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SOME STUDIES OF FACTORS OF INFINITE WORDS
GENERATED BY INVERTIBLE SUBSTITUTION

WEN Zhi-Xiong ! and WEN Zhi-Ying 2

ABSTRACT

In this paper, we introduce a class of infinite words generated by invert-
ible substitutions and establish some elementary properties of factors of
these infinite words. As a consequence, we prove these words are Sturmian
words.

Keywords: Invertible substitution,singular word, sesquipower.

1. Introduction

Let S = {a, b} be the alphabet of two letters. Let $* and § be respectively the
free monoid with empty word € as neutral element and the free group generated
by S.

A morphism 7 : §* - $* is called a substitution over . If v is also in
Aut(S), then 7 is called an invertible substitution, where Aut(S) denotes the
group of automorphisms over 5. It is known [6,7] that Aut(S) is generated by
the following three special automorphisms: o = (ab,a), ¢ = (bya), v = (a,b71)
where 7 = (u,v) means that 7(a) = u,7(b) = v.

Let 0 = (ab,a) be defined as above, then the infinite Fibonacci word is ob-
tained by iterating o starting with the letter a which is also a fixed point of ¢
(1]. The combinatorial properties of the infinite Fibonacci word are studied ex-
tensively by many authors, (see Berstel[1], Mignosi[5] and the references therein.)
Notice that o is an invertible substitution, we are led to consider a natural gen-
eralization of the infinite Fibonacci word: the infinite words generated by the
invertible substitutions. ‘

Brown [2], Kosa [4], Séébold [9] have considered the invertible substitutions
of (4, ®;, ®,), where &, = (a,ab), ®; = (a, ba), (4, ®1,®;) denotes the semigroup
generated by ¢, ®,, @,. They studied both combinatorial and arithmetic proper-
ties of the infinite words generated by these invertible substitutions.

The purpose of this note is to study the properties of factors of infinite words
generated by the invertible substitutions. We recall first some preliminaries. Then
in section 1, we discuss the local isomophism of two invertible substitutions, by
using the result, instead of studying the general case, we only need to study
a special class of invertible substitutions. In section 2, after establishing some
elementary properties of factors, we introduce singular factors and discuss their
properties. As an example, by using singular factors, we determine the special
factors and prove that all these infinite words are Sturmian words.
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In this paper, we shall use the following terminology.

Let w € S* be a word. We denote by |w| the length of w, and we denote by
|wl, (resp.|w|s)the number of letters a (resp.b) in the word w, we denote by L(w)
the vector (|wlq, |wls)-

A word v is a factor of a word w and we write v < w, if there exists u,u’ € A”,
such that w = uvu’. We say that v is a left ( resp.right ) factor of a word w and
we note v 4w (resp. v w ), if there exists u € A* such that w = vu ( resp.
w = uv ). The notions of factor, left factor are extended in a natural way to an

infinite word.
Let w = z1,%2...2Z, € S*, the reversed word w of w is defined as w =

Zn...7221. A word w is called palindrome if w = W and we denote by P the set

of palindrome words.
Let w = 172...2n. For 1 < k < n, we define the kth conjugation of w as

Ci(w) = Tk41 .- - Tnl1 . . . Tk, and we denote by C(w) = {Ci(w);1 <k < |wl}.

A word w € S* is called primitive if w = u?,u € §*,p > 0 implies w = u.

Let 7 : S* — S* be a substitution of S*. We denote by F; the fixed point of
7 [8] (if it exists).

Let w be a word, we denote by Q,(w) the set of factors of w of the length n,
where |w| > n, and we note simply 0, := Qn(F;).

Let w = z,2...z, € S*, we denote by w™! the inverse word of w, that is
wt = g;'..z7 27", Let w = uv, then wv™! = u by convention.

1. Local isomorphism of invertible substitutions

Lemma 1.1. Let

M={M:<p T)vp’qmseN’d“(p T)=il}
q s 79

01 11
Then M = (a, ), wherea—(l 0)’5—(1 0>'

Proof. Let
10 11 10 01 -
gl—<01>792~(01>793—<11>7g4'—'(11)'Then1tls
easy to check that g1 = a?, g2 = Ba, g3 = af, g4 = afa.
Now let M = 5 Z ) be an element of M, such that at least one entry

is larger than 1. By using @, we can make p the largest entry of the matrix.
Moreover, r > s (otherwise |detM| > 1).

