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Abstract. In this talk we will give a geometrical interpretation to a for-
mula equivalent to the Littlewood-Richardson rule, using a result of Steinberg
which interprets the Robinson-Schensted correspondence in terms of flags.

1 The Littlewood-Richardson Rule

Let S, be the symmetric group, S x S; a Young subgroup where k + [ = n.
If X is a partition of n (written A F n) let ¢* be the irreducible character of
Sn corresponding to A. Now let pt k, vF Il Then the induced character
I"dg:xs,(fu X (") can be decomposed as > Cﬁ,u(’\ where the C;’);u are given by
the well-known Littlewood- Richardson formula: ¢} , is the number of skew
tableaux T' of shape A — y and weight v such that the word w(T) of T is a
lattice permutation.

An alternative way of computing the Littlewood- Richardson coefficients
was given by Remmell and Whitney [3]. They used the interpretation of the
Littlewood-Richardson coefficients as the multiplication constants given by
the multiplication of Schur functions, and they proved their rule by using
work of D. White [7] which relates the Littlewood-Richardson formula and
the Robinson- Schensted correspondence. A rule similar to that of Remmell
and Whitney has also been given by Robinson in his book ([4], p-61).
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The rule given by Remmell and Whitney is equivalent to the following:
For a partition A = (A1, Az,...) let Ry be the Young tableau with 1,2,...,
in the first row, A\; + 1,..., A1 + A in the second row and so on. Given the
tableaux R,, R, on symbols 1,2,...,k and K +1,...,n respectively where
ik k, v [ as above we define the set T'(u,v) to be the set of tableaux T
on the symbols 1,2,...,n satisfying:

(i) If ¢,a + 1 are in the same row of R, or R, then a+1is strictly east
and weakly north of a in T, and

(ii) If a, b are at the ends of adjacent rows in R, or R, then b—1 is strictly
south and weakly west of a — ¢, for any @ — ¢ in the row of @ and b — ¢ in the

row of b.

Then the tableaux T' are precisely those which correspond to characters
¢* of S, such that Ci,u is not zero, and cﬁ,u is the number of T' of shape A.

2 Unipotent elements of GL(n,C) and flags

A reference for the material in this section is [5] or [6].

Let G = GL(nC)) acting on a vector space V of dimension n over C. Two
complete flags F = {V,c Vi C...CV}and FF={VCV/C...C V} are
in relative postition w, where w € Sy, if there is a basis {v1,vz,. .. vp} of V
such that {vy,vq,...v;} is a basis of V; and {vu1, Vw2, - -- vy, } is a basis of V.
Let u be a unipotent element in G, and let B, be the variety of flags fixed by
u. Let the conjugacy class of u correspond to A F n. Then the components
of B, are in bijection with the standard tableaux of shape ) as follows: If F
is as above, to F' we attach a tableau T of shape A such that the subtableau
containing {1,2,...k} has the shape of u | Vi. The map F' — T gives a
bijection £(u) — Ty, where L(u) is the set of components of B, and T) is
the set of standard tableaux of shape A, such that each fibre is a dense open
part of the corresponding component. We then have the following theorem.

Theorem (Steinberg). Let u € G be a unipotent element with Jordan form
given by A F n. Let T,T" be standard tableaux of shape ), and let F, F' be
complete flags, ”generic” in their components, such that F, F' correspond to
T,T" respectively. Then, if F, F’ are in relative position w, w corresponds to
the pair (T,T") under the Robinson-Schensted correspondence.

e then have a bijection between Sw and the set of triples (u, F, F') where
)

U runs over a set of representatives of th i
_ : . e unipotent cla:
¢ generic representatives of the components I()>f 5(u) sses of G, and F,

3 The connections

For an ac.count. of the Kazhdan-Lusztig theory we refer to
the combinatorial aspects of the theory in the case of §

}/S'Ve return to the setup where we co
Indg, ¢ (¢* x ¢¥), and interpret the Litt]

A (right) cell in S, can be re
the same right-hand tableau under
We start with a cell representation

[1], or to [2] for

nsider the induced representation
ewood-Richardson rule as follows.

garded as the set of all w ¢ S» having
the Robinson-Schensted correspondence.

