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Abstract
The Hilbert-Poincaré series of an homogeneous ideal, or of the homogenization of an alline
ideal, can be computed through the associated staircase of a Grobner basis of the ideal. In this
paper we review some recent results on algorithms to compute the Hilbert-Poincaré serics of a
staircase, see [BCRT), and some applications of the computation of the Hilbert-Poincaré serios
to the computation of Grébner bases, sece [GT], [Ca].

1 The computation of the Hilbert-Poincaré series.

This section is a summary of the paper [BCRT], to which we refer for complete proofs and resulls.

In the computation of the Hilbert-Poincaré series of an homogeneous ideal I, the known algo-
rithms, [MM1], [MM3], [KP], [BS], [BCR] have a first algebraic step coinciding with the conputa-
tion of the associated Grobner basis w.r.t. any term-ordering and the corresponding initial idcal
(the associated staircase), and a second combinatorial step that from the staircase computes the
Hilbert-Poincaré series.

The algorithms of [MM1] and [MM3] use techniques similar to the computation of a resolution: (e
algorithms of [KP] and [BCR] proceed by induction on the dimension; the algorithm of [BS] proceeds
by induction on the number of generators of the initial ideal (the cogenerators of the staircase).

Usually, combinatorial algorithms can be speeded by a “Divide and Conquer” approach: splitting
the problem into two smaller problems of approximately the same size. In successful cases this trades
a linear step for a logarithmic step, and can reduce from exponential to polynomial complexity.

Our approach explains how to split a staircase through the choice of a monomial (the pivor). then
we discuss how to design a strategy for the choice of the pivot. The worst case complexity is not
improved, since in some extreme cases every splitting is bad, (the computation of Hilbert-Poincare
series is at least as difficult as a NP-complete problem in the number of variables, see [3S]) hut in
several practical cases the situation is much better; in particular, our algorithm in the best case has
a complexity that is a linear factor better than the best case of [BS], and can be specialized. witl a
choice of the splitting strategy, to the algorithm of [BCR]. In practice, a simple random st rategy is
quite good, avoids the costly computations involved in choice of an optimal variable of [BCR]. and
Marginally improves the performance even in the optimal Borel-normed case.

The algorithms have been implemented, both in CoCoA, [GN] and AlPi, [TD]. Some test cases
are given,

"This research was performed with the contribution of C.N.R., M.U.RS.T, and CEC contract ESPRI'I B.R.A.
1.6846 POSSO
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1.1 Staircases

A staircase S (also called Ferrer diagram or order ideal of monomials) is a set of elements ol N" such
that if (a1,...,a,) € S and b; < a; then (by,...,b,) € S.

On N™ there is a partial ordering (a1, ...,an) < (b, ... by) iff a; < b; for each 7. The correspond-
ing lattice operations a A B, 'V 3 are the componentwise min and max.

Elements of N™ correspond to terms (power-products, monic monomials) of k[x1,...,x.]; the
partial ordering corresponds to divisibility (a < 8 +<— X°| XP). We often identify a with X,
and use notations referring to both indifferently. In particular, if @ = (a1,...,@s) € N”, o] = X«
will be called the degree of a. The operations A and V correspond to GCD and lem.

We say that an element of N™ is a pure power if it has only one coordinate that is non zero.
Otherwise it is called mized.

If I C klzy,...,z,) is an ideal, and we have a term-ordering, then the staircase associated to [ is
the set of exponents & = (a1, .. .,@,) such that no element of I has leading term equal to X", The
staircase associated to I can be computed through a Grobner basis, taking all exponents such that no
leading term of the Grobner basis divides them, and the X are a linear basis of E[X]/I. Conversely.
from the staircase we can recover the leading terms of the reduced Grobner basis, corresponding to
the minimal elements of the complementary of the staircase.

The staircase is usually given through these minimal elements, that are called the minimal co-
generators of the staircase. Given a set G of elements of N, there is a maximal staircase disjoint
from G, and it is called the staircase cogenerated by G. It is the complementary of the monoideal
generated by G.

