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Introduction.
In [5], it was shown that for any two infinite power series p(z) and q(z) with integer coeffi-
cients, the symmetric product [T; gg—‘fg generates an infinite series of Schur functions (S~series)

p(z;)
——= =) cysi(z

gy = Lo

with integer coefficients. We call such series multiplicity-free if the coefficients ¢y = 0,1 only.
In [5], we developed a general combinatorial method for evaluating c using bi-special rim l

rim hook tabloids of shape A. Based on this construction, we proved in [5] that an S-series

generated by H,(ll_‘;,: ) s multiplicity-free if m = 2,ornisa multiple of m.

The purpose of this paper is to extend our methods to determine which series of the form
I1; %;',",; are multiplicity free where we allow all possible choices of the +, — signs and arbitrary
values of m and n. In this case, the weight of each bi-special rim hook tabloid reduces to either
Lor —1. For series of the form [1:({2%)* where m = 2 0r n is a multiple of m, it was shown in

(5] that there is at most one bi-special rim hook tablojd of shape ) associated to the series for any
—zn
—_Tm

given A\. However for general series of the form IL:(i=5%)*, there may be many bi-special rim

hook tabloid of shape X associated with the series. The main new tool introduced in this paper
is to use the class of transformations generated by adjacent switches of rim hooks as defined in
(2] on the set of all bi-special rim hook tabloids of a fixed shape associated with the given series

to define certain weight preserving involutions on this set. Then for example, we can show that




for all series of the form H,(ll:;”:, )1 our involutions will have at most one fixed point for any

given shape and hence all such series are multiplicity free.

Our main result is the following;:

Theorem 0.1 Let m, n be any positive integers, and ged(m, n) their greatest common divisor.

Then,

L B & - .
1. TL; il—:xi,\,.- is multiplicity-free iff ﬁm—"’{)— is even.

1-z?

2 [liteam is maultiplicity-free iﬁm is even.

3. 1L L i multiplicity-free iffag;—nj s even.

1-z™
4. TLi =2k is multiplicity-free.
Moreover in the case when an S-series generated by []; llg,"!; is not multiplicity-free, we show

that the coefficient ¢y of sy(z) is cqual to
=2 )

where 2% is the order of the class of transformation generated by adjacent switches of rim hooks !
on the set of all possible fillings of shape A,cq with special rim hooks of length m and n only.
Here Ayeg C (n™) is the reduced shape of A, which is obtained uniquely from A by peeling off
certain rim hooks from A. Finally, we show that the largest possible value of ¢ ) for such series

is given by 28cd(mm),
In the following sections, we shall briefly outline the main steps in the proof of Theorem 1.

1 Expansions of Series of the form ILi(1 + Tiz1 fezf)*!

In this section we shall breifly review some of the general methods of [5] for expanding series of
the form F = [[;(1+ Z>1 fxz¥)2 and closely related series . For convenience, we will write
the coefficient of Sy(x) in a S-function series F’ as < Sx(z), F' >.

First we need to define the notion of special and transposed special rim hook tabloids. Given
a Ferrers diagram A, a rim hook I of A is a consecutive sequence of cells along the northeast
boundary of A such that any two consecutive cells of h share and edge and the removal of the
cells of h from ) results in a Ferrers diagram corresponding to another partition. We let 7(h)
denote the number of rows of k and c(h) denote the number of columns of h. We say that his
specialif h has a cell in the first column of A and h is transposed special (t-special) if h has cells
in the first row of A. For example, Figure 1.1(a) pictures all special rim hooks of A = (2,2,4)
and Figure 1.1(b) pictures all ¢-special rim hooks of A = (2,2,4).
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Theorem 1.2 Let IR[pm(2)], IR[gn(2)] be the same as in Lhe

= w?vq(B)’
HSA/Q(IR[pm(:L‘)]; I}Z[Qn(z)]) B=(T,H)eb§‘>‘RHT("/°‘)
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teT
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heH

|| and |h| are the length of t and h respectively.