Let M' = [ P71 r;s , then M = faM’'. By the same argument as

q
above, we can transform M’ by a such that it satisfies the same condition as M.

After a finite number of steps, the matrix M will be transformed, by the
actions of o and 8 , to one of the six matrices: «,f, g1, 92, 93, g4, which may be
generated by o, 8.

From the definition of the substitutive matrix, we can prove easily
Lemma 1.2. Let T = 117...Tn, then

M, =M M,..M,,
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wh tuty
ere M, and M., are the substitutional matrices of T and T; respectively
" ;

Lemma 1.3. For any Me M, thereis a7 ¢ (0,9), such that M, = M

for any M € M, there exist My, M,,.. M, c {e, B}

ne

Proof. By lemma 1.1,
such that M = MM, ...
Note that M,

= ,B M, = o 1 =
sceonding to 1, y My , 8o if we take 7 = T T . Th,

= a or 3, then by lemma 1.2, we get Wasrs 77 Sdhore

M = M, M,,..M,, = M\M,..M, = M.

Lelllllla 1 4 [ ] i
e 23 8 laei T 7 be tW() \% i i i n
i 1 I 1, :2 n ertlble Substltutlons 5 then the fOHOWi g

1). M, = M,

g o 5 |

2). there exists s
aw € 5%, such that 1, = wrw™!, (or 7 = wlrw).

Let u = uyus...u,... and

¥ = U103...0,... be two infini

T W 102...Un... be two infinite words over th

Tt ueisa)i that u and v are locally isomorphic if any factor ( or it i alphabet
s also factor of v and vice versa.  firror image

If v and v are locally isomorphic, we shall note u ~ »

Lemllla 1.5. Let 7 T be tu}O mver tlble Substﬂutl()ﬂs (”ld 161 1 be €
. .

1,72 T ,Frz th
ﬁl’ed POlﬂtS Of T1 and T2 ’eSPECtl'Uely- If A/‘ifl = A{‘le tﬂe?l FTI ~ FTZ'

Proof. By lemma 1.4, 3w € §*, such that

n1(e) = wry(a)w™,

Furthermore for any n

T'(a) = ‘rl’"l(w)rl '2(w)...w7'2"(a)w'1...T;‘—l(w”l)rg‘(w‘l)

That is, 3w, € S*, such that ' (a)
conjugate, (see [3]), that is, there exis
Ha) = vyu,.

Thi

A :(S) Iilxlliiar?ii th:ot,dbOth u, and v, are factors of 71'(a) and 77(a). Since [ (a)|

4.12 of [8] w -Z’u (o(r)ez; 'an ()orf lvnl.) Let w be a factor of F, by PTOPOSlition
) V. b

Bie e At it or n large enough, thus w < F,,. Inversely, by

, then w < F, . Wi
Th 0 B n- We thus prove that F, ~
e case of 71(a) = w7, (a)w can be treated in the same manner.

Wn = wn73'(a). Thus 77(a) and 72(q
are
t u, and v,, such that (a) = u,fv(n,)and

Remark 1.6. By |
1.6. By lemma 1.3 and 1.5
factors of an infinite word generated by : \ inve

consid i
fornnsll: er the elements of (o, 4), that is, t

that to study the i

: | properties of
y an mvgrtlble substitution, it suffices to
he invertible substitutions of the following

o™ o gogh-1g $...0™" 0 po o™
b
Wh?{‘i n, g 2 0509, . gy > 1.
roughout this paper, we only discuss the following form:

N Nk
o™ o dog '0¢..0M™ogoo™,
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where n; > 1,1 < j < k, and we denote by G the set of these invertible substitu-

tions.
The other three cases ( ng > 1,n1 = 031 = 0,01 2 Ling =n1 = 0.) can be

discussed in the same way.

Lemma 1.1 and lemma 1.3 give an algorithm for finding an invertible substi-
tution of which the substitutional matrix is equal to a given matrix of M. Now
we give an explicit algorithm by continued fractions.