We denote with [ag,. .. , 0] the staircase cogenerated by a1, ..
with [S] the minimal set of cogenerators of 5. In particular, [[ag,. .. , @] is obtained deleting from
{a1,...,an} all the elements that are multiple of another element (the notation implicitly assumes
that no duplications appear in {eq,...,an}). The algorithm for operating such deletions is an
essential tool, and its efficient implementation is very important.

. am; if S is a staircase. denote

Given two staircases Si, So, we say that Sy is strictly smaller than S if Sy is a proper subset of

S, and moreover an injective map ¢ exists from [S4] to [Ss) such that ¢(a) 2 a. Given a staircase.
only a finite number of strictly smaller staircases exists.

A T-staircase is a translate of a staircase; all that is said for staircases applies. with minor
modifications, to T-staircases. Most of what we will prove will be applicable to T-staircases without
modifications, and we will not even quote it.

Given a staircase (or a T-staircase) S one defines its Hilbert-Poincaré series being the formal
power series in the indeterminate T defined by > 2, d;T?, where d; is the number of elements of .8
of degree i, and is denoted by Hs (of course, this being an infinite formula, it is not an algorithm).
Clearly, if S’ = a + S, then Hg = Tl Hs.

If I is an homogeneous ideal of k[X], the Hilbert-Poincaré series of k[X]/I is defined, and coincides
with the Hilbert-Poincaré series of the associated staircase. This is the motivation of the interest in
computing the Hilbert-Poincaré series of staircases.

1.2 Splitting a staircase

We will consider two types of splitting of staircases: as a product of staircases (a vertical splitting).
and as disjoint union of a staircase and a T-staircase (a horizontal splitting).

A vertical splitting is possible if and only if we can identify two disjoint subsets X; and X, of the
variables such that any minimal cogenerator is a term in either the variables X; or X. In that casé
S is a product of two staircases Sy and Sz, in X; and X,, each one cogenerated by the corresponding
cogenerators of S. We have Hs = Hs, Hs,, (S) = (S1)(S2), since the elements of S of degrec d
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correspond to pairs (a, 8), |a| = dy, || = dy, d = dy + d,.

Mor =
€over es = es, €s,, bs = 651 =+ 652’ Cs = Cs, tcs, (

oy Just apply the definition of multiplicity and

A hori itting | . 2
Staircasoerllz(;n?l_sp{hﬂttmg is always possible, unless S is reduced to {0}: if @ # 0is an element of the
staircase’Sz 'by a_S’ —6():9—:5 STIIJ}, angdt S; = S\ §’; then S; is a staircase, and S is a Lranslat()- o(']‘(x
of S all the rnult’iple:Of 2-d le»fogenerators of 5y are obtained by deleting from the CO&“”(‘I'MOI‘:
ek o o § a and adding . The cogenerators of S, are obtained as follows: let {/3 :
: generators of S; then a set of cogenerators of S, is given b si loth 1)
: is defined as follows: (b1, ybm) ¢ (a,...,am) = (c 2 1s given by f;
Ope;at;i? corresponds to the operation / : J between idle’z;l.s.

n this case Hg = F = o P
moreover (S) = (SSQ +I]§Ilal~é-5f)5 d; fﬁ;;{({;l lffisg, by the d.eﬁnltion of the Hilbert-Poincaré series:
es = es, if ds, > ds,, es = e, if ds, < ds,. s ds;)y es = min(es; cs,), es = es, + e, if dy, = d,.

he el ment « iS uni 4 i i Y
quel ldentlﬁ d b 1tti it i ini :
“ l €. l e h i . (] t]le Spllttlng, (lt 1S the mlnlmal elelnent ()f ._I/

: a, where the operation
yCm), Where ¢; = max(b; — a;.0). The

) and is

In our applicati i
Hiar p]iz;:?lt;oz?;y:ie as.il)lme tcllla.(tl (fyfls smaller than one of the cogenerators of S (in multiplicative
; 1des 1t), and different from 0: this is i A iy
‘ . s possible staircase
c}c:gen;ra%or§ or a]l‘ cogenerators are of degree one. In that casep both Suuless e
than S. This implies that any chain of such splittings must terminate 1

has no
and Sy are strictly smaller

1.3 Terminating the algorithm

Webcan pr(})ceed in splitti-ng the staircase until each piece is cogenerated by
or by no element, but this is impractical. We terminate the splitting whé11

g t b
Oi cogenerators consis Illg Of some pule powers an P
d a feW ele nents alrwis

