318

a _ - =
ts of Fixz®s such that By = {(2,2)}, : ¢ to reduce

T =2, .th;tth;zlf I:Eg a3¢® respectively. However, we do not believe that an attemp
have weight — ,
Fiz®s would be worthwhile.
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Corollary 6. Letn; > n, 2. 2ng Ifg=1+r, L (B Cp,

.. Cy,) is a polynomial in r with
positive coefficients.

Finally, it can be shown from Theorem 3 that

Z Lq (Cnl (-’B)an (m)cns (l‘)) t?l t;’ t;a

ni,no,ng [nl}lq mm -
(6.1) (~tsia)en(atits(1 - gy (L 200 o200, ).

Letting ¢ — 1 in (6.1) gives back (4.2) for k = 3.

Acknowledgement. Theorems 1 and 2 were originally found in Joint work with Mourad Ismail.
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