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A TWO-DIMENSIONAL PICTORIAL PRESENTATION
OF BERELE’S INSERTION ALGORITHM
FOR SYMPLECTIC TABLEAUX

THOMAS ROBY AND ITARU TERADA

ABSTRACT

Our purpose is to give a new presentation of Berele’s correspondence [1]. S. Fomin
(2] showed that the Robinson-Schensted correspondence can be presented as a dou-
bly inductive application of “local rules”, which are based on the properties of
Young’s lattice P (the poset of all partitions, ordered by containment of diagrams)
as a differential poset. T. Roby [7], [8] generalized this interpretation to several
variants of the Robinson-Schensted correspondence. S. Fomin’s analysis is based
on a certain poset invariant. M. A. A. van Leeuwen [5] analyzed that a direct in-
vestigation of the bumping procedure, which is used in the original definition of the
Robinson-Schensted correspondence [9] (also [6]), can lead to the same presentation.
Fomin, and later van Leeuwen, also gave a similar presentation of Schiitzenberger’s
Jeu de taquin or sliding algorithm [10]

Our presentation of Berele’s correspondence incorporates these two ingredients.

1. REVIEW ON BERELE’S CORRESPONDENCE BY INSERTION

The usual Robinson-Schensted correspondence gives a bijection from permuta-
tions of a certain alphabet to pairs of same-shape standard Young tableaux. A
generalization of Schensted gives a bijection from permutations with repetitions to
pairs of tableaux of the same shape, one column-strict, one standard. The latter
may be viewed from the standpoint of representation theory as giving the decom-
position of the action of the group GL(n) x S(n) on the k-fold tensor power of the
natural representation ®’°DGL(,,). Berele’s correspondence, originally conceived to
explain a similar representation theoretic phenomenon for the symplectic group,
gives a bijective map from the set of words on a certain alphabet of size 2n to pairs
of tableaux, one “symplectic”, the other “up-down”.

First we recall the basic notion of a partition. Let N denote the set of natural
numbers {0,1,2,...}. When we need to exclude 0 we will use the notation N*t.
A partition ) is a sequence of natural numbers \ = (A1, A2, A3,...) such that the
terms are weakly decreasing, i.e., \; > ), > A3 > ... and only a finite number
of the terms are nonzero. The nonzero terms are called the parts of A\. The

number of parts is called the length of A and is written £(X). The sum of the

parts is called the weight, and we write [Al = 351 Ai. When writing concrete
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paritions, we generally surpress parentheses, commas, and t.ra,iling zeros; since r;lo
parts greater than 9 occur in any of the examples, no c?nfllslon s'hould result.l l'I/‘\ e
unique partition of weight 0 is denoted by 0. If the weight of X is T.L,.then cal Z
partition of n and write |\| = n. Let P, denote the set of all partitions of n, an
the union U,enNPhn- '
7 c’iIf‘alI::fieiagram or shaepe of a partition X is the set Dy = {(4,) € N1 .5 i <A}
which is called the Young diagram of A. The elements of the Youn.g .du.tgram zlire
called its squares, and we may visualize it by placing 'the square (7,7) in the z;h
row and jth column, using the same conventiorll as matrices. A glance at one of the
les below should make our convention clear. .
ex"%‘i conjugate of a partition X is the partition X' = (A, A3,...) 'whose dlagrfn.n
is given by Dy = {(4,5) € N’ : (j,i) € D»}. In other words, the diagram of X is
ined from that of X\ by transposition. .
Obtlgleﬁne a partial order C on partitions by p C X if and only if D, g, D,. 'I.‘hls
partial order is easily seen to be a distributive lattice P, called Young’s Lattice.
We say that “) covers p” and write A S pif 4 C X and they differ by exac‘tly one
square. We call such a square a corner of A and a cocorner of p (followmg van
Le?‘li:e:)positive integer n, and let T',, denote the totally orde.red set {1<1<2<
3 < ... <n < a}. An Sp(2n)-tableau or an n-symplectic tal')leau (.)f shape
A, where A = (A1, A2,..., ;) is a partition with at most .n parts, is a ﬁl}mg T of
the Young diagram of A with elements of I',, which satisfies the following three

conditions:

(1) T(i,1) <T(,2) <--- <T(, M) for 1 <4 5 L

(2) T(1,5) <T(2,5) <+ <T(Xj,5) for 1 < j < Ay,

(3) T(5,j) <ifor1<i<l j< A . '
Here T'(i,j) denotes the entry of the cell at the position (7,7)—the intersection O/f
the ith row, counted from the top, and the jth column, counted from the lefI.:. Aj
is the length of the jth column of the Young diagram .of A Mor(.e generally, if '
is replaced by any totally ordered set, and T is a filling satisfying the first tvs.ro
conditions above, then 7' is called a column-strict tableau. The shape of T will

sometimes be denoted sh(T). i o
g f the letter v appearing in T'.

Let mr () denote the number of Occu::(li():iin(;(i) emT(Z)_;ynT%I)) ol
the sum of the weight monomials of T z; Tqy 255 B ) s
for all Sp(2n)-tableaux T of a given shape A, equals the character Agp(an) of the
irreducible representation of Sp(2n,C) (see [4]). ' ' .

To define Berele insertion we first need to define “ordinary insertion” in jche sense
of Schensted and Knuth. The description we give here will be somewhat informal;
a more formal version can be found in [3]. ‘ .

Given a column-strict tableau T' of shape X and a letter vy, we de.termme a pair
(T <7, \') as follows. First insert v into the first row of T, where it replaf:es the
smallest letter strictly larger itself, or gets placed at the end of the row if none
exists. In the following steps, we proceed row by row. As long as some letter
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has been displaced from the row above, it is similarly inserted into the row below.
At some iteration, the currently displaced number will come to rest at the end of
some row (perhaps creating 4 new row at the bottom). This is the tableau T « ~,
and its shape is \', which covers A. Examples of this procedure are contained in
the example of Berele insertion given below.

To define Berele insertion we also need the notion of a jeu de taquin slide, due
originally to Schiitzenberger. Define a punctured shape (A, k) to be the diagram
of a partition from which one square &, called the hole has been removed. Define
a punctured tableau (T h) of shape (), k) to be a filling of the squares of (A h)
which satisfies the same inequalities (1) and (2) given in the above definition of
symplectic tableau, except that no value is assigned to the hole h so any inequalities
involving h are ignored.

A slide is a transformation ¢ : (T,h) — (T, k') between punctured tableaux
defined as follows. Compare the value of T at the two squares below and to the right
of h=(i,j). HT(i+1,5) < T(i,j+1), then set T'(3,5) =T(E+1,5), ¥ = (i4+1,75),
and set 7" to be identical to T elsewhere. Otherwise set T'(i,j) = T(3,j + 1),
h' = (i, +1), and set T’ to be identical to T elsewhere. Informally, we simply slide
the lesser letter adjacent to h into the hole & and make the vacated square the new
hole. This insures that (except for the hole) 7" satisfies the conditions of being a
column-strict tableaux.

Now it is clear that one can apply the above procedure inductively until the
original hole h has become a corner of the transformed tableau 7. At this point
one can forget the hole and consider 7" to be a column-strict tableau of shape
sh(T")\h'. We use this procedure below.

Berele insertion is a explicitly given bijection from the set of pairs (T, ), where
T'is an Sp(2n)-tableau of a given shape ), and y € I'y,, to the set of Sp(2n)-tableau
whose shape either covers A or is covered by A (in the poset P). If the ordinary
row insertion of y into T yields a valid Sp(2n)-tableau, then it is also the result of
the Berele insertion of v into T'. In this case the resulting shape covers A\. On the
other hand, if the result of the row insertion violates condition (3), then at some
row k, the symbol k, which was in row k in T, was bumped by a k. Capture the
earliest such occurrence, and at this point erase both the k and the & involved in
this bumping, leaving the position formerly occupied by the k as a hole. After this,
apply the sliding algorithm until the hole moves to a corner, and then forget the
hole. This is the result of the Berele insertion, and the resulting shape if covered
by A. Let T =% denote the result of the Berele insertion of v into 7.

The weighted enumerative identity following from this bijection represents the
decomposition of the tensor product of the irreducible representation Agp,2,) and
Usp(2n) (the natural representation or the vector representation).