The following lemma can be checked easily.

Lemma 1.7. For any w € S*, we have
1). L(o(w)) = (Jwla + |wls, [w]a), L($(w)) = ([wls, [w]a);
2). L((0¢)"(w)) = (|wla + nlwls, [w]s), L((¢0)"(w)) = (nlwla + [w]s, [wla)-

Lemma 1.8. Let (p,q) = 1,q # 1. Then there exists a unique pair (rys)
(resp. (r',8')),0 <r <p,0 <s<gq (resp. 0 < r' < p,0 < s' < gq), such that
ps —rq=1 (resp.—1).

Proof. The existence of a such pair is well known. Now suppose that there

is another pair (r*,s*) satisfying the condition, then we have

p(s —s") = q(r —17).
Since s — §* < ¢,r —r* < p, we get a contradiction to the hypothesis for
(pg) =1
Remark 1.9. If ¢ = 1, the conclusion holds trivially.

Nowlet M= ? ") € M with p the largest entry of M. Let to,t1,...tn be
q S -

the continued fraction expansion of p/q. Then by the lemmas 1.7 and 1.8, it is
not difficult to prove that

Proposition 1.10. With the notations above. Let

n = (0¢) la(og)i o(0g) " (o) o,
o= (00)0(06)1 o(od) = " o(08) " do.
If detM =1, then M,, = M if n is odd and M,, = M if n is even,
If detM = —1, then M, = M if n is even and M,, = M ifn is odd.
2. Studies of factors

In this section, we first establish some elementary properties of the infinite
words generated by invertible substitution, then we introduce singular words and
study their properties. As we shall see, the singular words play an important role

in the study of the properties of the factors.
If o appears in the context, we mean that «, 8 € S with a # . Moreover if

we write af v 7(b), we assume |7(b)| > 2.
The following lemma can easily be proved:

Lemma 2.1 Let 7 € G, then

458

o LB =2 0@ = o

Af 5o ni+k € 2N+1, then abor(a); if TF_, n;

e
o T = i n o

for sopoie s lT(a)’l tz‘;,l l?-he—n(:i); for some n; if |7(b)| = 2, then 7 = G

5). If |7(b)| > 1 and @f > 7(a), then Bav 7(b).

Lemma 2.2 let 7 = (0¢)"0? and let w € S*. Then

1). a™bar(w);

g) 1;1; w = bavw(w), bow = a"bo 1(w), abo w = ¢ 2o m(w);
othe,i;n’sge ’}Iii‘lqh?St power of a appearing in w(w) is a™*? if aab < a(w) and amH
o ; e factor of 7(w) situated between two adjacent b is either a™*! of

4). The factor of 7(w) situated between two adjacent b is either a™*! or g"t2

9 .
o sl;‘(:}?f.t-Lft o*(w) = 2129...2,n_1Zm. Since o¥(a) = aba,c%(b) = ab, it is easy
at: 1. zy29 = ab; 2. z,,_12,, = ab or ba according to b w or a v w: 3

3 3.

a® £ o*(w), b £ o?(w); 4
. ) ; 4. the f 2 : :
e Either o o, Sin(ce) e factor of o*(w) situated between two adjacent b

m(w) = (04)"0*(w) = (06)"(21)(06)"(22)-.(08) (Tm-1)(0})"(2m),

the lemma follows from the discussions above and lemma 2.1.1.

Lemma 2.3 Let k(7(a)) (resp.k : i
: : p-k(7(b))) be the integer such that a*(7(*) Kr(b
is the highest power of a (resp.b s g ata (resp.bF(7 ()

" e ctrtugy TP ) appearing in 7(a). (resp.r(8)) Then

2). a®'"*Np a 7(a),where p(7(a)) is k(r

0] k e Aa
3). FEither a?(7(a))p 7(a), or ba)l> T(a(); (o)} or klr(a)) =1,
4). @O S P ar@2 4 B g2 4

5). A 3 :
ap(f(a))). ny factor of F, situated between two adjacent b is either qP(T(@)+1 .