The following theorem holds:

one element of degree |,
we are reduced to a sct
e coprime, that are not

THEOREM 1. Assume that a staircase S has a minimal set

such that the ; : . .
of the Val’iables' {(311;; pmeIII)O}We:VS}; andntht? /ttjl are mixed and pairwise coprime. Consider the partition
Yooy lls ere lly 1s the set of vl P '
tq{l}:e set of the variables appe(;ring n p. et of the variables not appearing in the by 1Ty b
en S is split vertically according i
) 1y a to {Ilo, ... ir .
contains at most one mixed power.g 1 s a

of cogenerators {my, ..., 7, ;. s}
ssaafle b

oy Ss. and cvery [9))

The proof is immediate. Of course, the de

The computation of the Hilbert-P.
following theorem:

THEOREM 2. [Let S b i :
: € t n
Then Hg = I = 7)1 _‘}jnc’lﬂcase in N™ such that [S] = {ry,.

The proof is obtained throu
Cogenerators (

: 'generate case that [Ty is empty is possible.
oincaré seri 1 i i
aré series of these simple staircases is done in the two

s Ty Wi =25,

gh a further vertical splitting i ir i
ned . g 1n staircases in N, that have cither
they coincide with N) or one cogenerator m; (they coincide with {0, 1 (( (——I Ih}()I "

In the first case H. T
s =1+4T+T? y = N
14T 4., 4 po-1 _ 4 _+Tc.-)+ -+ T+ ... = (1 =T)7% in the second case ¢ =
THEORE e
e 1:"1" i. Let S be a staircase in N™*" and assume [S] = {= :
Tbenl Tm'¥r Y, @i > b >0, ¢ > 0. B T S S

Hs = ([I(1 = 7%) - THT(T* - 7%) (1 — )™+
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where |c| = 2 ¢;. .

The proof is done by considering two special subacases‘ SR

If » = 0 consider the staircase S’ cogenerated by 27*, . . L Ty an ‘sp 1d ey e il
then S’ is disjoint union of S and & + (5" : @), and S’ : « is cogenerated by x1 7, ... -

en S’ 1

: by difference. e _ e e Then S s

s IIIf Comp(;li(;lin};onsider the staircase S’ = N” and split it with pivot 8 = ¥} yor. Then
m - . . o
disjoint union of S and 3 + S’ and Hs is computed by 1dlffe1§nce.q LBl 3 = g
¥ . x C1 . . agCHia S = S , = ye
In the general case, split S with pivot y; gyohs t]eli, alm gl B S
ated by z{’ zom Y .-y, S, cogenerated by zy', ..., Ty, 4 2

cogener 15
to the two previous subcases.

1.4 The choice of a splitting

I lle vertica I)ll‘ t1 gS ap[)eal O CaSlO[la.l y l)ll‘ whnen 1hey are ])()SSlble m an (“dll\ \l(l!.,r( (6] tl](
1 & 2 2 t : j . 1 fll . h d & 3 5 7 Ar
1 S n C 5 - : ; 3
a. g()l]th"l thelr lm[)or ance 1s dramatic. hey are ﬂ()‘ S0 easy to disc over, SO 1t 18 wise Lo s¢ ()I (
t]le]ll Wlle]l we lla\/e an hlnt tha.t one IIllght e}\lgt. we Wlll see an exan ])16 m w lll( 1 the ‘\\0‘ Orl
1s €eXpo € W out vertic ST 1[ tir econes very e we 100 or themni. Hl S
T ntla,l lth u 1 a,l pl1t 1g$, but peconles T Sllnpl lf Ve 1 l\

example the other known algorithms perform badly.

1.4.1 Vertical splittings
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Olll hen the sum Of th (8

variables.

