10.

1l.
12.
13.
14.
15.
16.

17.

10. CONCLUSIONS

We made some numerical experiments and obtained good agreement with the predicted theo-

retical results.

Without going into details, probabilistic counting resembles coupon collecting (compare [3]), and
we think that there is some work to be done analyzing combinatorial parameters in the context
of geometrically distributed random variables. We hope to report on some other problems and

results in the future.

Acknowledgments. W.Szpankowski provided additional references. P.Kirschenhofer made in-
teresting remarks. The symbolic computation system Maple was quite helpful.
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Given t = i
n the sequence ¢ = {%,, is an S, character }n>0, We construct the Young derived

sequence Y(¥) = {ya(¥)}n30 : yn(¥) = i $i®X(n
7=0

_]).
We st i
e study the relations between ¢ and y(¥), and between deg ¥, and deg (yn(v))
‘ h . . . ! ’
vhen ¢ is supported on a strip. Their asymptotics, as n — oo, leads to some interesting

integrati i
egration formulas. Part of the work reviewed here was done in collaboration with W

A. Beckner and with A. Berele.

Let S, d i
n denote the symmetric group, and assume throughout that the characteristic of

the | i i
e base field is zero, so that the ordinary representation theory of S, can be applied

Consi
onsider a sequence 1) = {1/, }52, where each ¥y is an S, character, n = 0, 1,2

One is interested in the d iti = E
ecomposition of : W i i i
p 'll) ’l/)n a(/\)x,\, here X\ 18 the 1rreduc1ble

n character which corresponds to the partition A, and a(A) is its multiplicity in 1
n-

Giv = W v = n fn>0
iven such {1/’,,},1>0, e construct its “Young derived sequence ¢ {¢ }
>

. n
via ¢, = & . . ..
]E:o $i®X(n-j)- Here x(g is the trivial S, character, and ® denotes the outer

product. The terms 1/)j®X(n_J’) can be calculated by Young’s rule.

*Partially supported by NSF and NSA grants.
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Let ¢ = y(¥), ¢¥n = 3 a(Mxa and ¢ = 25 b(K)Xu; then in general, the b(u)’s

AFn pkn
are much more complicated to describe (even asymptotically) than the a())’s. However,

Young’s rule provides a simple way to express the b(x)’s’in terms of the a(A)’s. Thus, a
satisfactory description of the decompositions of ¢ implies a satisfactory description of the
decompositions of ¢ = y(?).

Some well known character sequences are Young derived. For example, the characters

of the classical representations of S, on V®" form a sequence which is dim V times Young
derived — from the trivial sequence [6, 1.4].

The cocharacter-sequence of a P.I. algebra (i.e., an algebra that satisfles polynomial
identities) is always Young derived [3].

An interesting example of such sequences arise when ¢ = ¢k is given by ¢k),n =

> (x» ® XA)s,. Here ® is the inner (Kronecker) product, and Ax(m) = {A

AEAR(n+1)
(/\1,/\2,...) F ml Ak+1 = 0}

The sequence ¢x) provides a description of the polynomial identities of the k x k
matrices!

For k = 2, ¢(2) = y(¢) where ¢, = Y xu. This follows from the study of the
trace identities of the 2 x 2 matrices [4]. ;igzr(l%)inatorial proof (i.e., free from P.I. theory)
was later given [5].

By studying the trace identities of k x k matrices it was recently shown that for all

k, ¢(xy is Young derived [2]. A combinatorial proof of that fact is yet to be found.

We turn now to the asymptotics!

Again consider ¢ = y(¥), where ¥, = S a(A)xa, so that ¢ = S b(p)X p-

AEAR(R) HEAk+1(n)
As n — oo, the asymptotics of deg ¢, can be calculated in two different ways which, when

compared, imply some intriguing equations between certain multi-integrals.
First, deg ¢n = 3, (';) deg ¥; (deg X(n—j) = 1), hence the asymptotics of deg Yn

j=0
determine that of deg ¢n.
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On the other hand, by Young’s rule

b(ﬂ)=b(/ll,"',llk+1)= f: i a(d) ~

Ar=p, Ae=pieq

131 Lk
x| d
~ m .
/ ’ / d:l,‘ka(xl,... 7ak),
K2 ’\k+l

and the b(u)’s cl .
(1)’s clearly determine the asymptotics of deg ¢,,. Compari
totics we obtain n paring these two asymp-