Proof. Let 7 = g™ ggms-1 @...o™po™,

Ifn;=1forall j, 1< - .
be ProvJed ea.siI)rl.a Jy 1 <7 <k, then 7 = (04)*s. In this case, the lemma can

Now suppose that there exists at | i ]
: at least one ind ; ]
be the largest index of these indices. Then B

T i= (qu)k_joaz(a'"io_2”.0-"2(]50711). (1)

Hence the proof of this lemma follow
_ emir s from the lemma 2.2 by treati i
cases of (1) (the discussion is tedious, but not difficult, ang wr:;:)rlr?i% :ﬁz ?ilefi:f:;

We now determine the length of 7(a) and 7(b). Let u,v € N, we denote by

F,(u,v) the Fibonacci number with init; i
; with initial diti =
Thus for w € S, it is readily seen that SRR B ol V=

L(0™(w)) = (Fa(lwlay wls), Faca([t]a, [10]s)), L($(w)) = (Jwls, [w]a).
Thus it is not difficult to get
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Lemma 2.4. Let 7 = o™ ...a™ o™, then

I7(a)] = Fupt1(pr=1,vk1), [T(0)| = Frp(pr-1, Vk-1);
L(T(a)) (Fnk(uk—lvVk—l)’Fnk—l(ﬂk—laVk—l)»
L(7(b)) (Frg=1(#tk=1, Vk=1)s Fr—2(pi—1, Vi-1);

Fn (”k—la ‘/k—l) Fnk—l(uk—l’ Vk_l) > ,
M= ( Fn:_l(uk_l,w_x) Fog-a(ptk-1,Ve-1)

where pio = 1,v0 =0, ko1 = Fuy_, (r-2, Vk=2), V-1 = Fu, (B2, Vk-2)-

Lemma 2.5. Vy € S, the word 7(7y) is primitive.

Proof. Suppose that 7(7y) is not primitive, thenLt(he(re)\;v)ill ez(iTt T w;;)|$|l§ fhi;
i > 2, such that 7(v) = w?. Hence L(7(7))) = (plwla, Pitv]s »
32?(1;\1/? ;nvtielgle;alz/e_factor p, which is in contradiction with the fact det(M,) = £1.

Now we are going to establish an important factorization of 7(a) which will
d in the following. ) . .
e lésiflceu‘lr(b) a7(a), we can write 7(a) = 7(b)u. Let u< 7(a) with |u| = |u}|, we
can write also 7(a) = wv with |v| = |7(b)].

Lemma 2.6. Let 7(a) = 7(b)u* = uv as above. Let afjv 7(a), |7(0)] > 2.
Then
1). u=w¥; Gt
i L=t = a oy
% TEG))QZ 7(b)u = ur(b)a™' 7 ap.

-1 ¥,

i >7(a), Ba> T(b). . o
svzogf;)vselr‘z(}:)iz clfmmzi lly induction with respect to the length of 7 in ¥ :=

{0, ¢}.

1). If 7 = o, then o(a) = ab = 7(b)b, and the statement is true.
Suppose that for 7 = 7,...71, we have

TneeT1(@) = Troo T1(D)Uy, = UnVn (*)

with u* = up,(50 |va| = |Ta-..T1(D)].)
Let 7 = Tp417n...71 and let

7(a) = Ta41Tn---T1(@) = Tat1Tn--T1(D)Un 41 = Uni1Vnt1

i * | = |uny1|- We have to prove uy, = Unyi.
Wltl;fi::;ﬂ: gbl, tl:r(; Iproof is trivial. Now let 7,41 = o, we have by (*)
(Tp...mi(a)) = o(unvn) )

= 0(n)0(vn) = 0(Tn...71(b))o ()

Thus u},; = o(uh, tUnt1 = (Un). - L
i * i 1 t u = Un41-
% = u, by hypothesis of induction, we get u;,,,
glilc’]?hincase of {‘r(b)[ = 2 can be checked directly. Let 7 = 7,...71, then by 1)
have
e Tat1Tn---T1(@) = Tnp1 T T1(B)Unt1 = Ung1Vns1-
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Let afv 7,...71(a) and suppose that v, la~! = Tn...T1(b)a™! 1. We shall prove
'U"+10'—1,3_1 = Tn+1T"...T1(b)ﬂ_la_l.