1.4.2 Horizontal splittings: choice of the pivot

i ¥ 1d be to find every time a

The horizontal splittings can always be found; a‘n. opt‘lma} St;;latteii\zo;]e oot e it
splitting'm'mh tha?‘the tV'VI(‘)hipsl?:eg01;;\17361eSf(zizldOfe:.sTf:()m\z;lz‘fltsil;‘e are two variables, but is im|)0ssi|[‘)]<?
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in g?neral- A ;tratfgytev rbis ﬂle 1'6110wi1’1g: the algorithm for one splitting is of quadra?x(‘ complexity
lookl.ng for suc ey r? ‘?g}a\ LGiitting the cost in two at every step is as good as po.‘smbl(’x' o
iliE irrisnEa bigidon ;) ; j'bl(; hé-urixtics for the choice of the pivot. The choice Lh‘at has appearc (l |‘no |
The.re "y Sel,:/erfa]lpos'srlx & /choose a variable that appears in at least two mixed terms. ;Tnf. .-\Ull.:I:
zonven'lenvtrkiisc; fheovz:z;bi appea,fs. Then choose as pivot the GCD of these terms. In particular.

erms in e e

ose € (0] 'ee rall terms (()l'
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choosing a random variable nce is often quill

i .st) among those that contain this variable, the practical performa is often G
e (')nly i i 1g it seems convenient not to choose the three terms at 1'.<m(lom. hul o
il ing: (In some Spemﬁ CyaS:Slar ‘er GCD: this heuristics has however not yet bee.n 1mp|mn("m<f.
ChO(I)fSe thenzilar;); V;;}ll)(:zc:rs aizlel]lOl‘egthall one’: mixed term, these terms are all coprime, and we can

va : .
termir?:te the algorithm as described in the previous subsect'lon. e o ot cvery v

Probably an uniform strategy like this one is .not _convement f;)lr e\erly‘ oo ;esults ey

the algorithm, and the issue of a good heuristics is widely open. However o

rough strategy are quite good.

1.5 Comparison with the other known algorithms

e w e 1 e pivot 1s hosen Lo he
Th algorithms of [KP] and [HO] coincide ith the pr sent algorlthm when th p1v ot 1s cho!
!

a variable.
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The algorithm of [BCR] coincides with the present algorithm, in the following variant: cl
variable z;, and take as pivot £

*, where n is the minimum degree in which z; appears. The algorithm
requires the computation of several splittings for choosing the best variable; the overhead can he
frequently reduced by special considerations. When there are several variables and none is especially
good, and we have to consider themcall, it seems that the cost of computing several splittings is
difficult to recover by discovering a relatively better variable.

The algorithm of [BS] is related to ours, with a difference. A staircase S is representcd as the
difference set S, \ S2, S; obtained removing one of the cogenerators of S, and the S, = §, \ S the
T-staircase contained in .S; composed of the multiples of this cogenerator. Both staircases arc simpler
(in a different sense than ours) and the termination can be done as in our algorithm. TI
the cogenerator to remove is guided by an heuristics dependent on the term-ordering.

The algorithm of [MM2] has mainly theoretical interest; it derives the Hilbert-P
a simple way from the construction of a resolution, and it is known to be practicall

100s¢ one

1¢ ('ll()i('(‘ uf

oincaré series in
v inefflicient.

The algorithm as explained above was implemented in COMMON-LISP and included in Al
and in Pascal and included in CoCoA.

The practical comparison of algorithms implemented in an heterogeneous way is h
difficult to separate the effect of the algorithm and the effect of the clever implementa
some tricks can considerably speed the algorithms, and sometimes a trick can be
algorithm and not to another.

To allow a fair evaluation of the algorithm, in the COMMON-LISP implementation we
included an approximate measure of the comple
on terms, such as GCD or lem. This allows to
implementation-independent.

A very small modification of the implementation in COMMON-LISP (only a few lines of codo)
implements the algorithm of [BS]. The performance of this rough implementation is not good.
compared with the timings given in [BS], and it is not clear if this is due to an optimization ol the
implementation or to improvements to the algorithm; one can compare anyway the experimental
complexity data (the number of steps, the sum of the m?) and the algorithm of [BS] appears to be
inferior (sometimes dramatically inferior) in all but some special cases with very few cogenerators.

