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ABSTRACT. Assume that the numbers z;,...,z, are the output of n independent geometrically dis-
tributed random variables. The number z; is a left-to-right maximum if it is greater (or equal, for a
variation,) than z;,...,z;_1. A precise average case analysis is performed for the parameter ‘number
of left-to-right maxima’. The methods include generating functions and a technique from complex
analysis, called Rice’s method. Some additional results are also given.

1. INTRODUCTION

Let X denote a geometrically distributed random variable, i.e. P{X = k} = p¢*~! for k € N
andg=1—p.

The combinatorics of n geometrically distributed independent variables X, ..., X, becomes
more and more important, especially because of applications in Computer science. We just mention
two areas: The skiplist ([2], [14], [15]) and probabilistic counting ([4], [8], [9], [10]).

The skip list is a data structure for searching. To each of the n elements that are stored there will
be some pointer fields, and the number of those is chosen according to a geometric random variable.
Furthermore, the ‘horizontal search costs’ of a particular element are just the number of left-to-right
maxima of the truncated and reversed sequence.

In the case of probabilistic counting we think about p = ¢ = i The parameter of interest is then the
smallest natural number that does not appear as an output of any of the X;’s.

We will cite one particular result, since we can use the corresponding asymptotic formula in the
sequel for our own findings.

Theorem 1. [Szpankowski and Rego, [17]]  The expected value E,, of max{X1, ..., X,} is given
by

o 1 1
B, = Z [1 -(1-4¢% ] =loan+%+ = — & (logg n) +0(;)- (1.1)
k>0

 Here and in the whole paper, Q@ = ¢™* and L = log Q; v is Euler’s constant and &(z) is a periodic

function of period 1 and mean 0 which is given by the Fourier series

5} = %Er(—x,,)eﬁkm. (1.2)
k#0



The complex numbers X are given by xr = 2kmi/ L.
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2. THE EXPECTATION IN THE STRICT MODEL
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It is important not to confuse € with something like a letter 0
Now we want to mark each letter by a “z”
probability pg¥=1 for a letter k should of course
and its star {1,...,k}* into 1/(1-2(1-
infinite product:

(not being present here).
and each left-to-right maximum by a “y”. The

not being forgotten. {1, ... »k} maps into 2(1 —g*)
k . . .
¢%)). So we obtain the generating function F(z, y) as an

F(z,(y) =11 (1 + %)

k>1

(2.3)

To be explicit, the coefficient of 2™y* in F(z,y) is the probability that n random variables have k
left-to-right maxima. Observe that, as it is to be expected, F(z,1) = ﬁ, as it is then a telescoping
product. Let f(z) = %;'y),yﬂ' It is the generating function for the expected values E,,, i.e. the
E, = [2"]f(2). Performing this differentiation we obtain

k

pz q
f(z) = —, 2.4
l—zlgl—z(l—qk) (24)
which is also, by partial fraction decomposition,
1 1
f(z) =p [ = \J . 2.5
g I—2z 1-2(1-¢k) (25
From this the coefficients E,, are easy to see, because there are only geometric series:
Bn=["f(2)=p) [1-(1- ) (2.6)

E>0

But, as announced earlier, apart from the factor P,

the asymptotic evaluation of this is well known,
and we have obtained the following result.

Theorem 2. The average number E,, of left-to-right maxima (strict model) in the context of n
independently distributed geometric random variables has the asymptotic expansion

o A | 1
En=p [logQ mt ot ot (logg n)J + O(r_z) (2.7)

With the periodic function 6(z) from (1.2).

Observe that the factor of the leading term
t01 as ¢ varies between 0 and 1. So the logari
cl
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P/logQ = (g—1)/ log ¢, goes monotonically from 0
thmic term disappears for q — 0, which is intuitively

ables” is then the sequence 111...1, with only one

3. THE EXPECTATION IN THE LOOSE MODEL

Again, we are defining an appropriate “language” £ from which a bivariat

b e generating function
#(z,y) can be derived. Set Ay := k{1,...,k -1}~

then £:=A;‘-.A;-.A;..., and

1 1—2(1-q%)
F(“’y)=H\._1= = :
kzll_tyzjzfg_*qsﬁj ,,1;][;1—2"‘29 (l—py)