As in 1), it suffices to consider Tat41 = 0. Since aff > Tnt1Tn-..T1(d), Ba b o (Vnt1),
we have

Ung1 = 0(vp) = o(Tn...ri(b)a™' B~ ap)
o(Tn...71(0))(0(Ba)) o (af).
Notice that o(af) = afa for any a # f3, and therefore we obtain

vppa1f7 = T,,+lrn...rl(b)ﬂ'la_l.
3). The conclusion follows immediately from 1) and 2).
Lemma 2.7. Let w € P, then o(w)a,a 'o(w) € P.
Proof. Since w € P, we can write w in the following form:
ak bllak2b’2...akm7ak’"...blzakzbllak‘

where v € {a,b, €}, k;,1; > 1,if 1 <j<m-1,andk, >0.
Thus we have

o(w)a = (ab)k‘al‘...(ab)k'"a('y)(ab)k"‘...al’(ab)k’al‘(ab)k‘a
= (ab)k‘al’...(ab)"”‘a('y)a(ba)k"‘..,a”(ba)kza“(ba)k‘,

Since o(7)a is equal to a,aba, aa respectively according to  being e, a, b, o(w)a
Is a palindrome with center a, b, ¢ respectively by the formula above.

Corollary 2.8. Let B 7(v), v € S. Then ar(7)8-' € P. In particular, if
I7(3)1 23, and aB e 7(y), then (7)8-1a"" € P.

Proof. Let 7 = 1,7,_1...7. (Notice that 1, = o by the definition of T.)

We prove this lemma by induction as in lemma 2.6. We only prove the case
7Y = 4, the case of ¥ = b can be proved in a similar way.

The case of n = 1 is evident. 'Now suppose that 3 o TaTn-1...T1(a) and
ATy Tpoy...11(a)f~! € P.

Tn+1 = @, notice that the word ¢(Tn'r,,~1...'rl(a)) is obtained by exchanging
the letters @ and b in the word TnTn-1...T1(a). So by the induction hypothesis, we
get ,3¢(T,,T,,_1...Tl(a))a‘] € P.

ow suppose that 7,4; = 0. Notice that a > O0TpTn-1...71(a) . Thus

BoTaTa y..mi(a)a™? = ﬂa(a'la‘rn‘rn_l...Tl(a)ﬂ“lﬁ)a'l
= Bo(a)o(ataTy1...1i(a) 8" ) (B)a 1.
By the induction hypothesis aTpTpoy...11(a)B~! € P. On the other hand, by a

simple calculation, we have either Bo(a™) =a!, g(B)a! = ¢, or Bo(a™t) =,
o(B)a~! = a. Hence by lemma 2.7, we get BoT,Taoy...1i(a)a™! € P.

Let 7(a) = 7(b)u be the factorization of lemma 2.6. Let T =0"%p...0™¢pa™,

then v = 0™ @...0™¢o™~1(b). Thus by lemmas 2.1.4, 2.6 and corollary 2.8, we
get
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Corollary 2.9. Let 7 € G and let aff > 7(a).

1). If |7(b)] = 1, then 7(a) = a™b for some n, thus 7(a) is the product of
palindromes a™ and b;

2). If |7(b)| = 2, then 7(a) is a palindrome;

3). If |r(b)| > 2, then 7(a) is the product of palindromes 7(b)a™'f~" and Bau.

Lemma 2.10. Suppose that w € S* is a primitive word and suppose that
w = uyuy is a product of two palindromes uy and u,.

1). If |lu1|, |uz| € 2N + 1, then for any k, Cir(w) € P;

2). If lui, [ua| € 2N, then Ciyyjj2(w) € P, Cluy|4jus)2(w) € P. For other k,
Celw) ¢ P;

3). If luy| € 2N, |uz] € 2N + 1, (or |ug| € 2N + 1, |uy| € 2N,) then
C|u1‘/2(w) e P, (07‘ C|u1|+[u2|/2(w) (S P} For other k, Ck(w) gP.

