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Abstract. We prove that if an infinite word does not contains n-divided factors then it is
ultimately periodic.

Our terminology is that usual in theoretical computer science [1]. In particuﬂ}ar, the
free monoid (resp. free semigrozp) generated by the alphabet A is denoted by A (resp.

A+). We call the elements of A* (finite) words and those of A letters and we denote by
lul the length of a word u of A

We denote by N the set of the non-negative integers and we extend the notion of a
word to infinite words. A (right) infinite word on A is a map ¢ from N into A. We write
t=t(0)t(1)...¢(i)... .
We say that a word u is a k-power if there exists a word v such that u=v .

Let ¢ be a right-infinite word and p be a positive integer. We say that ¢ is ultimately
periodic of period p (in short ultimately p-periodic) if for some i0 in N we have

t(i+p)=t(i) for i2i,.
Suppose now that A is endowed whith a rotal order and consider on A+ the

lexicographic order induced by it. If u,ye A" we write u<v if u strictly precedes v in
this order.

Letx Ix 5 x_be a factorization of the word x and let & be a non trivial element
n

of the symmetric group ¥ . We write xo_ for
n

x X s ;
o(1) o(2) " o(n)
Definition 1. A word x is n-divided if it admits an n-divided factorization x_x_...x

r2""nmw
L.e. a factorization such that for each ¢ € Zn-{id} one has
x>x .
o
Definition 2. An infinite word t is ultimately w-divided if it admits a factorization
t=tot1 t2... ti...

such that for each ie N-{0} and for each n>2

t..t y
) o i n+i-1
IS an n-divided factorization.
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The following is a version of a famous thcorem of Shirshov.
Theorem 1. (Shirshov, [11). Let k,r,n>1 be integer such thatr>2n. There exist
an integer N(k,r,n) such that for any totally ordered alphabet A with k letters, any word

; % . ; ..
inA  of length N(k,r,n) contains as a factor either an n-divided word or a r-power,

say ur, with O<lul<n.

Recently several papers has appeared on this subject, for example [2-7]. In
particular in [5] is proven the following result: given any finite or infinite alphabet A and
a total order on it then each_infinite word on A is either ultimately periodic either

ultimately a-divided for the given total order either ultimately w-divided for the inverse of
the given total order.

The aim of this paper is to prove the following theorem:

Theorem 2. Let s be an infinite word on a finite alphabet A and n be an integer
greater than 1. If there exist a total order on A such that s does not contain an n-divided
factor then there exist a positive integer p<n such that s is ultimately p-periodic.

Proof. By way of contradiction, supposc that s is not ultimately p-periodic.

By Theorem 1, for cach p 22n, there cxists a factor w p of s such that

prlSn

and that
(wp)P
is a factor of s.
As A is finite, there exists an infinite subset R of N and a word u such that if p is
in R then the w _=u.

Sou is a factor of s for cach k21.

We claim that we can factorise s in the following way:
s=r ui(l)t r ui(z)t r ui(h-”t r u(h)t
1 I2 27" h-1 h-1"h e
with
=it I=lt_I=...= =
lu 1 lt2I Ith ll It

I=...,

h

=t
m

for cach m2>1, and
1<i(1)<i(2)<...<i(h-1)<i(h)<....

. ; . v 1
Let 7 the shortest left factor of s such that for a suitable infinite word s( ), onc

has s=r s( ) and u is a left factor of s(“. Clearly rl exist. Let i(1) the greatest integer
i(1)

: 1 . ; ; .
such that u is a left factor of s( ). The integer i(I) cxist otherwise s must be

1
ultimately p-periodic. Clearly 1<i(1) and rlul( ) is a left factor of s. Let ¢ 1 the word

i(1
of length lul such that rlul( )tl is a left factor of s. By maximality of i(I) we have that
u is different from ¢ I

Now suppose that, for 122,
. ui s r ui(2) . i(h-1)
1 12 27 g™ h-1
is a left factor of s such that
IuI=ItII=lt2I=...=Ith_II,

1<i(1)<i(2)<...<i(h-1)
and for cach i, I<i<h-1, ti is different from u.

352

Pose
i(1 ] j
s= rlu ( )t r ul(z)t sl ul(h-”t (k)
. 128 27hg h-1°
where s°  is a suitable infinite word.

Let r, be the shortest left factor of s(h)

s(h"'l) such that for a suitable infinite word

h
( )=rhs(h+1)

Lih-D)+1

s
and

is a left factor of s(h+1).

The . k .
word rh exist becouse & is a factor of s for each k>1.

Let i(h) be the greatest integer such that ui(h) (h+1)

integer i(h) exist otherwise s must be ulti is a left factor of s
e ultimately p-periodi . The
lil such that y p-periodic. Let th be the word of length
i1) i(2 ;
. s 1" tIrzu ( )tz"" lll(h.l)t r u(h)t
1s again a left factor of s. h-1 h-1'h h
Clearly
lul=l¢_I=lt_|=...=I¢ _

One has again

becouse i(h)gi(h_1)+I>i{h—<_i1(){)<i(2)<...<i(h-1)<i(h)

Finally al is di i
y also th 18 different from u by maximality of i(h).

This complete the i
proof of the claim
Now, as A is finite there exi infini
Now, 1st an infinite
each jin J, ¢ =v (and hence lul=Ivl). Let ;ubset
1

elements of J such that
J,<Jy <. < < j j
159, Jj <j <j < ..<
We have two cases to consider. 3 sS 12 nl
Case v>u. The word .

i(jz) i(j e
(u "--"'jz)(u Jz)v...rj3)...(ul(1”)v

J of N and a word v such that, for

1Jys ,JII’JII-#I’JII-O-Z”"’JZH.]

)

is clearly n-divided. Contradiction.

( ase u>y Re]na]k Ihal 1 >n-m I()r ea(:h m 0 m n-l S() we can po (o3
(’ )— ’ —'< < M p S

ulon +m)=z ’

2 , where Iz, I=Iuln.m.The word
n+m ' n+m n+m
(z. v...7' 2
| J,, zjn+ Nz, ViniZ" VeuslZ. V)
1s clearly n-divided. Contradiction. & e 2 e
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Résumé

1/2 172
Z + (z + 1) (1 - 3 z) -1

2 1/2 )
2 (z (z + 1) (1—32)/2)

pour la suite: 1, 2, 6, 16, 45, 126
5 e L 4 0,16, 45, 126, 357, 1016, 2907, 8
5690,... qui apparait en page 78 du livre de Louis Comtet, Adiz?z(g;dzéggng}ng?osrzg e

: —
Nommé ains; a cause des travaux de Lenstra, Lenstra et Lovasz