(3.1)
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Therefore
0F(z,y)| _ _P? ¢* _P 1 1
fz) = oy — - l—z;l——z(l—qkﬂ) - E; [l—z B 1—z(1—qk)} 3:2)
and
B =@ =2 1 (-] (33)
k>1

By virtue of Theorem 1 we therefore obtain

Theorem 3. The average number E,, of left-to-right maxima (loose model) in the context of n
independently distributed geometric random variables has the asymptotic expansion

P v 1 1
B = 2 flggn + L~ 3~ (ergm)| +0() (34

with §(z) from Theorem 1 (and Theorem 2).
The function ¢ — p/qlog @ (the factor of the leading coefficient log n) is monotone decreasing
from infinity to zero as g varies from 0 to 1.

A. THE VARIANCE IN THE STRICT MODEL

We start from F(z,y) from equation (2.3) and observe (following e.g. [11]) that the variance ¥,
may be obtained by

m P F(2,9) 2
n, = [Z ] By? ot + En— Eqp. (4'1)
Therefore, we consider ,
O*F(z,
P = g(a)+ i) )
o -

oduct; then g(z) comprises all terms where different

We use Leibniz’ formula to differentiate a pr
factors are differentiated once and h(z) comprises all terms where one factor is differentiated twice.

In this (easier) instance, h(z) = 0.

2 zpg~! zpg’~!
9(2) =13 z;j 1-2(1—¢1) 1-2(1-¢)

1 1 1 1 1 (43)
=2P22[ st g ]
ot 1—z ¢7-1 1-21-¢) ¢*-1 1—2(1—¢%)
and . i
= [ = 7 —_ (1= o —_— (1= " . 4.4
gn = [2"g(z) = 20> ) [1+q’—3—1 =a) + 7= ( q)] (44)

0<i<j
This time we cannot resort to earlier results from the literature, whence we have to derive the

asymptotic equivalent for g, from scratch.
Decompositions of the double sums must be done with some care because o

lems. The second sum is easy:

DR YRS W =S IONCS A

"
0<i<j i>0 R>1 i>0

f convergence prob-
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wi‘th the traditional abbreviation a = ag =Y,
A1

j
[j +)
h=1

— ¢

1
W. Now consider the other part:

S SRR

0<i<s - 1 (1 - qj)nJ

Sl (rEe) 6] -Tih-a-er] 53

1

i>1 i>1 h=1 Q-1 (1 - qj)n
Collecting the terms we find =
=2 -0 Y ey
e e Qh 1 —q ) . (47)

W ice’
e want to apply Rice’s method, which we cite as follows: (compare, e.g. [5], [6])

Lemma. Let C be a curve surrounding the points 1,2

analytic inside C. Then +»7 in the complex plane and let f(z) be

n

> (:) (=1 f(k) = —i;/c[n; 2lf(2)dz, (4.8)

k=1
where
(—1)*1n! _I(n+1)I(~2)
2(z-1)...(z—=n)  T(n+1l-z) (4.9)

gration it turns out that under sui
- uitable growth 1ti
pansion of the alternating sum is given f)y i eonditions on f(e)

[n;2] =

Extending the contour of inte
(compare [5]) the asymptotic ex

Z Res([n; 2] f(2)) + smaller order terms (4.10)
wh'err}tlaethe suni is taken over all poles z, different from 1 n
e zo d N 3
s gel,..., n for the summation is not sacred: if We’ sum, f
contour must encircle 2,...,n, etc. ’ = SRR ey

Therefore we rewrite the terms of (4.7) as alternating sums

,g?j [1-0- )] = —k; (:)("l)k;jqjk = i (:)(-l)kw(z) (4.11)

with B .
iz = —__Qz
°8) = g1y (412)

The other sum from (4.7) is

k=0 h>j5>1 k=0

LY== (D ¥ g3 (?
iS1hsy Qh_l q) Z(k)( 1) Z Qh—lq—:’k:Z(k)(‘l)kzp(k), (413)
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with
1 0

W)=Y T o= Y =Y e 4
1

m>1h>;521 m,s,721 m>

Now we turn to the computation of the residues and concentrate first on (4.11). There is a triple

pole at z =0 and double poles at z = 2kwi/L, k € Z,k #0.
An easy computation gives the local expansion at z = 0;