Proof. We only prove 1), the other cases can be discussed in the same way.
Notice that at least one of |uy|, |ug| is larger than 2 (otherwise ujus will be
a? or b%.) Suppose that without loosing generality |u;| > 3. Then we can write
uy = zuiz, where z € S, uf € P. Thus Cy(w) = Ci(w1up) = (u})(zuszz) is a
product of two palindromes, by the proposition 9 of [3], Ci(viuz) ¢ P. Since
|u)|, |zugz| € 2N + 1 and u}, zusz € P, we can repeat the discussion above which

follows the proof .

Lemma 2.11. Suppose that |7(a)| € 2N. If 7(a) = uius is a product of two
palindromes,then |uql, |us] € 2N + 1.

Proof. If |u|, |uz| € 2N, then |uila, [uils, |u2]a, |u2ls € 2N. Thus both com-
ponents of L(7(a)) are even which follows that |det(M,)| € 2N. But we know
that det(M,) must be 1.

From corollary 2.9, lemma 2.10, lemma 2.11 and the propositions 9,10,11 of
[3], we obtain

Proposition 2.12. Let 7 € G.

1). Any conjugate of T(a) is primitive;

2). |C(r(a))| = |7(a)|. That is, all conjugates of T(a) are distinct;

3). Any conjugation of T(a) (containing T(a) itself) is either a palindrome,
or a product of two palindromes. In the later case, the factorization is unique;

4). C(r(a)) = C((a)), where C(7(a)) = {w;w € C(7(a))}.

5). If |7(a)| € 2N, there is no palindrome in C(7(a)); if |7(a)| € 2N + 1, there
is only one palindrome in C(7(a)).

Let F, = 7(F;) = ¢12;...2... be the fixed point of 7. Then for any n € N,
we have
Fr = 7(F;) = m™(z1) 7™ (22)...T™(z).. €23

We now discuss the properties of the factors of the infinite word F;.

We denote by A, = 7%(a), B, = 7™(b), and 1, , = |Ax|, lnp = |Bal-

Notice that if 7 € G, then for any n > 2,, 7™ € G. Therefore the conclusions
about 7 which we have obtained above hold also for 7.

Let w be a factor of F, of length |A,|. By (**) , w will be contained in one of
the following four words: A,A., AnBn, BnAn, AnBnA,. By lemma 2.1.3, B, 4 Ay,
so A,B, < A, A..

Let w < A, B,A,,write w = w; B,w,.Then w; > A,,w, 9 A,. Let A = Batn
be the factorization as in lemma 2.6. Then u, « A, by lemma 2.6.3. Since
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of length |A,| of B, A, are those of A A
corollary 2.14, and the n

by corollary 2.16. We get from the analysis above

equal to w,,. In particular, as a factor, Wy

obtain

|w| = |A,| = |B,
wanw[2 JA 1; [+ [unl, [we] < [ug). Consequently w; < u,, and hence w —

nDnlUn = ApA,.

By the discussio b i
cithey g Bil;:, “?\{,e, any factor of length |4n| of F, will be contained

hich we are going to study respectively.

Lemma 2.13. Let w < A, A, with [w] = |A,|, then w € C(A,).

Proof. Since w < A, A4,, and |w] = |A,| i
nAn, = |A,|, we can writ = i
An,, and [u] + |v| = |A,|, which follows that An = vu.r'lI‘E;;) is Z)U:Wahf;f;n’, o

Since all conjugates of A, are distinct by proposition 2.12.2 we get

Corollay 2.14.
(4. Yy The set of the factors of length |A,| of A%k > 2 is exactly

. Now we study the factors
singular words of F, as follows:
Let av A, (so Ao B.).

are defined respectively as:

of the word B, A,. For this alm, we introduce

Then the nth singular words with respect a or b of F,

Wne = /BAna_l, Wpp = aBnﬂ_l-

From the definition of the singular words, we get immediately

Lemma 2.15. With the notations above, we have

Luna) = { ol + LlAD 1) o=
' (IAnld_llen’b+1) ifa:a

Liw,y) = | UBala + 1L, [Bals=1) ifa=a
) {(an,a*l,an|:+l) ifa=b

Since L(w) = L(A,) for any w € C(A,), we get from lemma 2.15

Corollay 2.16. Vn ¢ N,w, . & C(A,), w,, € C(B,).
Let af > Ay,(so Bav B,.) By lemma 2.6.3,

B, A, = Bhu,B,a™ ' ap = AnBra™'87ap

: ey
Since A,B,a"18"1 < AnB, < A, A,, we see that the first |B,| — 2 factors
= \thlCh are distinct from each other by
(IBa] — 1)th factor is exactly w,, which is not in C(A,)

L .
emma 2.17. Let w < B, A, with [w] = |An|. Then w is either in C(A,) or

appears only once in B, A,.