The comparison of the timings given in [BS] and the timings obtained in our implementation of
the algorithm of [BCRT] show a slightly better performance of our algorithm; the comparisons of
both algorithms in our implementation shows an improvement of the performance by a factor of 10
in these examples; for other examples, not reported in [BS], the improvement of our al
varying, ranging from even performance to one minute against one day (and even more for a very
special example, see below).. For some very special examples (few generators in many variables) our
algorithm is slower, but the overall time is very low anyway.

In general, the algorithm of [BS] has good performance when the staircase is good (but in this
case all the algorithms perform well), but in the bad case our algorithm is clearly superior.

For an extended report of the computations, see [BCRT].

The COMMON-LISP sources are available b
(131.114.6.55)

ard. since it s
tion: morcover
applied to an

have
xity. We consider as unit of complexity an operation
compare the algorithms in a way that is relatively

gorithm is

y anonymous FTP on gauss.dm.unipi.it
in the directory pub/alpi~cocoa/hilbert.

16 A simple bad example

The Computation of the Hilbert-Poincaré series in general, and even computing the dimension. is a
Problem that is harder than an NP-complete problem (see [BS]), hence bad examples are unavoidable.

E €re we study a very simple example that has a very bad behaviour, unless we allow vertical
Splitti

Ings and randomized algorithms: avoiding the general vertical splittings, or taking a “natural”
Ordering of the variables requires exponential time.
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The example is the following:
I = (2021, 0122, ..y Tn1Tn)

A randomized algorithm splits the staircase horizontally in two staircases, one with 7 — 2 and
one with n — 3 elements: these can be split vertically, and the expected lengths are in ratio 3 : 1.
Hence the expected complexity is polynomial.

If no vertical splittings are allowed, more than 2n/3 steps are necessary. Moreover, il we always
choose as pivot the lowest (or highest) possible variable appearing in more than one monomial. the
splittings are always bad, and no vertical splittings are useful.

The algorithm of [BS] in this case has the same type of behaviour; however their heuristics is in
this case the worst possible, and even with vertical splittings the algorithm remains exponcntial.

Indeed, with 42 variables the example can be computed with our implementation in 2”. (with
101 variables it takes 40”); without vertical splittings in 42 variables it takes 6/, and 130h-17" with the

algorithm of [BS].

2 Applications: change of ordering in Grobner basis com-
puting

This section reports some recent results, that will be contained in expanded form in [GT].

In the computation of Grobner bases of ideals of dimension zero the use of lincar algebra is a
possible useful tool, provided that the zero-dimensionality is explicitly known, see [FGLN]. [NINM].
[MT]. For most of the algorithms the vector space dimension of the quotient ring has to be known.

In the higher dimensional case, the Hilbert function can be used instead of the vector-space
dimension to obtain results of the same type. In this paper we sketch how the knowledge of the
Hilbert function can be used in the computation of a Grébner basis.

Of course, to compute the Hilbert function usually one needs a Grébner basis, hence the main ficld
of application will be the change of ordering. Remark that quite often a Grobner basis with respect
to an uninteresting ordering is known in advance; this is for example true for the implicitization
problems, for the inverse kinematics problems, etc.; in these case the problem is to eleminate some
variables, and the original basis is Grobner in an ordering that eliminates the other variables,

Another case is when the ideal is homogeneous and is a complete intersection; even il we do not
know this fact, we can perform the computation “as if” the ideal is a complete intersection. and test
from the dimension of the result that ideal is really a complete intersection, hence the computed
basis. that is Grébner under this hypothesis, is proved to be a Grobner basis at the end.

Other applications are also possible.