' s : :
contained in the induced represent fion: A e o ottt i

. . ation. An analysis of th

th; fO‘HOWfIlg question: Let w’' € § x Si, and let fu = w'd Zsifelf:hleadfi tto

a distinguished coset representative for Sy x S in S,. If w'’ w cg,rres;(ilc;d tls
ne b Y

bri (K i

C:'llf)(lzs ((3;, 1&,(112’), (u, F, F) respectively where v, u are unipotent elements in

ig“ , /I.X' £, (l, C), GL(n,C) respectively and K, K', F, F' are flags what

§ the relationship between the triples (v, K, K') and (u, F F')? Angajn .
yFy F)1 swer

to this question leads to t} i
' > 1e Remmel-Whitne is | i
Interpretation mentioned in the title. S seometrical

References

(1] C. W. Curti ons
g i1s, Representations of Hecke Algebras, Asterisque 168 (1988),

o lons of S, Advances in Math. 69 (1988),

3] J. Remmell and R. Whitney,
5 (1984), 471-484,

4] g..de B. Robinson, Representation Theory
dinburgh University Press, 1961.

Multiplying Schur functions, J. Algorithms

of the symmetric group,




[5] R. Steinberg, An occurrence of the Robinson- Schensted correspondence,
J. Algebra 113 (1988), 523-528.

[6] M. van Leeuwen, The Robinson-Schensted and Schiitzenberger algo-
rithms and interpretations, CWI Tract 84 (1991), 65-88.

[7] D. White, Some connections between the Littlewood- Richardson rule
and the construction of Schensted, J. Comb. Theory Ser. A 30 (1981),

237-247.

442

Computing the Hilbert-Poincaré series of monomial
ideals, applications to Grobner bases*

Carlo Traverso
Dipartimento di Matematica
Universita di Pisa
traverso@dm.unipi.it

Abstract
The Hilbert-Poincaré series of an homogeneous ideal, or of the homogenization of an alline
ideal, can be computed through the associated staircase of a Grobner basis of the ideal. In this
paper we review some recent results on algorithms to compute the Hilbert-Poincaré serics of a
staircase, see [BCRT), and some applications of the computation of the Hilbert-Poincaré serios
to the computation of Grébner bases, sece [GT], [Ca].

1 The computation of the Hilbert-Poincaré series.

This section is a summary of the paper [BCRT], to which we refer for complete proofs and resulls.

In the computation of the Hilbert-Poincaré series of an homogeneous ideal I, the known algo-
rithms, [MM1], [MM3], [KP], [BS], [BCR] have a first algebraic step coinciding with the conputa-
tion of the associated Grobner basis w.r.t. any term-ordering and the corresponding initial idcal
(the associated staircase), and a second combinatorial step that from the staircase computes the
Hilbert-Poincaré series.

The algorithms of [MM1] and [MM3] use techniques similar to the computation of a resolution: (e
algorithms of [KP] and [BCR] proceed by induction on the dimension; the algorithm of [BS] proceeds
by induction on the number of generators of the initial ideal (the cogenerators of the staircase).

Usually, combinatorial algorithms can be speeded by a “Divide and Conquer” approach: splitting
the problem into two smaller problems of approximately the same size. In successful cases this trades
a linear step for a logarithmic step, and can reduce from exponential to polynomial complexity.

Our approach explains how to split a staircase through the choice of a monomial (the pivor). then
we discuss how to design a strategy for the choice of the pivot. The worst case complexity is not
improved, since in some extreme cases every splitting is bad, (the computation of Hilbert-Poincare
series is at least as difficult as a NP-complete problem in the number of variables, see [3S]) hut in
several practical cases the situation is much better; in particular, our algorithm in the best case has
a complexity that is a linear factor better than the best case of [BS], and can be specialized. witl a
choice of the splitting strategy, to the algorithm of [BCR]. In practice, a simple random st rategy is
quite good, avoids the costly computations involved in choice of an optimal variable of [BCR]. and
Marginally improves the performance even in the optimal Borel-normed case.

The algorithms have been implemented, both in CoCoA, [GN] and AlPi, [TD]. Some test cases
are given,
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