From proposition 2.12.4, lemma 2.13, corollary 2.14, and lemma 2.17. we

Proposition 2.18. Let 7
.18. € G,n € N. Then
1). O, = C(An(a)) Uwy,, W,, = C(B.(b) U Wi p;
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2). QUpol = lna + 1, 1] = s+ 1
3) an,a = an,a’ an.b = Ql"v"'

We now discuss the properties of the singular words.
Proposition 2.19. Yn € N, wpq, wnp € P.

;5 . d
Proof. This follows immediately from the definition of the singular words
and lemma 2.8.

Lemma 2.20. wn o > Wni2,a, Wnyph > Wat2,b-

Proof. Let af > 7"(a),then aBv 7"2(a) by lemma 2.1.4, thus

wn+2,a = aT"+2(a’)ﬂ_l = aTn(Tz(a)):H_-l‘

By lemma 2.1.2,a « 7%(a), so 7%(a) = ua for some u € S. Thus wpi2. =
y lem 12, :

a7™(u)T™(a)B~! which yields the conclusion of the lemma.

Lemma 2.21. Either a?")+ 5 qp, 0 a?U@OH quo, 0 o1 bo Wg,b a4 wna,
e .21. .
where p(7(a)) is defined as in lemma 2.3.2.

This follows from lemma 2.3.2, proposition 2.18 and the definition of wy 4.
Proposition 2.22. Vn € N, if w, , ts not a power of a, then wy o s primitive.
rop .22, ; y

1 If w, , = w” for some w € S*
that wy,, 1s not a power.of a. If wyo S
PI‘OOS tSﬁIY;lP(;US@ will bz aequal to one of its conjugates. But by %emma, :
e pllzth’ }f e :iather b2 < F. or a®(7(@)+2 < F_ This is impossible because
we wi en hav
of lemma 2.2.4.

hich
i i ver S. Let w < Fy, be a word w
= Zy...T,... be an infinite word over : / o
. ﬁ‘;oﬁnitxelly rr?any times in F,. If any two ad]a,c'ent w's appeainig? msucoﬁ
e ted by a factor of F,, , (this assertion is equivalent to Au : % o
o sepa;raa ez w}ilth w = xy = yz.) we say that the word w posseses lt fz p)oesclt p
et ‘Zt;anzy roperty, and the factor is called a separate faf:tor (w1t11 ;:slarated
is)pa}f any sI;parate factor is not equal to e, we)say that w is strongly sep ,
. i t w is weakly separated. . o ‘
(Oth/:rWISfH vaees?i tol;”atl‘le form w = (uv)*u, where k > 0, uv 1ts) atl})lrlm](t;;eg;‘otl}?é
od : itive 1 k is said to be the or
i i r [3]. The positive integer k i . ;
. Calg;izeiesgu;g;qujpo[w]er of order larger than 1 is called a strong sesquipower
sesqu .

th
Let n > 1 and let aff > A,, from lemma 2.3,.lemma 2.13, lemma 2.17, the
formula (*:) and the definition of w, ., we can write F; as

= (A”(T(”))Bna_l)wn'azlwn'az'g...zkwn‘azkﬂ...
h is either BAP(T(@)B a1 or BAPT(EDHB o~ and p(7(a)) is defined as
where z; 4 e P

" lir;ltm: 2—2]29 u,, be the factorization as in lemma 2.6, then for any m > 1,

- m -1
BATBna™! = ((BBra™")(euaf™))™(BBaa™)
m -1
by corollary 2.9, 3B.a™!, au,~' € P. Thus BA}B,a™" € P.
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From the discussions above, we obtain

Theorem 2.23. Let r G, ifafo 7(a)
1). wy, is strongly separated;
2). The separate factor is either ,BAf’l(T("))“Bna“l, or BAP(() B -1,

3). The separate factors are sesquipower palindromes of order p(7(a)) and
p(r(a)) +1 respectively.