Consider now the infinite series p(z) =1+ Yi>1piz' and ¢(z) = 1 + Y i>1¢iz'. Note that
if [A\] = n, then HS\(IR[p(z)],IR[g(z)]) depends only on the coefficients P1,
91,92, *,qn. That is, they are independent of p; or %
is used in the filling of B can have length at most ||,

P2;:*+,pPn, and
for i > n + 1 since any srh or tsrh which

which is equal to n. It then follows that

4(=zi)p(-w) B gn(=2:)Pn(~4:) .
<I:I e THEN> = < L @) E5Ny) >

HS\(IR[pn(z)), I R[gn(z)])

where p,(z) and gn(z) are polynomials obtained from p(z) and ¢(z) by truncation. Combining
Theorem1.2 with Theorem 1.1, the following is proved in [5].

Theorem 1.3 Let p(z) =1+ 2i>1 Pzt and g(z) = 1 + Yi>1 47" be two power series, Then

(i) T 280 = 5, 15, (;) Lo=r,mesi-srurr Wpa(B)
(i) TT: 555 = T4 53®) Comirmensnrrca) opa(B)
(i) TT: it = Ta 0 Coirrascsmseisy oo (B}
where

bi-SRHT(A) = Upt—SRHT(u) x SRHT(A/p),

and wy (B) is as given in Theorem 1.2

2 Shape Reduction

g combinatorial procedure for finding the coefficient
%‘;?: (1) Divide the Ferrers diagram F into two
complementary parts: F, and F, /u for some @ C p C A (2) Fill the outer diagram F, /u With
sth’s h to get H ¢ SRHT(M\/u) and the inner diagram F, with tsrh t; to get T € t—SRHT(u)

to obtain pairs (H,T)= B ¢ bi—-SRHT()). (3) Add up the weight w, ,(B) = @g(H)wy(T) over
all possible fillings B and all partitions L.

of §\(z) in the expansion of the series IL
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cting zero coefficients. It is clear from the weight
@g(h) =0 if qu =0,
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We will now concentrate on series of the form Iz T
By Theorem 2.1, L '
=0 if A Limn)-
< S/\(x)’I:I 1+am > 1 ¢ (m,n)

In this case, the only legal hook lehgths are [t| = 0 or m and |h| =

O or n. Since Pie» qpr) € {0, £1},
we have wp ¢(B) € {0,1,—1}. Moreover the following holds.

Theorem 2.2 For any X such that \ € Limyny and X ¢ (n™),
B € SRHT()) associated with p(z) = 1 + z™, and ¢(-z
partition Areg C A C (n™) such that

if there is at least one legal
) = 12", then there ezists a unique

14 g7 1427
< SA(Z)’HW >=t S/\"d(z)’HE—zF
i 1 H 1

Note: if no legal B exists, then the coefficient of Sx(z) is zero.

Proof: We will assume the most general case, i.e. A has more than m rows and more than
n columns, as shown in Figure 2.1 (b).
Step 1: First we use Theorem 3.1(ii) with g(-=z) = 1+ z™ and p(z) =1+ 2™ Thusif Bisa
legal bi-SRHT for p and ¢, the the t-sth’s of B are of size m and the shr’s of B are of size n.
Now consider the cells like ¢1(4,7), which lies above the mth row, i.e. 7 > m. Obviously, this
cell can not be reached by a t-srh of length |t| = m, the only legal non-zero t-srh. Hence it can
only be covered by some srh h of length n starting at the first column of F.
legal B must contain a sth k; of length n stating at the northwest corner of F). Removing A,
from each B, and denote the remaining partition by A/hy, we have, by Theorem 1.3

In particular, every

1432t 122
< S,\(z),H T3 a7 = %(h1) < Sy, (I),HW >
1 t 1 ]

If A/hy still has > m rows, by repeating the same argument, we can remove a s

econd srh hy
of length n from A/h,, starting at its northwest corner.