2.1 Homogenizing an ideal

In this subsection we recall some well-known easy results, see [MM2].
Let I be an ideal of k[X] = k[a1,...,,]; we associate to [ the homogeneous ideal /;, ol LX) =
k[zo, ..., ] obtained homogenizing with the variable zo every element of I. This is obtained as
follows: the homogenization of ¢ € k[X] is the unique homogeneous polynomial g € k[N] ol the
same degree such that g(1,a1,...,2,) = g, and is obtained multiplying every monomial 1 of g by
Igegg-degm.
If G=gy,...,9m is a set of generators of I, the ideal I generated by g1, ...

and I is obtained saturating I with respect to xo.

s Jm 18 smaller than 2
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If k[X] ha - i i
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. s of the same degree stripping the f : k)
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S prove that the result is a Cirohuer bas
with respect to the ho izati S
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. of generators, compute a Grobn i 1vi
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hlghe):sf1 power possible of zo. The result is a redundant Grobner basis =S pCFuomal by lir
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Wb v e pute a Grébner basis, dividing every polynomial by
(Remark that homogenizi O i
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2.2 Basic facts on Hilbert functions
The main theorem that we will use is the following:

1 THEOREM. [ X] = £ i
1 degree_compaublzzt ie% (/:[i] = A be an ideal, and let A be endowed with a term-orderiie that
; 7 = (g1,...,9m) be a set of elements of I, let | be the initial ir/c-:/ ol |

and let I' be the monomial ideal cener
i gé11e1ate(1 by the Lt(g;). Let ki, hp be the corresponding Ilillert

a) hj(n) < hp(n) for every n
b)ifh; = hy then G is a Grébner basis.

PROOF: We have that | C I, (and this proves a)
assume that this is false, and let a an element. ofll'
in degree n, h; and hy are different.

We will use moreover the following lemma:

2 LEMMA. lzet 1’ 1‘” be t} €
’ 1 tia
| mi 131 ldea‘]S Of the Idea] I w.r.t.

and the Fwo are equal iff G is a Grobner basis:
not contained in 7; if n is the degree of o then

two different degree-conipatible

PROOF: In k[X i i
OF: In k[X]/I consider a filtration F induced by the degree filtration in KX (!

image of the elements of degre s the
5 en). In k[X N 5 H
leading term; hence £, g ). In k[X] the degree of an element is equal to the degree of its

B pOIynomialsx:vlfgstéa,}eta(zlithetdin}eflsi(;ndof the space of polynomials in R[X] of degree 1
‘ ! ding term g i i i
Z:;}%hl,(z) D i g 1s of degree n. Hence the k-dimension of F), is cqual to

emark th i i
Bl C(:;tlihe etgll.lahty test between two Hilbert functions k& = A’ is computed in finite term
] "esponding generating function, Y A(n)7T™" i 1 - i
Bt 1 : . » 2 h(n)T™, that is a rational function: indeed an
B iai;ng;tgflog-fg thef Hilbert function explicitly gives this rational funct iun((I'orlxl:;\
: . e Hilbert function at a 1 " n i ; .
expansion (or ireetly Shronsh & s specific number n is computed through Tavlor

thr
alg
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Let f, g be polynomials, we say that the degree drops in the sum f+ g if f+g¢ # 0 and the degree
of f + g is lower than the degree of f (thus implying that the degrees of f and g are equal.
The following theorems hold, see [MM4]:

3 THEOREM. Let I be an ideal, G a Grobner basis of I with respect to a degree-compatible terim-
ordering, and consider the Buchberger algorithm starting from G to compute the Grobuer basis ('
with respect to another degree-compatible term-ordering and with normal selection stratcgy. I
during the algorithm in a reduction the degree drops, then the reduction will give eventually resilt

Zero

4 COROLLARY. In the above Buchberger algorithm new elements appear in increasing degrees,

PROOF: The degree drops in a sum f + g if and only if considering the homogenized polynomials
f, g, the sum f + g is a multiple of the homogenization variable.

If an element A is multiple of a variable z¢ and no leading term of a set of generators contains
2o, then the result of the reduction is again multiple of xo.

Consider the homogenization G of G it is a Grobner basis of the homogenized idecal /. "The
Hilbert-Poincaré series Hj of InI and Hj of I are related by (1 — T)H; = Hj. We have remarked
that H does not change if we choose another degree-compatible term-ordering.

Consider now the Buchberger algorithm of G and G; they run in parallel until a new basis
element appears that has the homogenization variable wo in its leading term in the second one (and
this corresonds in the first one in a new basis element of lower degree than its S-polynomial [indecd.
of the apparent degree of the S-polynomial - we need a definition etc.]). But we arce following
the normal selection strategy, hence the elements of the basis in the homogeneous casc appear in
increasing ordering, and this means that at that moment the coefficients of Hy in the degrees lower
than the current degree is settled, hence this has to be the same for Hj because of the relation
remarked above. This means that no new element of lower degree will appear in the Buchberger
algorithm for G, and that the simplification that has dropped the degree will eventually give result

0.