, then for any n,

Berstel [2] introduced the special words o
if ua,ub < F.,, then the word u is called a s
F.} ={w,w< F.}, the special words of F. a
From corollary 2.14, lemma 2.17, theore
with that the theorem 5 of [10], we have t

found by Séébold [9. Proposition 4.7)
words).

f an infinite word Fy, as follows :
pecial word of F.,. Since {w,w <
re equivalent to au, bu < F..

m 2.23, by an analogous argument
he following result which has been
s(but he does not determine the special

Theorem 2.24 [et r €4q.

Then for anyn > 1, there is a unique special word
of length n. Moreover w is q S

pecial word if and only ifwa F,.

y comparing with the results of [10], we see
ure of the singular words (‘and the singular

ccording to the singular words). In fact, the
structure of the singular words of a g tion is much more

complicated than that of the Fibonacci substitution (for example, all singular
words and separate words of the Fibonacci word are sesquipowers of order 1, ie,
weak sesquipowers. On the other hand, those of a general invertible substitution
are strong sesquipowers.) But as we shall see in another paper, the singular words

still play an important role in the studies of the factors, such as power of factors,
overlap of factors and local isomophism.
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SUR LES SYMETRIES TERNAIRES LIEES
AUX NOMBRES DE GENOCCHI
Par
Jiang ZENG

Abstract. — In [Du2] DuMONT stated several conjectures about some symmetric polynomial
sequences which are the refinements of the Genocchi numbers. In this paper we shall prove all of
his conjectures. We first show that some special cases of his conjecture can be readily derived from
a result of Wall and then prove this conjecture by computing Hankel determinants. Finally we
present a new symmetric model for the Dumont-Foata polynomials.

1. Introduction. — Un escalier F de taille n 2 1 est le graphe d’une application

. sujective f de [2n] := {1,2,...,2n} sur {2,4,6,...,2n} telle que pour tout k,

f(k) > k. Un point (k, f(k)),1 <k <2n -2, de F est dit maximal si f(k) = 2n, est
dit point fixe s’il n’est pas maximal et si f(k) = k (ce qui implique que k est pair), est
dit surfixe il n’est pas maximal et si f(k) = k+1 (ce qui implique que k est impair)
On note m(F) le nombre de ses points maximaux, f(F) le nombre de ses points fixes,
et s(F) le nombre de ses points surfixes. Si 'on note E, I'ensemble des escaliers de
taille n, il est alors bien connu (voir [Dul, Du-Fo, Ha, Vi]) que le cardinal de E,, est
le nombre de Genocchi Gan+2, qui peuvent étre définis par leur fonction génératrice :

2 t2 t4 tG t8 t'Zn
=t—— 4 _3b <IN SR O 17 N Sl
et 1 T T I S e T

DuMoNT et FoaTa [Du-Fo] ont introduit une suite de polynémes F,(z,y, z) qui sont
définis par Fi(z,y,2) =1 et

Fn(x7y72) = (I + y)(‘r + ‘z)l'?r't—l(:r + 1,y,z) - 1"2F‘n—-1($7 y,z).

Ils ont montré que ces polynémes sont symétriques dans les variables x, y, z et raffinent
les nombres de Genocchi en ce sens que F,(1,1,1) = Gonqe. On connait plusieurs
interprétations combinatoires de ces polynémes (voir [Dul, Du-Fo, Ha, Vi]), mais il
semble que celle la plus simple, en ce sence que la vérification de la récurrence est
facile, est le résultat de Han (Ha] suivant :

(1) Fu(z,y,2) = Y a™O)yf(F) a(F),
FEE,

De 13, DumONT [Du2] a récemment proposé une extension des polynémes Fo(z,y,2)
de la maniére suivante. Pour un escalier F de taille n, un point (k, f(k)) de F est dit
doublé s’il n’est pas seul sur sa ligne, c’est-a-dire s’il existe j # k tel que f() = f(k).
On note fd F' (resp. fnd F ) le nombre de ses points fixes doublés (resp. fixes non
doublés), sd F' (resp. snd F’) le nombre de ses points surfixes doublés (resp. surfixes
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