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Abstract. We consider intersections of Schubert cells Ba - B and oBo~18 . B in the space of
complete flags F = SL/B, where B denotes the Borel subgroup of upper triangular matrices,

hile &, 8 and o belong to the Weyl group W (coinciding with the symmetric group). We obtain
a special decomposition of F which subdivides all Ba - BN ¢Bo—! B - B into strata of a simple
form and which is in its turn subdivided by decomposition into small cells, see [GS]. It enables
us to establish a new geometrical meaning of the structure constants for the corresponding Hecke
algebra and in particular of the so-called R-polynomials used in Kazhdan-Lusztig theory. Struc-

constants in general.

MAIN RESULTS

Intersections of pairs and, more generally, of k-tuples of Schubert cells each belonging to
its own Schubert cell decompositions of a flag space appeared in many articles, see e.g. [BB],
(KL1],[ KL2], [De], [GS]. Topological properties of such intersections are of particular im-

Schubert cells are directly related to the problem of representability of matroids, see (GS]
and §1. Most likely, for somewhat general class of arrangements of Schubert cells their inter-
sections and complements to such intersections do not have any good topological properties
(opposite to the case of arrangements of linear subspaces where there exists a developed the-
ory of analogous topological spaces, see e.g. [OT]). Even the problem of nonemptyness of
such intersections in the complex flag varieties is very hard. However, in the important case of
pairs of Schubert cells topology of their intersections although still quite complicated appears
to be more accessible. Namely, one can obtain a special decomposition of such intersections
into products of algebraic tori and linear subspaces of different dimensions generalizing the
standard Schubert cell decomposition. These strata in their turn are intersections of more
than two Schubert cells originating from the initial pair. Such decomposition enables us
to calculate (algorithmically) additive topological characteristics of considered intersections
such as their Euler EP9-characteristics, see [DK]. Generally speaking, the considered de-

numbers of such intersections.

In order to formulate the main results let us recall and introduce some notions.

Let F, = SL,/B, denote the space of complete flags in C™. Each compete flag f can be
interpreted both as a Borel subgroup and as a sequence of enclosed subspaces of all dimensions
from 0 to n, The Schubert cell decomposition D ¢ of F, relative to f consists of cells formed

1. DEFINITION. For any k-tuple of flags f,g, 4, ... in F,, we introduce the k-tuple Schubert
decomposition D £,9,h,... consisting of all nonempty intersections of k-tuples of cells one taken
°m each decomposition D £y Dg,..., etc.




Generally speaking a k-tuple Schubert decomposition is not a stratification of the space of
complete flags and its strata can have very complicated topology.

9. DEFINITION. Given some set of linear subspaces denote by their N+-completion the set
of intersections and sums of all possible subsets of these subspaces. By an N+-completion of
a pair of flags denote the N+-completion of the set of all subspaces constituting these flags.

3. IMPORTANT DEFINITION. A refined double decomposition Dy, of the space of complete
flags relative to a given pair of flags (f,9) is a decomposition into strata formed by all flags
with some fixed dimensions of intersections with all subspaces from the N+-completion of
(f,9)- Strata of this decomposition will be called refined double strata.

4. REMARK. Refined double decomposition coincides with some special k-tuple decompo-
sition.

5. REMARK. Refined double decomposition Dy , subdivides the standard decompositions
Dy, Dy and the double decomposition Dy g, i.e. each Schubert cell with respect to f or g as
well as their pairwise intersections consist of some number of refined double strata.

THEOREM A. Each refined double stratum is biholomorphically equivalent to a product of
a complex torus by a linear space.

Given a system of coordinates in C" a flag is called coordinate if all its subspaces are
spanned by coordinate vectors. Each coordinate flag is obviously identified with a permu-
tation of coordinates. The coordinate flag is called standard if it is identified with the unit
permutation, i.e. for all ¢ its i-dimensional subspace is spanned by the first i coordinate
vectors. For any two flags f and g in F), one can always choose a system of coordinates such
that f will be the standard coordinate flag and g will be some coordinate flag given by a
permutation o.

6. DEFINITION. Pairs (f,g) such that in a suitable system of coordinates f is the standard
flag and g is the coordinate flag identified with o are called pairs in the relative position o.