1 EOREM 6 . . 1 J
I 1 3 ; Let a(l‘ g & ,l'k) be a pO} Vnonlla] mn the (:I: =& ) S hOI'nan eous o.
) H ) gen f

K1 e

L w33 gy Jduiny

Ar=p Ae=pi 41

k1 i

/ z1, /dzka(xl,---,zk) &f P(B1y - prkgr)

2 Heg1

Denote Dy(2) = 1<_H
Siy<e

(zi — z;). Then

// P(zl,---,2k+1)-Dk+1(x)-exp(—k+l(Zi"+-'-+2§ ))dz
+1 =

Zl+"'+2k+|=0 2
Z‘Z"‘ZZH-l
=C- o . ./ a(l‘l . x k
2 ) k)'Dk(z cexp(—= (z2
Tit o+ zr=g ) p( 2 (.’L‘] e +$Z))d:c’
1221y

where ¢ = \/E (kk )%(di-k—%k(k_]))
b +1 5

For example, if ¢ =
ple, if a = 1 then p(z) =(z - 22)(22 — 23) -+ (2k — 2k41), hence

// (31—22)...(zk_2 k 1
k+1)Dx el BT Ly
Zl+"‘+2k+1=0 +l(Z) exP( 2 (21 + . + Z’%_‘_l))dz
212.4.22’:_“

Is redu d « ” «
ced to a “Mehta” (or Selberg”) integral and can be evaluated
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A diiler ent appl oacin 18 taken in 1 . 1ncrease the le t Oi the columns Ofe Cb p 10n
l H ] T ng h h cotumn a ar titio.

= PYIRRRID VIS B
X by a fixed factor ¢ : g% A= (A1, -+, A1, A2

9 q
q
CYI.Ven the Chal acter Sequence @ {On}’ @n = E a(A)Xk, denote by l!) == * () ihe
q m ) ( o ‘I)' i Y’
i } : (A)X *A n
fOHOWIHg Sequence {'(/)m . 'l[)qn == )\E a \ alld W “ if 7 ¢ O(m ({ F”[a“ Iet

¢ = y(v) and write ¢pn = AZPZH b(p)Xu-

Again m = E e t W = if 7 . babilistic
in, di (]5 ( )d g ’(l),', but no deg d’,‘ 0 If] ,3_’: O(mod q) Pro 1
og n — . '
| . ied h to obtain the asymptotics of deg ¢n from those deg @n. Agam,
methods are apphe ere o i | | N )
that aSVIIIPt()tl‘CS of ng (;5 can also be found from the relations between the (l( ) S an
- n -

J = } (=}
the I)(,Uz) S COH]I)&IJHOO t}lebe aSs’lnpl()“(S we OI) ain for q = 2 tne 1()11()“1110

T i i —x;)’s,
[1, 3.7). Let g(x1,--- zi) be a homogeneous polynomial of the (z; 5
HEOREM [1, 3.7]. T1,

then

k
- Ndz =
./g(:tl,"'sl"k)'(Dk(I]"”’lk))‘i'e‘\p( J—ZIIJ) '

14+ zTp=0
T12 2Tk 2k+1 ,
_ z7)dz
(21, » Tak+1) exp( z J
—a / o gl@z, ey 2ak) Dakga(@n e 2 =
T+ 2ok41=0
T2 2T 2k+1
k1Y%
1 (2k+1)2
wherea=ﬁ( E ) [ o
v i e ; we deduce
Specializing to g(z1, - sx21) = (Di(z1, ,Tk))
COROLLARY [1, 3.8].
] 2k
2 -
_Z z7)dx =
o)) - Ty, Tokt1) - XP( Z j
/ C (Di(xz, -+ x2k))" - Daksr(mr, -, 2 =

z1+- T2k 41=0
131_>_“'2x2k+1

k
4 . 1‘2 1.
:_i_ / w / (Dk(l'ls"' ,l'k))H" -exp( Z ])d

j=1

z14-+zr=0
T2 2Tk

Notice that the second integrand is symmetric in Z1,°** ,Zk, hence the domain of

integration can be transformed into R*. Thuys the second integral is a “Mehts” integral,

and can be evaluated by the Selberg integral, which yields the value for the first integral.
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