Denote the remaining partition as
A/(h1hy). We can continue this process until the remaining partition has < m rows to get:

1L 2r - L+ 2
< S,\(I),Hm Se= lleq(h{) < SASM(J:),HE:”—{"- >
1 t 1= )

where A<, = A/(hihy---h,), and a is the minimum number of srh’s that must be removed in
order that A/(hqh, - - -ha) has no more than m rows.

Step 2: Next we use Theorem 3.1(iii) with py(—z) = 1 + z" and @1(z) = 1+ z™. In this case,
we must consider legal bi-SRHT’s of shape A% for p; and g; where the t-sth’s are of size n and
the srh’s are of size m. Now consider the cells like c2(%, 7) which lies beyond the nth column in
A<m, i.e. 7> n, and hence lie above row n in Al Since it can not be reached by a tsrh of
length n in A%m, it can only be covered by a sth of_length It] =

min A,,. Thus by an argument
Wwhich is similar to the one used in step 1,

1427 b 1420
< S’\Sm’H iz .’L‘;" >= :i:pr(t.') < S’\SM.Sn(z)’H i1 :c;" >
i 1 i=1 1




h X — n hich b removed from
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and the result follows since .
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3 The Switching Operator

Let (n1,n9, -+, 10 l)e a sequence of integers. For 1 1 hmg operato
1 3 q < < J < 1{ we (lelille switc erator
’ ’ g —_
( 2 l)

g;; on the sequence by N 7
(nl,nzf",nl)("i,j = (nl,"‘,nj +j —i,”-,n,' -j +1,"',Tlt)
Clearly, o; ; is an involution, a?’j = 1. Denote the adjacent switch o541 by o;. It is easy to
check tilatyjo,- satisfy the Coxter relations:
1. gi0; = ojo; if [i—j| > 1
2.0i2=1
3. 0j_10j0;_1 = 0;0;-10;

Ile a,d acent switchin OpeIa:tOIS [y behave n the s € way t transpositions t; In
T T Ch g 1 1 h am as he ad acent tr pos1 1 l
y g DA A2 g g perm
lle symmet TO We Qlille tchin opera (0) (o) P
T1C up S[ N d ] a switcn erator corres ()Il(l]]l to a pe utation T € S
. 1 ceoly, = y P m m. a.dla n ransp .
as fOllOWS Let t' t,2 t s be an deCOHI osition Oi m terms ()l cent t spositions

i b
The multiplication is assumed to be from left to right. Then, define o by
O =Ty Oy =0y

where (n1,n2, -+, ne)T3, 03y = (1,2, -, ne)04 )T,

. 3 ISR s 4 :Uaj .-:a']'m_
If we have two decompositions m = #;,;, - - ti, = tj,tj, -+t then o;, 04, i XA
i ; satisfy the Coxter relations. - W
" su}llce a"iah'nz operator defined above is motivated by the description of/\SWJttil le g e
The switchi ‘ . i
h’s in a SRHT given by Egecioglu and Remmel in [2]. A SRHT H of s}l:apleh T
. iquely represented by a sequence of nonnegative integers H = (||, gt, t, i
uely r . !
T: iu'm:lh lanth of the sth in H starting from the ith row of F, counted from top
;| is the

the diagram. For convenience, we will write A for |h]. Suppose h; # 0, then, it has been shown
in (2] that (hy, hy,-- “yhe)oi = (hy,-- Shivi+1,hi—1,.. *yh¢) corresponds to a SRHT of shape
A obtained by switching the tails of hi and h;y,. An example of the action of o; on a SRHTis
shown in Figure 3.1. Here H = (5,3,0,4), Hoy = (4,4,0,4) and Hoy = (5,1,2,4). Note that

Hojz = (5,3,5, —1) does not correspond to a SRHT, since it contains a negative part.