Now we enumerate (algorithmically) all strata of Dy 4 using the permutation o. By a de-
creasing subsequence in a permutation ¢ = (i1,.. ., i) we certainly understand a subsequence
$j1,44sy- - - » 45, Such that j < jg < -o-<jgandij, >ij, > >t

7. DEFINITION. A cyclic shift of ¢ about a decreasing subsequence ij,,%j;,.--,%j, 18 @
transformation sending ij, onto ij,, ij, onto ij,,..., and t;, onto ij._, and preserving the
rest of the elements. (If subsequence consists of just one element then the transformation is
identical.)

We also assign two numbers to a cyclic shift of o about some decreasing subsequence.

8. DEFINITION. The reduced length of a decreasing subsequence is equal to the number
of the elements in decreasing subsequence minus one. The domination of a decreasing sub-
sequence is equal to the number of elements in & for which there exists at least one element
from decreasing subsequence which stands further in o and is strictly bigger.

ExAMPLE. Consider o = 6723451 and its decreasing subsequence 731. Then the cyclic shift
of o about 731 is 6321457. The reduced length is 2 and the number of dominated elements is
also 2, namely, the element 6 is dominated by 7 from decreasing subsequence and the element
2 is dominated by 3.

Fixing some permutation o on n elements let us apply to it the following n-step procedure.

THE MAIN ALGORITHM.

The 1st step. Find all decreasing subsequences in 0. Applying to o cyclic shifts about
each of these decreasing subsequences obtain the set of resulting permutations. In each
of these permutations block the first (and the biggest) element in the applied decreasing
subsequence. (To block just means that this element will be ignored on all subsequent steps
of the algorithm.)

The ith step. For each permutation obtained on the previous step apply the same procedure
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Fig.1. lllustration of the main algorithm in the case 6=321
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of a complex torus of dimension equal to the total length of this chain by a linear space of
dimension equal to its total domination.

EXAMPLE. The structure of each refined double stratum is given in the bottom line on
figure 1.

Till the end of this section we assume that an arbitrary pair of flags (f,g) is already
transformed into the standard coordinate pair (1,0) (The element 1 denotes the standard
coordinate flag and o the flag corresponding to the permutation o).

For any two permutations o and denote by C} o the Schubert cell consisting of all flags
which are in relative position o with respect to 1 and by C, s the Schubert cell of all flags
in relative position § with respect to o. (In the standard notations Ci,a = Ba-B and
Cop=0"'Bop-B.)

By definition the cell Ci,qo belongs to decomposition D, the cell Cy g belongs to decom-
position D, and their intersection to the double decomposition D; .

Since by definition the refined double decomposition D; , subdivides decompositions Dy,
D, and D, , we now describe all refined double strata included in the Schubert cells C o,
C,, s and their intersection.

Let us assign to a chain of permutations the following two new permutations.

12. DEFINITION. The first permutation of a chain is a sequence of successively blocked
elements, i.e. its ith entry is the element blocked on ith step of procedure. The second
permutation of a chain is the sequence of positions on which the successively blocked elements
stand, i.e. its ith element is the number of position on which the ith blocked element stands.

EXAMPLE, see Fig.1. For the chain 321123 —123 — 123 the first permutation is 321 and
the second permutation is 321. For the chain 321312 —132 — 132 the first permutation
is 231 and the second permutation is 321. For the chain 321— 321— 312 — 312 the first
permutation is 321 and the second permutation is 132.

THEOREM C. A stratum from DI’,, belongs to the Schubert cell C1,q if and only if the first
permutation of its chain coincides with a; a stratum from Dl,, belongs to the Schubert cell
C, g if and only if the second permutation of its chain coincides with B. Therefore a stratum
belongs to the intersection Cy,o NCo g if and only if its first permutation is o and its second
permutation is 3.

This theorem enables to modify slightly the described algorithm in order to obtain refined
double decompositions of Schubert cells Cy q, Co,p or their intersection.

MODIFICATIONS OF THE MAIN ALGORITHM

THE 1ST MODIFICATION. In order to obtain decomposition of Cy,o one must consider on
the ith step for ¢ = 1,...,n only decreasing subsequences starting at the ith element of the
permutation a.

THE 2ND MODIFICATION. In order to obtain decomposition of C, s one must consider
on the ith step for i = 1,...,n only decreasing subsequences ending at the position which
number is equal to the ith element in the permutation f.