Berele’s correspondence, as we call it in this abstract, is a bijection from the set
of words w = wyw,. .. wy in the alphabet I',, of fixed length f to the set of pairs
(P,Q), where P is an Sp(2n)-tableau of some shape \, and Q is an up-down tableau
of length f with initial shape @ and final shape A and consisting of partitions with
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at most n parts; namely Q = (& = n(o),n(‘l),.t.,n(f) = A), £ e P, L(k®) < 7;;
and for each 7 either kG~ C k() or k(=1 5 k() where A D p means ) cove)rs:;w
w is such a word, then for 0 < i < f put P, = (--- ((@ = w) = ws) = . = Wi,
and let £ be the shape of P;. Put P = P and Q = (,(©,k®,...,k()). Then
Berele’s correspondence takes w to this pair (P, Q). -
Example. Applying Berele insertion to tl.le word w. = 31233112312232122312
yields the following sequence P; of symplectic tableaux:

1]i]3] [1]3
[1] [1]2] 12[3[3?3|?3 ;3
,ﬁ—vé— 3333L3— >L
1]2]3 1[1]3] [1]i]2 _ _
li 2|3 313 31313 112 —}g:;]
23 dE 3 3 C2Ie1s] [z]s]s
i]2]2 THEE _
;13 3(3 i[i]2] }1|2|il
3 3 NEE , 3 ,
1[i]1]20203] [1]ifeJ2]3] [s1]i]2f2]2]
213 . L2143 . L213(3

The final output is the pair (P, Q) where

AR

1
3 =
ool

P=L2 and  Q=(0,1,11,21,31,...,52,53)

b
is the sequence of shapes of the P;’s. :
} The e(rlmmerative identity following from the whole Berele correspondence repre

sents the decomposition of the f-fold tensor product of the naturalbrepre;entat;orré
i lgebra. For m
i tion of Sp(2n) and the Brauer alg
of Sp(2n) according to the ac : pasilins
i including the case of orthogonal groups,
information about related matters, inc . ; R
i There an interesting connection be
fer the interested reader to [11]. ; o
fi(:)wn tableaux and stadard tableaux (a connection between a paramet.rl’zatlon :)0
the Sp(2n)-decomposition of ®’ C2" and that of the GL(2n)-decomposition, so
speak) is also explained. . ) . =
v In z)rder to give a pictorial interpretation, we need to standardlsz oufr rW:aCh
Let w be as above. Let @ denote the word obtained from w by repla.cmg,holeft -
v € I'y,, the occurrences of 7y in w by the symbols 71, 72, ..., Ymo (v) from the
ns
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the right, where m,, (7) is the number of such occurrences. Let T, denote the totally
ordered set 1; < 15 < --. < Ln,) < 21y < sent Im.,,(i) SRR <n<ny<
< Py n) < Ty < Fig <L-- < Timy () and 7y : [1, f] — Ty, be the unique poset
isomorphism. Following Schiitzenberger, we call @ the standardization of w.
Now we can define a slightly modified Berele correspondence for standardized
words. All our insertions and slides occur according to the usual rules (though in
this case all the letters are distinct). Violations of the symplectic condition are still
determined by the ignoring the subscript on 7:- Then we have the following

Lemma. Letw = WiW2 ... w5 be a word on the alphabet T, and @ be its standard-
ization. If i corresponds to a pair (P,Q) by the modified Berele described above,
then w e (P',Q) where P’ is obtained from P by deleting all the subscripts.

For the usual Schensted correspondence, the case of words with repeated letters
can be reduced to that of permutation by means of a similar standardization. (In
other words, standardization commutes with Schensted insertion.) The present
situation is more complicated, in that one cannot simply replace the standardized
word with a permutation. One need to know the maximum row into which a given
letter can be bumped before it is will cause a cancellation and sliding. So our
standardized words are really equivalent to “weighted permutations”.