2.3 Change of ordering algorithms

We have several algorithms, that can be applied in different situations.

Homogeneous ideals

The first algorithm can be applied to homogeneous ideals, and in this case the organizing properties
of the Hilbert function appear in its full form.

Assume that I is an homogeneous ideal, g; a set of generators, and assume that we know the
Hilbert function h = hj, probably having previously computed a Grobner basis with respect to a
term-ordering diferent from the current one.

Let «; = Lt(g;), and compute A’ = hq,.

If b = h', then G is a Grobner basis, otherwise let n be such that h(7) = R'(j) for j < n and
B (n) = h(n) + k. This means that:

a) G contains all the elements of degree < n of a Grobner basis

b) a Grébner basis contains k further elements in degree n.

With this information we can perform the Buchberger algorithm, but with the following modifi-
cation:

a) all critical pairs of degree < n are useless (the degree of a critical pair being the degree ol the
degree of the lcm of the two leading terms)

b) precisely k critical pairs of degree n are useful.

450

r
|
l

Wh X
en we have found through the Buchberger algorithm k useful critical pairs of degree . giving

rise to new elementg g e . g 3 v
n+1sy yYn+k (J b N CO })ll“‘ t] € new ][ ] Der 1C1C //
m tlle robner basis, we re m > art ) .

and proceed in the algorithm.
The algori i i i

L jnizrlttilharzl ;i often gotoddsflince usually in Buchberger algorithm the useful pairs in cach

€ computed first,, and at the end of the algori ; )

‘tha : . gorithm for each degre

of useless pairs is computed; with our algorithm these can be avoided e

degree

a good hatch

Non homogeneous ideals, degree-compatible ordering

As i

n:s;:)r:eethat we jlave a non-homogeneous ideal; the algorithm can be performed as
ger proceed degree by degree. We can proceed as above. but the degree-wis :

lost. Hence we expect worse behaviour. ’ B

above. but we
organization is

Non homogeneous ideals, starting from a Grébner basis

If we already k , Grd i : i
g ); dr;;)f\;vrean?r(;:n:_r basis vs/..lx.t, a degree-cgmpatlble term-ordering, and we want a Cir6hncr
e io Cotllnpatrl‘)‘l(.? terl‘nzorderlng,' the best thing may be to perform the Bucl-
e g m 1e existing Grobner basis; in this way, the algorithm proceeds degrec-
,I:here aralt e 1fn Corollary 4, and we recover the degree-organization. )
. Simpliﬁcagonw?f althzl iemarlv\s that simplify the algorithm: from Theorem 3, we can abandon
it the degree drops; and moreover, if the previous Grébner basis was oxplicitly

comp T l S, g N > > p d <
0. llle(] we l\]l()W several ¢ yZy 1es alld we Cca t
3 (¢ 11 use 1€em as ex lall e(l 1 [I\[\l] I O avolic ) £l

Non-homogeneous term-orderings

A sume t;ha,t h = 5 (
S we have a robner as a degree-co. a l) e te orae 1 t
G D Das1s w.r.t. I gl compati l rm d lng. d l(l h(] W wWatl

to find a Grébner basi d g i i
i wc;b:;axnlo:(s)ls W.I.;. a tflejlm-ord;rmg that is not degree-compatible (this is indecd (e usual
: : pass Irom Degree-Reverse-Lex to Lex). If the ideal i e
B e Do e : 3 %) e ideal is homogeneous. then one
g: indeed, adding the degree, the Grob i
o ; gree, the Grobner basis does not change. Il it is
lomogeneous, we can homogenize the generators and de-homogenize the result et

Modular algorithms

In all the cases, if the gr i
) ground field % is the rati .
o1 s follows: 1s the rational field, we can take advantage of modular compu-

a) compute a Gro B is P Wi | i
pute a Grébner basis mod p with one of the algorithms above, with respect (o a prime

let it be G,,.

b) compute the Hilber i i €
id rt function of G, if it does inci ith i ; [
R o ST ps 111t does not coincide with the Hilbert function of I

a).