THE 3RD MODIFICATION. Finally, in order to obtain decomposition of Cy,o N Co,p one
must consider on the ith step for i = 1,...,n only decreasing subsequences starting at the
ith element of permutation o and ending at the position which number is equal to the ith
element in the permutation 8. See corresponding three examples on Fig. 2-3.

A similar process was proposed by Francesco Brenti [Br] in the case 0 = wo.

The following remark is valid for all versions of the main algorithnm, i.e. for the refined
double decomposition of the whole space of complete flags, some Schubert cell or some pair-
wise decomposition of Schubert cells.

2nd step

3rd step

s )

Fig.3. Modified algorithm in the cases

0=f=321and c=0=B=321.
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inductive formulas for structure constants in Hecke algebras different from the standard ones,
compare [KL1-2], [De] and [Br]. To be more precise we introduce the following operation
on permutations with blocked elements. Consider some permutation on n elements with i
blocked entries.

14. DEFINITION. The reduction of the blocked part from a given permutation is the
operation which forms the new permutation on n — i elements in the following way. We
exclude all blocked elements and subtract from each nonblocked element the number of all
blocked elements which are less.

EXAMPLE. The reduction of the blocked part from the permutation 7563241 gives 4312.

15. PROPOSITION. I) The set of all restricted chains, i.e. chains starting at some per-
mutation & obtained after i steps of the algorithm (and thus containing i blocked elements)
geometrically presents:

(1) for the main algorithm - a refined double decomposition of F,_; relative to the pair
(1,8"), where &' is obtained from & by reduction of all blocked elements;

(2) for the 1st modification - a refined double decomposition of the Schubert cell C; o in
F,_; where o' is obtained by reduction of the first ¢ elements from o;

(3) for the 2nd modification - a refined double decomposition of the Schubert cell Ca g
in F,_;, where & is the same as above and f' is obtained by reduction of the first
elements from S;

(4) for the 3rd modification of the algorithm a refined double decomposition of Cyar N
Ca' ’ﬂl .

II) Moreover, the geometrical meaning of i step of any variant of the algorithm is decompo-
sition of the initial object (Fn, C1,a, Co,p or C1,6 N Co,p) into a disjoint union of products of
analogous objects in Fn_; enumerated by the set of all permutations & obtained after the ith
step by (C*)‘(a) x C4(®), Here (&) is equal to the sum of reduced lengths of all permutations
in the chain starting from o and ending at & and d(%) is the sum of all dominations in this
chain.

EXAMPLE. The set of all reduced chains passing through any permutation obtained after
the first step except 123 on Fig.1. presents refined decomposition of the space of complete
flags Fp = CP! relative to o = 21 into three strata, namely two points and C*. Chains
passing through 123 (or o = 12) present the standard Schubert cell decomposition of F; into
a point and C.

Now we list some special combinatorial and topological properties of strata included in
some pairwise intersection of Schubert cells.

THEOREM D. Refined double strata included in any nonempty intersection of Schubert
cells enjoy the following additional properties.

a) The sum of (complex) dimension of a torus and doubled dimension of a linear space equals
Ing(a)+ Ing(B) — Ing(7), (where Ing is the usual length of a permutation) independently on
a choice of nonempty stratum in a given C1,o N Co,p, in particular all strata of the same
dimension have the same form.

b) There are no gaps in (complex) dimension, i.e. there exist strata of all intermediate
(complex) dimensions between minimal and maximal.

EXAMPLE. The only nontrivial intersection C1,w, N Cuwo,w, (Where wo = 321) consists of
two refined double strata (C*)® and C* x C, see fig.3 B.

The next result describes "adjacency” of strata in Cj o N Cy g, i.€. enumerates strata in
C1,aNCop which have nonempty intersection with the closure of some given stratum. Since
refined double decomposition is in general not a stratification this is not the standard notion
of adjacency. Consider two ordered k-tuples of permutations.

16. DEFINITION. The second k-tuple is called less or equal than the first k-tuple if each
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Kaehlerian varieties (see for example [GH]), further referred to as thefp'ure lg .otdge atcr::ltpulzex
According to [D11-3], in the cohqmolczgy (ng.lith c?mlalz;'ctdzléizgrgslos ::2 :1.; e(; izzed =

quasiprojective variety V there e?nsts and is ufnque; : B e etiodirs

ists of two filtrations W and F in H*(V,C) (in HZ(V, ( ), T sp .