Q- 1 B JH2+ HY
—[n;zlm ~ I258 l-= 1+ zHn+ 2 — 5 (4.15)
and thus the residue is
1 ( 1»  H:  HY
2\ 12 t5 Ul (4.16)

The computations for the double poles z = xk are similar and we just give the results that are

collected into the 2 periodic functions 61(z) and 82(z).
The contribution of the other sum is only O(n~!). Using the expansion Hy, ~ logn+, we have

(1t 21 v 1 6 (1 8 (1
gn ~ p* | loggn+ 7 logen+ 73 T g1z ~ g T ™Y oggn) + & (loggn) ), (417)

2 .
with 51(1:) = “25(3}) and 62(:1:) — —L—z- ZFI(—XIC) eZkﬂt:‘
k=0
Now, for the variance Vn, we must collect gn + En — EZ. After some simplifications we obtain

Theorem 4. The variance V,, of the number of left-to-right maxima (strict model) in the context of
n independently distributed geometric random variables has the asymptotic expansion for n — o

5 m? ¥ v 1 1
2 2
V, = pqloggn +p (” 5 + sz L [5 ]0> +p (-L‘ + 5) + 63(logg n) + O(;) (4.18)

Here, [62]0 is the mean of the square of §%(z), a very small quantity that can be neglected for
numerical purposes. Furthermore, 63(z) is a periodic function with mean 0; its Fourier coefficients

could be described if needed.

The function ¢ — pq/log @ goes monotonically from 0 to 1 as g varies between 0 and 1.

5. THE VARIANCE IN THE LOOSE MODEL

We start from F(z,y) from equation (3.3) and observe that the variance V,, may be obtained

by

2
V, = [zn]_a_lj'(_z,_yl + E,— E2. (5.1)
6y y=1
Therefore we consider .
z’
FEEY)| — o)+ hia). ()
W |y
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9(2) comprises all terms where different factors are differentiated on

where one factor is differentiated twice. This gives o6 nd R(#) comprisea all feea
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_ 2p* 22 i+j
gl(z)_q—?_1—z > q
| iz, M=2(1=¢)) (1 - 2(1 - ¢)) (5.4)
' and ’
o A J
92(2)—(1—21_221 - j
N . o1 L=l —¢t) (5.5)
€ Sé . %
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_ 2}’2 j 1 )
gz(z)_q—zz[qur - -
il " 1-z 1-¢1-2(1-¢)]" (5.6)

For n > 1 we have therefore

galz) = 22 B N i
(2"l9a(2) q;[l l_q,-(l—q)]=%§[1—(1—qf)"“]

= E-PL o :
p [I go(n — 1)+ % -3~ 6(logQ(n — 1))J + O(%) (5.7)

— 2p* v 1
=g [Ioan+ g 6(logg n)} + 0(%)

We can collect;

2
_p( 2, 2 : L
gn= = logon+ —1lo T g 2
q22 Qnrt T o8ent 17+ 51z~ tlogen- i (loggn) + 6 (1°8Qn))
2p ( 1
Wy, 71 . 5.8
o oan+L > 6(loan)>+0(;). -
We also find
2 2
R
1725 (1—3(1—4"))2
2
=2L2 [ 1 ¢ 1 2¢* — 1 1 (5.9)
¢ isill—z 1= (1-z1-g%)’ l—qkl—Z(l—q”)J
and therefore
2p2 k
hn=—-— [1_ q 2"’—1
4 n+1)(1-¢%)"+ =2
= l_qk( (a-d"+ 1—-¢k ank)n]
2p2 [ k
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7 & (1= =n7z (1=
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This involves a well known quantity and a new one:

m oS ) T e e (P e

521 321 k=0 j>1
el n 1 " /n k
_ R L2 = P _\k
_Z<k+1)(k+1)( 1) QF+1 —1 E(k>( 1) Qk_1
k=0 k=1
1.