2. BERELE’s CORRESPONDENCE BY LOCAL RULES

Next we explain our pictorial approach, which is a two-dimensional presentation
of Berele’s algorithm based on a modified set of local rules in the spirit of Fomin.
We draw an f x f lattice as in Fig. 1. We employ the matrix coordinate system,
and the vertices are labelled (4,7) with 0 <4 < f, 0 < J < f. The square region
cornered by the four vertices (i-1,7-1), (i— 1,7), (4,7), (3,5 —1) will be called the
cell at (4,5). The region Yalln)-1<i< Yo' (Ymu (4)) Will be called the 7-zone.
We will refer to this partitioning of the lattice as its stratification. The picture
of w is obtained by writing a x inside the cells at (351 (w;),4) for 1 < j < I

Now let (3, j) denote the word in T, obtained from the section of the picture
to the left and above the vertex (4,4), ie., w(4,4) is the subword of W1y -+ - W;
consisting of letters < Yw(é). Let w(i,7) denote the word in I';, obtained from
w(i,j) by forgetting the subscripts of the letters. Let A(%,7) denote the shape of

the Sp(2n)-tableau obtained by applying Berele’s correspondence to w(3, j). Then
we have the following:

Theorem. 1) For any square at (i,7), let A = (i —1,j — 1), B = (i - 1,7),
C=(i,j~1), and D = (4,7). Then the quadruple (A(4),A(B),A(C),A(D)) falls
into ezactly one of the following cases.

(The = sign in the following sentences distinguising the cases represents the
fact that these can actually be used as “local rules” to determine A(D) from A(A),
A(B), and A(C), as well as the position of the square and whether or not the square
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. : b
tains @ X. as claimed in the next statement. At this point, these should only be
contas 5
read as “and”.) .
(x) the cell at (i,j) contains a x, A(A) = A(B) = A(C) == A(D) grows f
A(C) in the first row. N ’ |
Irf tlZe remaining cases, the cell at (¢,j) does not contain a X
A(A) = A(B) = A(C) = A(D)= A(C)_ AO)
A(A) = A(B), A(4) # A(C) = A(D) = A(I;)
AA) #A(B), A4 = A(C) => AD)=AB) o
(M) A(4) C A(B), A(4) C A(C), A(B) # A(C) = A(D) = e
(R) A(A) C A(B) = A(C), A(B) grows from A(A) in the kth row, £ Hy
= A(D) grows from A(C) in the k + 1st row' e
(O) A(A) C A(B) = A(C), A(B) grows from A(A) in the kth row, k+1> Y
= A(D) =A(A) . . | I
(3) A(4) C A(B), A(4) > A(C), A(B)/A(C) is a domino = A(=> ) N C('))c
(J) A(A) C A(B), A(A) D A(C), A(B)/A(C) is not a domino
. A)
A(D) c A(B), A(D) # A( | . .
(") A(A) D A(B), A(A) C A(C), A(C)/A(B) is o domino = A(:> ) N B() )C
() A(A) D A(B), A(A) D A(C), A(C)/A(B) is not a domino
: )
A(D) € A(C), A(D) # Al .
(W) A(4) D A(B), A(4) D A(C), A(B) # A(C) =+ A(D) = A(B)k >(2 ):>
(51) A(A) D A(B) = A(C), A(B) shrinks from A(A) in the kth row, k >
A(D) shrinks from A(C) in the k — 1st row
k = 1 never happens in the immediately above case. e ]
it1 including the zone division), an
ing A(A), A(B), A(C), the position (_mc ‘ ‘ o
2)h It{:eorw;:gnot(th)e sqz(mre contains a X is sufficient to de.te.rmme tohwhz?ht ::eseof ué;’
o re belongs. So we can recover the whole array of A(2,j) from the pz; g
unatarting from the empty shapes at the top and the leftmost edges and apply
y S

(
(
(

~— N N N

local rules inductively. ' . . 0 )
the;; I‘;ca wing A(B), A(C), A(D), the position (including the zone (fiz?;:zon’)w;e
no ’ ) ) o
sufficient to determine to which case it belongs, so we can reci;:e: ':z;war:nap Gy
] t edges. This means tha
rom the bottom and the rightmos : (e il
Z:(;zyefinformation on the bottom and the rightmost edges is znjectweb.l St
4) The sequence of shapes on the bottom edge equals the up-down tableau

) ’s algorithm.
tained from w by Berele’s alg ‘ .
! 05b) alfet 1f< k < n. The rightmost edge shape sequence in the k-zone represen

horizontal strip growing from the left to thé 7"itg}llzt.7C o provens’s ok Bl
e k-

The rightmost edge shape sequence in ks

h 6.)20nt(3 stfip (shrinking from the right to the left) f?llowed by a(_(iv;oTtX (b}/_alr(Lkl) &

hZZzontal strip, from the left to the right. Moreovez if one ;n:ltls)\t m;ng p’:),:nt gk
’ s the row coordinate of the tu .

d p®) = A(vg, f), where vy is t L T A
1;L£)sifsnkuto the g(m'wth in the rightmost edge of the k-zone, then pl*) [A*) 4
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a horizontal strip.