::rau.rftit:x::er.etln:ig;n:ational filtration determined by thc.a topology of V, Whll; I; is :tf:gzraeslzg

filtration defined by the analytic structure of V' which deﬁn.es the £urf) o f:; :

any quotient W;/Wi_1; both filtrations are respec.ted by a.rlzltraf(':y ge Z:Jnc deﬁ}})le. T
Using the notion of the mixed Hodge str}xcture in, say, H*(V,C), one

sponding Hodge numbers h}? by the following formula:

Fy(Wpio(HE(V, €)Wy 1(HE(V,C))
Fpr1(Wyo(HE(V, €)Wy g1 (HE(V, C)))

RY! = dim

P9 3 t‘on
COROLLARY F (OF THEOREMS B AND E) The Hodge numbers h}'? of any intersecti

can be positive only if p = ¢. o '
Cl'ijle?r’l’z to the If:)tion of the usual Euler characteristics of V, one can define the series of

generalized Euler characteristics depending on p and ¢ by

xP = Z(—l)kh}lzqv

k

and form their generating function, called the EP -polynomial or just the E-polynomialof V,

Ey(u,v) = Z xPIuPvi.

P9

The following crucial property of Ey follows from the additivity of generalized Euler char-
i i ts.
istics for the cohomology with compact suppor . '
Mtle; g L(;ESMMA (see e.g. [Du]). If a quasiprojective complez variety V is represented as the
disjoint union of quasiprojective subvarieties, V = U;V;, then

Ey(u,v) = ZEV,.(u, v).

COROLLARY OF THEOREM B.

Z d(ch I(ch)
E:,ﬂ = Ecl,ancv,p(u7v) = z (e )(z - 1) : ’
cheCH

i included in C; o N Cy g, d(ch) and
= uv; CH denotes the set of chains of all strata inc n G, o,

;Elclz;eaie tll:e total domination and the total length of a given chain respectively, compare
[D’(Ia‘ll'm same expression can be rewritten as an inductive formula using the above ren;arl; (;11
the geometrical meaning of our algorithm. More precisely, let(:i SU Bt :i;note .il.le s: it(})l e

i i osition

i bsequences in o starting at the element a; and ending at the p i

iﬁj:iis:nﬂgl SlZi.e.qthose subsequences which are used on ther first step of oonst;’rucg;}nB tll::
refined dou’ble decomposition of Cy,oNCg,g). For any dec.reasmg sub'sequenc-e 3 Glet -
I(sub) and d(sub) denote its reduced length and domination respectively. Finally, i
B' denote the results of reduction of the first elements a; and £ fron.l a and 8 Eesseelement’

o(sub) denote the result of the cyclic shift of ¢ about sub and reduction of the firs
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of sub, (see description of the algorithm and its modifications above). Then, by proposition

15

E:,ﬂ = ECx,aﬂC,,p (u,v) = Z zd(aub)(z _ 1)'("6)ECM;nC,(,u,),‘,: .
subESUB

EXAMPLE. E(clisd,4821n04821,4821)g':: (2= I)E(Cus,snnclsz,sn) H{# = 1)2E(Cln,snﬂczal,an) +
(z— 1)2E(Cna,anncsu,au) + (= l)sE(Cua,annCazl,an)'

Consider now the Leray spectral sequence converging to the cohomology of Cy,,NC,, 4 with
compact supports which is associated with the refined double decomposition of the pairwise
intersection of Shubert cells or more precisely with the corresponding filtration of Cy,o NC, 6
by union of all strata of dimension less or equal than some given value. Recall that its first
page contains the cohomology with compact supports of the differences between consequent
terms of filtration and the differential d; is induced by the long exact sequence of triples.
In the case when the initial decomposition is a stratification the cohomology with compact
supports of the differences between the ith and i — 1st terms of filtration coincides with the
direct sum of cohomology with compact supports of all strata of dimension 3.

19. DEFINITION. We call a pairwise intersection of Schubert cells C1,a N Cy g nice if the
refined double decomposition D, , gives its stratification.

THEOREM G. The Leray spectral sequence of the refined double decomposition of any nice
pairwise intersection degenerates at the second page.

CONJECTURE H. For any nice pairwise intersection of Schubert cells the rows of Leray
spectral sequence form acyclic (with the exception of the highest dimension) complexes.