Now I,, can be analyzed by Rice’s method. At z = 0 we have [n; z](‘.ﬁ,—f_—1 ~ —15; at z = xi we have
[n; 2] g ~ X T(—x ) ¥ —L—. Therefore

(5.11)

L z—Xk
L= . b4(loggn) + O(}-) with 84(z) = 1 ZI‘(l — Xk)e%m". (5.12)
L Q n L ’
E#0
We can collect the expansions (1.1) and (5.12) to get
2p? v 1 1 1
by = 7 logon + A A 6(logg n) — 84(logg n)] + O(;) (5.13)

Now we can sum up for the variance Vi, = gn + hn+ Epn — E2_ After some simplications we find

Theorem 5. The variance V,, of the number of left-to-right maxima (loose model) in the context of
n independently distributed geometric random variables has the asymptotic expansion for n — o

2 2

P p 5 s ¥y 2 2 pf~y 1 1
Vo=5 Sl-=+=+7-7— (+-2 1 =). (5.
0 qzloan+q2( St I I [’5]0)+q<L 5 +85(logg )+ O(~). (5.14)

Here, [62]0 is the mean of the square of 6*(z), a very small quantity that can be neglected for
numerical purposes. Furthermore, 65(z) is a periodic function with mean 0; its Fourier coefficients

could be described if needed.

The function ¢ — p / q% log @ goes monotonically from infinity to 0 as g varies between 0 and 1.

6. UNIFORM DISTRIBUTION: LEFT-TO-RIGHT MINIMA IN THE STRICT MODEL

The ideas from Section 2 apply here mutatis mutandis. There are the letters 1,..., M, and each
one can occur with probability ﬁ Thus, let for k=1,..., M

Ak =k{1,...,k}". (6.1)

Then
L= (A +¢e)-(A2+e)...(Am+e) (6.2)

is the desired language. Translating it gives the generating function

F(z,y)=ﬁ(1+1_y’f§%). (6.3)

k=1

v e EE——— ]

Let f(z) = 2F(2:9)

be generati i
- generating function for the expected values E,,. We find

o= L_z - 1
M1-, Z 1— kz @
or, b i i - ; .
y by partial fraction decomposition
M-1 1
_ 1
)= 5 [m\_;;
= -2 M—kq1_%z |- (6.5)
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M-1 1 M
_ n
En_[zn]f(z)zzm[l_(i>]=21 1 E\"
Eatl )£ onero(2)

(6.6)

Theorem 6. The ex
; pected number E,, of .
1 b n O Ieft-to-n -ht .
v--+s M can occur with probability L is for g1t maxima
| M n — oo given by
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)

for the exponentially sma]
) it g
sequel. We have 7 ome terms. This pr

(strict model ) where each element

8%’F
9(z) = # =2 2 1 1
y=1 1—z0<t<]<M1_iﬁz 1_%

=2 ¥ [* 1 (6.8)

0<i<j<M (M - (M —J)l—2 + ]

and therefore

on=l"g(x)=2 Y [ 1

osicren LM —2)(M —j) +J ’ (6.9)

The series may be computed as follows:

2 . SR 1
05£§7:<M (M-i)(M—j) = E FI=H§4—H$)

sslmen (6.10)

FOI' the vari W — + — W ve obt
ariance we must collect the terms Hb{ H, ) H H |
. . M M M- Hence e ha b ained

g of the number of left-to-ri axim i
ent 1,..., M can occur with probability % is for noji};tg?ren ba - model) where cach
Y

V"=HM—H§§)+O((MA;1 n) (
' 6.11)

Iﬂterestin y n
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Let, for k=1,...,M, Jo == ,

¥ g _l-% (7.1)
—_— = z z
F(z,y)zll:[11 -t
by =
M
find
8F(z,y) be the generating function for the expected values E,. We fin
Let f(z) = —5 —
ay y=1
=1 4 ] (7.2)
M -
i 1 z [____ tzss s
1 =z = — =+ =
_ = M-kl-=2
(O Ser N A
This gives M—1
g - 1 _ —n——}-HM-l- (7.3)
En = ]_M— F et M-k M

Illeol €em 8- 1116 expeCted LuleeI E O:t Iett‘to‘ll -ht maxima IOOSC I'HOdeI W.heIe eaCb e]ement
( )
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elelllelll A\A a.bollt - times a-nd ea-Ch tlIIle we Count 1t. The term HM_] ha.s a Slmlla.l' expla.natlon.
M !
\' we W te t dlt OIla.].].y —-——-—'——( ) — g(z) + h(z) Wlth
FOI’ the ariance, Tl ra 1 a 2