Figure 3.1
hy [ hi 3 hi[3
hy | hf [ Ry [T
. 2 2 5|
hs [T hy hy 1=
hy h ‘l h
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Two questions naturally arise: (1
to a SRHT? (2) If we apply an ar
another SRHT?

) When does a non-negative sequence of integers correspond
bitrary switching operator ox on SRHT, will the result be

Let A be a partition with ¢ rows. We have the following results:

Proposition 3.1 Let ff = (h1,ha,-- “she) be a sequence of nonnegative numbers,
Ay = (0,1,2,--. ¢ — 1), and H + Ay be their vector sum. Let order(hy, hy, -
the sequence of hi’s arranged in weakly increasing order.
arder(H + A[) -Ar= (/\1,/\2, oo -,/\().

-+, h¢) denote
Then H is a SRHT of shape X\ iff

Equivalently, B € SRHT(A)iff (b, hy + 1, .- het e

— 1) is a permutation of (A Ao+ 1,23 +
2, A+ €~ 1) or iff there is a switching operator o

» such that He, = A,

Example 3.1 Suppose H = (5,3,0,4). Then, order(H + Ay) - Ay = (2,4,5,7) - (0,1,2,3) =
(2,3,3,4), which is a partition. Hence H corresponds to a SRHT of shape (2,3, 3,4) H is
shown in Figure 3.1, On the other hand, (3; 1,0,5,2) does not correspond to a SRHT, since

order(H + Ag) — Ag = (2,1,1,3,4), not a partition.

(A) and 7 be any permutation on £ objects. Suppose H' =

Ho, = (R4, R, yhy). IfRL ds nonnegative for 1 < i < ¢, then H' ¢ SRHT()).

Proposition 3.3 The action of switchin,

g operators ox on SRHT()) is transitive. In other
words, let H and H' € SRHT()),

then there ezists 1 € S¢ such that

H':Ha,,.




P ition 3.4 Suppose H' = Har, and H,H' € SRHT(}). There ezists at least one de-
roposition 3.

3 or 1 < j<k.
composition oy = 0,0, - - 0i, such that (Ho,0i, -+ -0i;_,)0i; € SRHT(A) fe J

..., n’). Then,
Proposition 3.5 Suppose (ny,7ng,-*,n¢)0x = (n},nh,---,n}). Then
] 5
iy = M +i = 7(3) (5)
for1<i</t. |
Gi SRHT H, let h be a srh in H, and 7(h) be the number of rows it covers, i.e. the
iven a .
leg-length of h. Define
r(h)—-1
r—sgn(H) = H r—sgn(h), where r—sgn(h)=(-1) =1,

heH

5.8 r(h
Similarly, e sgn(H) = H —r—sgn(h), where —r—sgn(h)=(-1) (h)

heH

Proposition 3.6 Suppose H,H' € SRHT(X), and H' = Hoy. Then,

r—sgn(H') = e(m)r—sgn(H).

" —r—sgn(H’) = (x)(~1)" — r—sgn(H).

where ng the nu1nb€1 (] hOOks [ le?lgt“ zZero pr OduCed b the switchin oper ator Ox ON H
n = \— g D ’ jac
a d E\m 1 ) where e s 18 the Ien th of the deCO”l osition of ™ in terms o, ﬂd acent

transpositions.

This result is crucial in determining multiplicity-free series.
7
le 3.2 Let H = (3,0,3,3) and H' = (6,0,3,0). It is easy to check that H, H' are bo';h
e * - b ot g} - e 1
fl){(:l?r;f shape A = (1,2,3,3), as shown in Figure 3.2, and H' = Hoy, where o, alazHg,l) ;
hi () = 3, no = 1, since H' has one more zero hook than H. We have r—sgn
this case, =3, =i 1,

(-1)3r—sgn(H) = 1, and —r—sgn(H') = (-1)*~' — r—sgn(H) = 1.