HYPOTHETICAL COROLLARY I. The mixed Hodge structure of any nice intersection CiaN
Co,p is pure and nonvanishing Hodge numbers are equal (up to +1) to the corresponding
coefficients of the E-polynomial, namely h:’i = (=1)'x%".

CONJECTURE J. If RC1,0 NRC, 4 is a nonempty intersection of Schubert cells over R. and
C1,a N C, g is its complexification then the actions of differentials in the corresponding Leray
spectral sequences are concordant, i.e. respected by complex conjugation.

HYPOTHETICAL COROLLARY K. The intersection RC;,« NRC, g enjoys the so-called M-
property, i.e. the sum of Betti numbers with Z [2Z-coefficients of RC} o N RC, s coincides
with that of C,a N Cy g, (compare e.g. [SS]).

Finally, let us recall the notion of the Hecke algebra H in its simplest version as a C-algebra
depending on a complex parameter ¢ and given by a standard set of generators and relations.

The basis of H consists of elements T}, w is any permutation on n elements, and multipli-
cation rules are as follows:

(1) TuTwr = Tyw if Mww') = A(w) + A(w'), where A(w) is the length function equal to the
number of inversions in w;
(2) T,,T,, = (z = 1T, + 2T1.

If z is some power of prime number then H could be interpreted as the algebra of functions
on GL, over the finite field of z elements which are constant on double cosets BzB with
multiplication given by convolution, see [Cul-2]. (Analogously for generic z the algebra H
could be identified with the set of sheaves constant on Schubert cells with multiplication given
by sheaf convolution, see e.g. [So].)

Denote by Cw? w, the structure constant of Hecke algebra in the expansion Ty, T, =
EWsGS,. c:v”f,wz(z)Twr

e structure constants of H are polynomials on z counting the number of points in the
rsection of Schubert cells over finite fields if z is a power of prime, see [Cul].
THEOREM L. The set of structure constants for the Hecke algebra coincide with the set of
-Polynomials for the pairwise intersections of cells of the two Schubert decompositions of

inte
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F,. Namely,
E3P(2) = ¢ p-1(2)

for any a,B,0 € Sh.

The above inductive formula of the E-polynomials of C1,oNCy p can obviously be rewritten
as the inductive formula for the structure constants.

An analogous family of decompositions was introduced 10 years earlier by V.V.Deodhar in
the case of intersections C1,o N Cuwg, 8, where wo denotes the longest element in a arbitrary
finite Coxeter system, see [Del-2]. These decompositions were extended to all intersections
Ci,o N Cop by C.Curtis in [Cu3)]. Decompositions depend on a reduced presentation of the
element « into product of simple reflections and different choices of such presentation lead to
different decompositions. Combinatorial data coding strata in approach of Deodhar-Curtis
is similar to ours but more lengthy and complicated. We are convinced that the refined
double decomposition coincides with one of decompositions suggested by V.V.Deodhar for
some particular choice of reduced presentation. If 0 = wo is the longest permutation and we
consider its standard presentation wp = 8182 ...5n8182 -+ Sn—1--- 515251 then we are able to
find exact correspondence between more lengthy Deodhar’s coding of strata and our chains.
Moreover, refined double decomposition is not the only geometrical way to refine double
decompositions. These other decompositions of geometrical origin probably coincide with
Deodhar’s decompositions corresponding to various choices of reduced presentations.

The starting point of this study was an attempt to calculate the cohomology of pairwise
intersections of Schubert cells of the maximal dimension (see [SV]). Francesco Brenti has
attracted our attention to the fact that the properties of the E-polynomials calculated in
[SV] resemble those of the R-polynomials, and we managed to deduce the coincidence of
the these polynomials from our decomposition theorem [SV] and the results of Deodhar
[Del]. Later Brenti [Br] has extended our combinatorial construction to a more general
case, and succeeded in proving the coincidence of the E- and the R-polynomials in a pure
combinatorial way. Here we prove analogous results in a more general setting by using
geometrical arguments.

The authors are very grateful to participants of the combinatorial year 91-92 organized by
Mittag-Leffler institute in Stockholm for their interest in our work and especially to Anders
Bjorner for his fruitful activity in creating excellent research atmosphere. Sincere thanks are
due to Prof. T.Springer who was first to point out to naive authors the necessity to check

the property of being a stratification.
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