= z 2
, ) 1 " 2 M1<___ﬁ_)>, (7.5)
= z(k+1
(z)=—2— : > iy wel Al -2 o5 \1-2GH

I M?1-z 1<i<i<M B M

) = into 92(2) We have
W = for ) M are collected
W 1 = + 92(2)7 where the terms
e must write g(Z) gl(z)

9 1 o (7.6)
91(2) =1<:L;<M [(M—j)(M~i)1—z ]
and therefore 5 ] 2 H(2) + (7.7)
i = -1~ EM-1T e

[2"]g1(2) = 1<i§<M [m + M

Furthermore . [ 9 1 22M —3) 1 )
2 & — = —i)(1-27 MM-ipl-z

#)= g TR 2 |- M )

N

and therefore

; M-1 ,
laa(z) = 3 [WIWZFT‘)("J””“M J=2(n+1)HM_1 3 Etope

_2 i
1<i<M _ M(M ) M M = P
2zn+1)Hy_; 2 2 2nHpy_,
= “T — M (MHI(W)—I +HM_1) = T —Z.Hg)__l.
(7.9)
Collecting (7.7) and (7.9) we get

n 2nHp_ 2nHpy
9n=1["lg(z) = H};_, —HP 4 ——-2HD 3, - 3HD + =7 (110)

222 ) 1 1
Now we turn to h(z)= m-{-z Z (M—\k)?m—*‘ and thus
k=1

-1
hn = [z"]h(z) = % +2HD . (7.11)

Therefore the variance is (up to the exponentially small terms)

2 2nHpr n(n —1) 2 n n 2
Vo=HY , —3H® 4 Mt g t2HP ¢ 37+ Hiry—~ (H +Hyo1) . (7.12)
A simplification of this expression leads to

Theorem 9. The variance Vi

of the number of left-to-rig,
element 1,..., M can occur wit

ht maxima (loose model ) where each
h probability ﬁ is for n — oo given by
M-—1

2 M —1\n
8. LEFT-TO-RIGHT MINIMA IN THE STRICT MODEL

In this and the next section we come back to the model of geometric random variables,

It is not hard to establish an appropriate “language”, as in Section 2. Let

A =k{k,k+1,k+2,.. }*

is our language, whence

F(zy)=]] <1 L il ) = [[ =zl -m)

’ then E'—‘(A3 +6)(A2+€)(A1+€) (81)

. 8.2)
— zak—1 ok (
k51 1—2q k>0 1—2q
Therefore
OF(z,y) 1 zpg* P ¢ 1 1
flz)= 2889 =2 S 8.3
(=) ¥ |, l—z’c};;l—zq""'l il l1-2 14 (83)

and so

(8.4)

Since the second part of the sum only produces an exponentially small contribution, we have




Theorem 10. The average number En, of left-to-right minima in the strict sense is for n — oo

E,= %a £ O, (8.5)

where, as before, a = aQ = Z Qk —1
k>1

Observe that the function ¢ — sa goes monotonically from 1 to infinity as g varies between 0

and 1.

2
Now let us attack g(z) = ?——F(—ZZ’—@ . Tt is easily seen to be
Oy y=1
i+j
)= i 2 i=m 5] (&9

ot intend to compute the exponentially small terms explicitely, we confine

Now, since we do n
1 — z) in the partial fraction decomposition.

ourselves with the main term 1/(

_w S
= E«J(Qi—l)(@f—n ] e
and

=[2"]g(2) = — 122] [———_—i—(m ] (8.8)

2

The series is easily evaluated and gives, by symmetry, ¢ ;ﬁ, with the usual notation

~B)+ Ba - (ga)’ =

B=PBq= Z _Tl—i_z So the main term in the variance V., is (E)
ek )
Ea - (E) B, and we have

Theorem 11. The variance V,, of left- to-right minima in the strict sense is for n — 00

V, = Ba - (%’)25 +0(Q™™). (8.9)

(2) B goes monotonically from 0 to infinity as q varies between 0 and

Observe that ¢ — }éa -
(3) B might be of interest:

1. The following alternative representation for %a -

1
USRS 8.10
z:1+Q+ +Q* Z(1+Q+...+Qk)2 (810)

k>0 k>0

9. LEFT-TO-RIGHT MINIMA IN THE LOOSE MODEL

This time, let A =k{k+1,k+2,...}%, then L:=...A%-A}-A} and

F(zy) =[] PR T ,1 o ik (9-1)