7) The tableau of shape A(f, f) in which p® J\(*) 45 filled by the symbol k and
AE+D) /(%) s filled by the symbol k (k=1,2,..., n, where \(F+1) 4 understood
to be A(f, f)) is the Sp(2n)-tableau obtained from w by Berele’s correspondence.

This shows that the result of applying Berele’s correspondence to a word w can
be completely determined by the “local rules” listed in 1).

3. THE REVERSE CORRESPONDENCE

As stated in 3), if we know the up-down tableau on the bottom and the shape
sequence on the rightmost edge, we can recover the whole array of shapes as well
as the word w. On the other hand, suppose we are given a pair (P, Q@) of an
Sp(2n)-tableau P and an up-down tableau Q which lie in the range of Berele’s
correspondence. We can put @ along the bottom edge; however, the tableau P
only tells us the rightmost shape at each border between the zones labeled & — 1
and k, and the minimal shape in each k-zone where the sequence of shrinks becomes
a sequence of growths. This of itself is insufficient to determine the rightmost edge.
We do not know directly from P and @ how many k-k cancellations occur in the k-
zone, nor what shape should be put at the border of k£ and %. Nonetheless, Berele’s
correspondence in its original form is reversable, so it should be possible to see how
to do this from our pictorial point of view.

Suppose we are given a pair (P, Q) as above, which by the usual Berele corre-
spondence corresponds to a word 1. If we apply our algorithm to this word, we
obtain @ along the bottom edge, and an updown tableau T = (0=1,7,... yTF)
which (along with the stratification) determines P as described in 6) and 7) of the
theorem above. In fact, T may be viewed not merely as a sequence of shapes, but
in fact as a sequence of symplectic tableaux T = 0=T,1,... yTf =T); here T,
is the symplectic tableau determined by the updown tableau (0 = Toy Tlyen0 , T;) A8
above. (Note that this sequence of symplectic tableaux is certainly not the same as
the sequence obtained in the usual correspondence, whose shapes are given by the
updown tableau Q.)

We give the following inductive procedure, which we conjecture to work in
all cases. Given the pair (T¥,Q) we wish to recover Tf_1. Put Q = (0 =
K0, K1,...,k¢ = sh(P)). First we note that Wwe can recover the information of
which zone k the vertex T¥ lies in as follows. Set the maximum length of the
shapes appearing in Q to be . By the definition of symplectic tableau, there must
be some letters 2 lin w. On the other hand, any letters m > I which appear in w
must also appear in Ty, since they could only have been cancelled out after being
pushed in the mth row. Therefore, the maximum letter in w, i.e., the zone of Ty is
the maximum of ! and m.

If Tf contains the letter k, then we obtain Ts_, from Ty by deleting the rightmost

occurrence of k in Ty, because the numbers are added in a horizontal strip from
left to right by 6).
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If T5 does not contain the letter k, then we first check to see whether in @ there
is a “k-shrink”, i.e., an adjacent pair of shapes k; ) kiy1 which differ in the kth
row. If not, then as in the determination of the zone we conclude that Ty must
contain a letter k; by deleting the rightmost occurence of k we obtain Tf_1.

Now assume that Ty does not contain the letter k, but Q does contain a k-
shrink. Here we need a more elaborate procedure to test whether the assumption
that 71 - 75 will yield an appropriate row of our diagram. This assumption
determines the shape of Ty_1 as follows: add the letter k to the first column of Ty
which does not already contain a k to get Ts-1. The location of this k will be a
cocorner of Ty, say at position (r,c). Note that given 77 and the row number 7,
741 is uniquly determined.