Figure 3.2
| hy ]
|
Zl B ha [T
: h3 |
hs |
h4 h4 |

4 Multiplicity-free Series

For convenience, we will write the four series ,ﬁt—:-;l,; as .11_:’{;‘.:; where ¢,b = +1. When
we apply Theorem 1.3 (ii), we have several choices in picking p(z) and ¢(z). For instance,
P(z) = 1+ bc™ and ¢(~z) = 1+ tz", or, p(z) = (1 + tz™)-1 and 9(=2) = (1 4 b2™)~1. Each
choice will give us a different set of legal bi-SRHT’s and different weights w, .(B). For our
purpose, we will chose p(z) = 1 and ¢(-z) = 152, and assume n < m (n < mifb=t). For
if not, then we can always evaluate the coefficient of () in the conjugate series []; ll%(("_—’zig;,
which is equal to the coefficient of § A(z) in the original series. To determine the legal srh’s, we

—_— n .
expand ¢(z) = 11_:" —4~ as power series:

o(2) = (1+H-2)") Y (~1)kbk(—z)m (6)
k>0
= Z bk(___l)k(m-{-l)zkm = Z tbk(—l)k(m+1)+nka+n. (7)
k>0 k>0

Hence a legal sth must have length |h| = km or km + n, for k > 0. On the other hand, a legal
tsth must have length |¢| = 0, since p(z) = 1. In this case, a legal bi-SRHT B = (T, H)=H¢
SRHT()),since T is empty. By Theorem 1.3, we have

wpq(B) = H @q(h) = H (‘l)c(h)ﬂh] (8)
heH heH

By Proposition 2.2, we only need to determine if the coeflicient of every A C (n™) belongs
to {0,%1} in order to determine if the series H.%t;:"; is multiplicity-free. In the following
discussions, we will assume (i) A< (n™) and (i) n < m (n <mift=105). We will use 4 to
represent both the srh and its length |A|.

Since the longest rim hook that can fit inside (n™) whose diagram is a mx n box,is m+n—1,
the only legal sth’s that can fit inside \ C (n™) are |h| = 0,7 or m. By (7) (8) and the fact
|hl = () + c(h) — 1, we have

1 ifh=0
t(-1yW-1 jfp=p
5. (h) = )
A b(-1)'®  ifh=m (9)
0 otherwise.

Denote the set of all SRHT"s of shape A C (n™), filled with srh’s of lengths m,n or 0 only by
SRHT(A,m,n). Fix H € SRHT(A,m,n). For convenience, we will write H = (h1yha,- hy)
with the understanding that hi = 0 for £(A) < i < m. The set of permutations 7 such that
Ho, € SRHT(A, m,n)form the automorphism class of SRHT(A, m,n) which we will denote by
Auto(A,m,n). In general Auto(\, m, n) will not be a group, however one can completely analyze




i ition 3.5 that the only
le, it is easy to see from Proposition
ture of Auto(), m,n). For example, . : , = m
o Struchu;f length 7 can be switched to a legal hook is by either lossing n or ghamful\g nzh "
ST - £
w?ly :: become a srh of length 0 or m, respectively. Similarly, the only waylzlx sth o t.vfly "
e i i - lls, or gaining n cells respectively,
itched to a legal srh is by lossing m — n cells, ‘ :
i behsw; IZnegth n. However, if i < n (i > n), then, it is impossible to have a s:ih of length
asrho : ,ifi < : ' .
:])e(clomih m) switched to a sth of length n since there is not enough room u}; ’FA to ho sothat .
. = (h%,hY,--- , we have
By writing Hor = order(hi 1), b7z “y oy B (my) = (h1, By, M)
i) # 1, th
TO7 1 e Qorm ifh;=n
e ifhyj=mandi<n .
(i) ~ .
n ifh;,=0andi>n

El()lll‘ € above re the permutation 7 can be dete ed quely y the relations 7(z) =
h b rsult,h perm 1 C TIMIN umul b h rla.ln ()

i ition 3.5.
h; — h;r(l-) + 1, for 1 < 7(3) £ m, which follow from Proposition

. A,m,n), and 1 is
Proposition 4.1 Suppose 7 € Auto(A,m,n), H = (h1,h2,++ hm) € SRHT( )
not a fired point of 7. Then
i+ n ifhi=nandi<m-n
i—(m-n) ifhi=nandi>m-—n

it (m—n) ifh
e ifhy=0andi>n

w(i) =

Il

mandi<n

} rther, it 1s lmposmble to have h, = 0 Wlth 1 < n, or n, =m Wlth 1>n wheﬂ 118 not a ﬁzed
U ’ =

point of m.