1—2zq

— zgk—1 z
k>1 E>1 1-2g (py + q)

We obtain
8.
f(z) — F(zry) _ 1 Z zqu—l
8y oy 1-2z4&d1—zgFt
— - ,Qk z
=p . 1 (9.2)
1“z,§1—zq’° p(1~z)2 +PZ [F T+...},
and - e =
En:[zn]f(z)=m+pa+. (9 )
.3

Theorem 12.
The average number E,, of left-to-right minima in the loose sense is f:
18 Ior n — oo

E,=p(n+a)+0(Q™™). (i

Now for the variance we write, as before, m
2

e 9(2) + h(z), with
z+j

0<z< (1—2q )(1 - qu)

9(z) = 2p

t+j

2 oy e — % )(1 ~ 2g7)

. y L s (9.5)
;,: -1 (1-—::)2 (Qj—-l-*—(Qj—l))liz-'_”'J
+2p° .

7’ [(Q'—l)(QJ—l)l i ]

(l_z)zzl—qu

1<i<y
and .
h(z)_2p2 2’ Z _ 2 " 1
— zgk)2 + 2 e
Therefore k>° ! )2 )3 ? Icz>:1 [ 1 -z T ] : (9.6)
gn = [2"]g(2) = 2p [ 1) — —2 1 \?
J; —(n+1) Qj_l-(Qj_l)}
+2p? . . . 2 9.7
d 121 (Q'—l)(QJ ) +0@™) =2 [(n~ 1)a— g] + 2% ;ﬂ+O(Q_n) (.7
and
hn = [2"]h(z) = 2p (;) +2p*6+0(Q™™). "

For the variance
we must collect g5, + hy, + E,, — E2, which is (up to exponentially small terms)

[2(n_1)a‘2ﬂ+a -8
+n(n—1)+2
Slmpllf}'mg this expression we find ) ﬂ] * p[n + a] [n + a] ; (9.9)

Theorem 1
3. The variance V,, of left-to-right minima in the loose sense is for n — oo

Vo = pgn + pa —
P’(2a+pB)+0(Q™"
This time, the function ¢ — pq has a maximum at p = ¢ = _(1 s (10




10.

1l.
12.
13.
14.
15.
16.

17.

10. CONCLUSIONS

We made some numerical experiments and obtained good agreement with the predicted theo-

retical results.

Without going into details, probabilistic counting resembles coupon collecting (compare [3]), and
we think that there is some work to be done analyzing combinatorial parameters in the context
of geometrically distributed random variables. We hope to report on some other problems and

results in the future.

Acknowledgments. W.Szpankowski provided additional references. P.Kirschenhofer made in-
teresting remarks. The symbolic computation system Maple was quite helpful.
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YOUNG-DERIVED SEQUENCES OF
S.-CHARACTERS AND THEIR ASYMPTOTICS
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Given t = i
n the sequence ¢ = {%,, is an S, character }n>0, We construct the Young derived

sequence Y(¥) = {ya(¥)}n30 : yn(¥) = i $i®X(n
7=0

_]).
We st i
e study the relations between ¢ and y(¥), and between deg ¥, and deg (yn(v))
‘ h . . . ! ’
vhen ¢ is supported on a strip. Their asymptotics, as n — oo, leads to some interesting

integrati i
egration formulas. Part of the work reviewed here was done in collaboration with W

A. Beckner and with A. Berele.

Let S, d i
n denote the symmetric group, and assume throughout that the characteristic of

the | i i
e base field is zero, so that the ordinary representation theory of S, can be applied

Consi
onsider a sequence 1) = {1/, }52, where each ¥y is an S, character, n = 0, 1,2

One is interested in the d iti = E
ecomposition of : W i i i
p 'll) ’l/)n a(/\)x,\, here X\ 18 the 1rreduc1ble

n character which corresponds to the partition A, and a(A) is its multiplicity in 1
n-

Giv = W v = n fn>0
iven such {1/’,,},1>0, e construct its “Young derived sequence ¢ {¢ }
>

. n
via ¢, = & . . ..
]E:o $i®X(n-j)- Here x(g is the trivial S, character, and ® denotes the outer

product. The terms 1/)j®X(n_J’) can be calculated by Young’s rule.
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