For convenience we use the following shorthand. We assign @ to the bottom
edge of our diagram as follows: k; is assigned to the vertex (f,i). Let ] denote
the value which would be assigned to the vertex (f — 1,1) by the local rules under
the assumption that 751 | 7. Let s be the row in which &; and k;—1 differ
if Ki—1 c ki; let —s; be the row in which they differ if k;—1 D ki (So si = —Jj
indicates a j-shrink.) Define s; = 0if k;_1 = k. Similarly, define 7; to be the row
in which ; and &’ differ, counting shrinks as negative. (So ry = —r, where r is as

above.) We will claim that the local rules determine the numbers 7; for f>52>1
according to the following rules. Here we only need to use the subset of the local
rules which include the case where the r; are negative.
(M,J,J) If s # 13y —Ti — 1, then set ri_1 = Ti.
(ﬂ) s, =7 # —k, then set 7,1 = Ti — 1.
(J4) sy =—1i— 1 and x; has the same row lengths in rows s; and s;41, then
set ri_1 =ri+ 1

(O) I si =i = —k, then set r;_; = k. Here we would label the cell at (f,%)
with a circle and conjecturally take our assumption that 751 > Tf Was
correct.

It may happen that we never reach the last case, which means that when we
work backwards by local rules along the row in question from right to left under
our assumption, we do not obtain a trivial (identically zero) left edge. This is
because all the other local rules preserve the sign of r as being negative. In this
case, our orginal assumption is untenable and we are forced to take Tf_1 c Tf.

In fact, the latter assumption that 751 e 75 will always yield an acceptable row
working backwards by local rules for the following reason. All the local rules we
use in the case where r; is positive will yield a positive r;—1, with the exception of
(x), which sets r;—1 = 0. If we reach the latter case, the reverse computation of
the row is complete, since the local rules ( ) insist that r; = 0 for all 0 < j <1
thus, we get o = 0, which means that k) = ko = 0. Now, if by the time we reach
the cell (f,1) we still have ry >0, then since kg = 0 and k; = 1, we must have the
shape at vertex (f —1,1) is 0. Hence, the cell (f,1) falls into case (x). This means
that we always will obtain exactly one cell in case (x) if we work backwards from 2
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growth on the right ed imi
ge by local rules. Similarly, i i
. : L y, if we start with i
right edge and working backwards find case (O), then we we altl } :)hn'nk S
one cell in case (X) to the left of the circle. ki
Our conjecture is as follows.

Coni .
onjecture. Let (P,Q) be a pair consisting of an Sp(2n)-tableau P and an
up-

dO‘um tableau Q Of the same Snape. jlle p’ Ocedlue deSC7 lbed abOUe Conlputes tlle
”’1 €s l&(l’j) f(” 0 <_ Z’J <_ f via reverse lGCal T UIe‘s‘

The onl is 1
M ‘y step left to be proven is in the ambiguous case described at length
9 i.e is not yet clear that if our assumption that Tf—1 = Ty yields an acceptabl
, 1.e., one containing a circle and a X, then it is i i i e
‘ : en it is i
two-dimensional picture working forwards’. e G e

An example of the full cor
, respondence, which coincid i i
earlier by bumping, follows at the end of this article e

4. OPEN QUESTIONS AND REMARKS

Alth i ial vi 3
o osugfh I;:he c1:rrent pictorial viewpoint allows some additional insight into th
i hgo o . erele’s cor.respondence, it is not yet the major simplification that .
e 1;;31 or. II.I particular, the difficulty of running the algorithm backwardon'e
—— :n satt'lsfa,ctory. It would also be nice if Berele’s correspondence coills
i tablg:r 1cu(11ar case of some more general correspondence between pairs of
u and certain kinds of ion-li j et
il TovesitgaEion, permutation-like objects. This is currently
The pi i i
invarian}:l;tonf.l \grswn of Schensted’s algorithm is connected with a certain poset
ue to Greene and Kleitman. It i i ©
e . s a natural question to try to i
i ﬁn0d he c:lrtrent case, but all efforts to date have failed. Or it mightybe mgj: e'rali'z?
an alternative correspondence whi ; .
) ! . ich would yield the sam i
identity but also admit a clearer combinatorial interpretation e

5. A COMPLETE EXAMPLE

Exalllple. Fl . 1 on the next Pa (S ShOWS the plCtOIlal plesentatlon Of the same
g g
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