* A ’ »
p!'OpOSlthn 4 1, one can com pletely detex mine the structures Of CyCleS T E Auto( ,m n)
USlng 9

] le, and
P ition 4.2 Let a = (i1,%2, " %k, ""*,%a), where 1 < i < m, d < rrlz, be t;{cyceThen
opos s )42y stk e ~ 5 :
areiuto()\ m,n). Suppose H,H' € SRHT(A\,m,n) and H' = (h, hy, slls) o
either for 1< k< d,
0 ifa(ix)>n

hiy, =n and h:,(ik) = { m ifa(ix)<n ’

where the cycle o is given by

i 10)
ikp1 = (ik +n)mod (m) for i 1<k<d (
or, for 1 < k< d, o
heo |0 ifig>n T
T m oifik<n

where the cycle o is given by

ik+1 = (ik + m — n) mod (m). (11)
Further, the length of the cycle a, i.e. the number of distinct integers it contains, is given by
4= gty

We will call a defined by (10) an n-cycle. Clearly, the cycle defined by (11) is the inverse of
a, and we will denoted it by a=1. The effect of @ on H is to change the length of each srh b
from n to m or 0, for every iy in the orbit of a. The effect of a-1 jg the opposite. It changes
the length of each srh hi, from m or 0 to n for every % in the orbit of a—1,

One can then show that different n-cycles and inverse n-cycles commute among themselves
and with each other since they must be disjoint.

Also if a € Auto(A,m,n) is a cycle of
length greater than 2, then a?

& Auto(A,m,n) since the application of the switch
ator 0,2 on H € SRH T(A,m,n) will produce some illegal srh’s.
show that Auto(\,m,n) contains only

ing oper-
From these facts, one can
products of distinct n-cycles or their inverses and that
[SRHT(X\,m,n)| = [Auto(X, m,n)| = 2¢ where ¢ < ged(m,n).

From the detailed analysis of the stucture of Auto(A,m,n), one can derive the results of
Theorem 1.1. For example, suppose that we want to show that series []; 11;;",; is multiplicity-
free. By the comment earlier, we only need to consider the reduced shape \ 'g (n™). Assume
SRHT(A, m,n) is not empty. Otherwise, the coefficient of Sx(z) is zero. By (9)

o _ ) —r—sgn(h) ifh=n
©alh) = { r—sgn(h) ifh=m (12)

If Auto(A,m,n) is the trivial group, i.e. contains only the identity, then there is exactly one
element H in SRHT(),m,n) and the coefficient of Sx(z) is equal to @, (H) = 1.
Now suppose that Auto(A, m,n) is nontrivial. Under the action o

f 7w € Auto(A,m,n), there
will be certain sign changes, Wg(Hoy) =

+@q(H). Let us first consider the action of a n-cycle
@ = (41,13, +,4q). In this case, the parityis €(a) = d—1. Let H ¢ SRHT(A,m,n)and h;, = n
for each i on the orbit of a. Let ng and n,,

be the number of hi,’s whose length changes to 0
and m respectively,

under the action of a. From (12) and Proposition 3.6, it is clear that

Wo(Hoa) = ‘(a)(‘l)"o+nm“_’q(H)

Since by Lemma 4.2, no + n,, = d, we have

@y(Hoa) = (~1)%-'0,(H) = —a,(H). (13)