, then p is unlucky, and we have to change p and repeat fron

c) repeat t i i i i
algorithnrl) i th};etgfxgpultatlon on Z, discarding the pairs that are useless mod P (a ltracc-lifting
R W terslirlllozogy (;)%[Tr] )£ fIf the computation on Z diverges from the computation mod
1s different from what was e ted) th
- ; xpected) then p was unlucky, and we have
Thea::l:::lert prime p and repeat from a). Otherwise the result is a Grébner basi); et
R Witehc tx;leess};)lfbt}f falgor.lthm comes from the fact that the Hilbert function of the resull
B e e 1t.e1 l{l‘nCtIOI.l mod Py (the leading terms coincide), and this in turn coincides
- A ‘nc ion of the 1de.al. Since the result is composed of elements of the ideal 1 '
i » Theorem 1 can be applied, and the result is a Grébner basis V o
make some incidental remarks: .

451




a prime may be lucky for a term-ordering, unlucky for another, and this may not be apparent in
the Hilbert function.

Example: let g; be any set of polynomials, add new variables t;, and consider g; — 14 for suitable
d; (that may be the degree of g; if we want homogeneous examples). If the ¢; are larger variables.

then this is a Grobner basis, if they are smaller then it is the g; that decide the luckyness.

2.4 Implementation and performance

The algorithm has been implemented in AlPi; it has been tested on some examples. lor some of
these the original basis is a Grobner basis for an uninteresting ordering, for others we arc interested
in a Lex basis, and we try to compute it through a change of ordering.

In this implementation, an incremental form of the algorithm for the computation of the Hilhert-
Poincaré series has been used, that assumes that we know the Hilbert-Poincaré series of a staircasc,
and we want to add one generator. It consists in performing one step of the [BS] algorithm (one of
the two branches of the computation is already known) and continuing with the algorithim of [BCRT].

In every case tested, the computation using the Hilbert-Poincaré series is an improvement with
respect of the Buchberger algorithm, since the additional cost of computing the Hilbert-Poincard
series is negligeable and many useless pairs are discarded; however sometimes the direct computation
is better, since the overhead of considering an homogenized ideal is higher than the improvement in
Buchberger algorithm. In some especially good case the improvement has been of a factor of 100

and more.
More precise timings will be given in [GT]

3 Application: dynamical determination of the term or-

dering

Here we sketch rapidly those parts of [Ca] that use Hilbert-Poincaré series.

In computing a Grobner basis, the choice of the term ordering is often free, at least part Iv. One
wants to determine the term-ordering dynamically in a way that forces the algorithm to converge
more rapidly.

To simplify the exposition we assume that we want a degree-compatible term-ordering (in gen-
eral we will fix a weight for the variables, and consider weight-compatible term orderings: the weight
is heuristically chosen in a way that makes the polynomials as homogeneous as possible).  With
this assumption the Hilbert-Poincaré series of the associated graded ideal is fixed (but unknown).
The Hilbert function determined by the leading terms of the elements of the basis (in any degree-
compatible term-ordering) is larger than the Hilbert function of the associated graded ideal (The-
orem 1), and we want to determine the term ordering in such a way that this Hilbert [unction is
as small as possible. The choice of a leading term in a polynomial determines partially the terni-
ordering, (it determines a convex polyhedron in the set of linear maps from R" to R il we have
n variables, since choosing between two terms which one is the larger chooses one out ol two hall
spaces), hence we have to make this choice coherently and incrementally (adding the clements one
at a time) in a way that minimizes the Hilbert function.

Different strategies are possible, but the greedy strategy is the obvious one, and apparcntly it i3

a reasonable one too.
This algorithm has been implemented, but the experimentation has not been sufficient up 1o HOW

to decide if the algorithm is convenient; the combinatorial acceleration of the Buchberger algorithi
is evident, but this happens sometimes at the expense of the coefficient growth, and the cost of
computing repeatedly the Hilbert-Poincaré series is not negligeable.
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