A general element 7 € Auto(X,m,n) can be written as a

product of k distinct n-cycles or inverse
n- cycles r = ajillaf‘ gt

5 Where 1 <k < ¢, and cis the total number of different n-cycles or




. . . . . o, |

iverse n-cyc es 1n utol A m,mn). ]\/IOIOeVeI since H S Xed we m st ChOOS e]th aJ or a
1 1 A ( 9 ) 1 ﬁ 3 u e er

nver: y

but not both for any given j. Hence

» . =(-1 ka) H
%(Ha,,):wq(Haaﬁmaji; aaji;) (—1) @, (H)

and finally, by Theorem 1.3, the coefficient

_zn B
Z Sx(z),]_:[ 11_ :c;" > = HGSRZHT(A)MI(H)
= Z @q(Hox)
rEAuto(hmin)+
= @o(H)+ >, Qq(Hdafaf;...aix)

1<j1 <2<+ <Jk;1<k<e

= i(—l)k ( :: )“—’q(H)
= I(CTO— 1)°w,(H) =0

o] lf thele are more .
S thall one EIQHIGIlt m SIE.H 1 (A m, 11«), then the Welghts wlll CaIlCeu out We
’ il

have hu hown h i i i licity-free.
at the series is multlp . o
e t H L xm',‘ Loy b a.nal zed in smnlar manner.
Th i ot —— and []; 7= can be y
€ series Hi T+z™? Hi T+z™? 1 T—z7
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THEORIE COMBINATOIRE DES T-FRACTIONS
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INTRODUCTION

Nous résentons un modele combinatoire our les fra.ctions continues de ThI'OIl Th ou T-fractions
’ ’
qlli s’écrivent sous la forme

1 it Ait (1)
L—bit— 1-bt— T bepgie

Ces fractions sont moins connues que les fr

actions continues de Jacobi ou de Stieltjes, dont les
formes générales sont respectivement

1 A t? Axt? 1 At Aet
t) = e — e = —_— ... Cne o
iy = 3= bot— T—bt— 1= bt o St =3— I = 1 = (2)

L’interprétation combinatoire des fractions de Jacobi et de Stieltjes a été initie par Flajolet [FI]
avec des chemins valués dans le plan discret Z x Z (respectivement appelés chemins de Motzkin et
chemins de Dyck) et est devenue un sujet classique (voir par exemple [Fr-Vi], [Go-Ja], [Vi]).
Dans le modeéle développé en section 1 pour les T-fractions, nous utilisons & nouveau des chemins
de Dyck valués, mais avec une régle de valuation différente de celle correspondant aux fractions de
Stieltjes.

Si les réduites successives des fractions continues de
approximants de Padé ”classiques”
en deuz points, auxquels est consac

Jacobi ou de Stieltjes fournissent des
; celles des T-fractions conduisent 3 des approrimants de Padé
rée la section 2. La notion de T-fraction duale d’une T-fraction

Enfin, en section 3, nous interprétons combinatoirement des développements en T-fraction
relatifs & certaines séries hypergéométriques et i leurs g-analogues. Nous retrouvons ainsi des
résultats de Dumont, Kreweras [Du-Kr] et Zeng [Ze]. L’interprétation repose sur une bijection entre
permutations et certaines histoires combinatoires. Cette nouvelle bijection, exposée au paragraphe
3.1, joue pour les T-fractions le méme 16le que celle de Francon et Viennot [Fr-Vi] pour les fractions
de Jacobi et que celle de Foata et Zeilberger [Fo-Ze] pour les fractions de Stieltjes (voir [dM-Vi])
Nous adoptons pour les fractions continues la notati
dans [Jo-Th] : ainsi, ’écriture

on "horizontale” utilisée par Jones et Thron

Ao a; An-1
e S 3
bl+ 62+ bn+ ( ) ( )

désigne la fraction continue (finie ou infinie)

!Travai] rédigé

lors d’un séjour au LACIM, Université du Québec & Montréal, grace & une bourse de la coopération
franco-québécoise.
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