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Abstract

A new definition of an /i-vector for cubical polytopes (and complexes) is introduced. It
has many properties in common with the well-known /i-vector for simplicial polytopes.
In particular, it is symmetric, nonnegative and easily computable from a shelling of
the polytope. Lower or upper bounds on its components imply corresponding bounds
on the face numbers.

On introduit un nouveau /i-vectcur defini pour des polytopes (ainsi que pour dcs
complexes) cubiques. Celui-ci possede de nombreuses proprietes enjouics par Ie h-
vccteur habituel des polytopes simpliciaux. Notamment, ce nouveau /i-vecteur cst
symetrique et positif et se calcule facilement a partir d'un effeuillage du polytope. Des
bornes inferieures et superieures pour ses composantes entrainent des bornes pour Ie
nombres de faces.
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1 Introduction

A d-polytope P is the convex hull of finitely many points which afl&nely span Rd. The
intersections of P with its various supporting hyperplanes are its (proper) faces, and are
called vertices, edges or facets if they are of dimension 0, 1 or c?-l, respectively. (The
improper faces are P itself and the empty set. ) A ri-polytope is cubical if all its proper
faces (equivalently: all its facets) are combinatorially equivalent to cubes (respectively, to
(d - l)-cubes).

More generally, let Cd~l be the standard cube (0, l]d-l in Rd-1, and let VQ = vertC'd-1
be its set of vertices. A (finite, pure, abstract) cub'cal (d- l)-complex consists of a finite
nonempty set V together with a (finite) nonempty collection {<^a}a / of distinct injective
maps <I)Q : Vo -> V, such that ^ (^,3(^0)) is the set of vertices of a (proper or improper)
face of Cd~l, for all a, /3   I. The images (under the various maps <^a) of z-dimensional faces
of Cd~l (0 ̂  i <<?- 1) arethe i-faces (or z-cubes) of the complex. The (vertex-sets of)
facets of a cubical d-polytope form a cubical [d - l)-complex.

Now let K be a cubical {d - l)-complex, and let /; be the number of z'-cubes in it
(0 <, i <, d - 1}. Use the convention /_i = 1 to account for the empty set. The vector
(/_i,.. ., fd-i) is known ds the /-vector of A'. Define a cubical /i-vector (/i^ , ..., /i^)
and a corresponding cubical /i-polynomial fi^'(q) for the complex K by

^)(9)=E/l. (CVd£fE/. -. ^(^
J-0i=0

w here

<^>o(9) = 2,. -i !-(-<?) d+l

!+<?
and

^). IM. (>-^;^(-^-' (i,,,, ).
2 !+<?

Define also a short cubical /i-vector (h{o ,..., h(^\) by

/.M=/. !c)+^ (o^^^-i),

or equivalently
d-\

z
:=0

d-l

^.c)(<7) = E^CVd:lf E/. (2<?)J(1 -<7)d-l-J.
J=0

(1)

(3)

(4)

(5)

These definitions are reminiscent of the defining equation for the /i-vector of a simplicial
(d - l)-complex E, which is

^)(9)=E^VdlfE/. -^J(i-?)c'-J.
1=0 ;=o

(6)
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The simplicial /i-vector has some very appealing properties, and has been found to be an
invaluable tool in the formulation and proof of results in the enumerative theory of sim-
plicial convex polytopes. Typical examples are the proof by McMullen [Mci] of Motzkin's
Upper Bound Conjecture [Mo], and the complete characterization result ("McMullen's g-
conjecture") [Mcs] proved by Stanley [Si] (necessity) and Billera and Lee [BL] (sufficiency).
The cubical /i-vector introduced above shares some of these properties, and will hopefully
find appropriate use in the (recently reviving) study of cubical polytopes.

<^'

2 Properties of the Cubical /i-Vector

Let us first collect a few immediate observations.

Lemma 1

Let K be a. cubical (d- l)-complex. Then:

(i) All h[c) (0 < z ^ d) are integers.

w

and

where

(c) ^ r, d-l
t-0 - ^ i

h\c) = /o - 2^-1

/^)=(-2)d-lx(A'),

x(A')=E(-lrl ^-(A')
j=0

is the reduced Eiiler characteristic of A .

(iii) More generally,

/, ic '=(-i)'2d-/-. +Z(-irJ2'-' ^~^fi-> (i

and

(7)

(8)

(9)

(10)

^i^d) (11)

/, -, ^-;Eg:;. )[*ic )^!rt. ] C^-^). (12)

In particular, lower or upper bounds on the ciibical h-numbers imply corresponding
bounds on the f-numbers.

(iv) For the boundary complex of the d-cube:

, (c) _ _^(^)^ 9^-1
I. Q = ... = 11^ - (13)
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The corresponding results for the short cubical A-vector are:

Lemma 2

Let K be a cubical (d- l)-complex. Then:

(i) All hw (0<i^d-l) are integers.

(ii)

and

(iii) Explicitly,

and

^c)(0)-^=/o

^-c)(l)=E^C)=2d-l/. -i.

^c) =^~_\~_ ^ (-1)-2V, (0^ ̂  cf- 1)

f'=2-t^^ {O^J^d-l).

(14)

(15)

(16)

fl7)

(iv) For the boundary complex of the d-cube:

(, c) (, c)(SC, _
t0 = .. . = ll^_^ = " . (IS)

Following is a list of some more profound properties. For general terminology regarding
partially ordered sets, refer to [82, Chapter 3].

Theorem 3

Let K be a cubical (d - l)-comp/ex, and denote by P{K) its lattice of faces a. iigmentecl by
a maximal element. Then:

(i) IfP(K) is semi-Eulerian (e. g., if K is a cubical subdivision of a (d-\)-manifold without
boundary) then its short cubical h-vector is symmetric:

^c)=^-c!-, [O^z^d-l). (19)

(ii) If P{K) is Eulerian (e. g., if K is a cubical subdivision of a {d - l)-sphere) then its
cubical h-vector is symmetric:

^,
(c) 

= /4C ), (0 $ z ^ </). (20)

Equivalently, its short cubical h-vector is symmetric and sa.tisfies the equation

^-c)(-l)=E(-l)'^c)-2d-l+(-2)d-1. (21)
1=0
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(iii) Let Fi,... , Fm bea shelling of the facets of K. Define the t-th shelling step (1 ̂  t < m)
to be of type (00, ^1, 02) ^ out of the d - 1 pairs of antipodal sub-facets (i. e., (d- 2)-
faces) in Ft, exactly a, pairs (i = 0, 1, 2) have i sub-facets in common with the union
^s<tF, of preceding facets in the shelling. Necessarily ao+ai+a^ = d - 1, and either
GI ==a2 =0, ao=ai =0 orai ^ 1. Then

^C)(9)=EA4SC)(9),
(=1

where the contribution of a shelling step of type (ao, 01, 02) is

A<^c)(9)=2ao(l+9)al(2g)a2.

Simila.rly,

^)(9)-EA^C)(9),

(22)

(23)

(24)
(=1

where the contribution of a shelling step of type (ao, (11, 02) is

9-2ao(l+9)al-l(2<?)a2, ^ai^l;
A<^. )(9) = <! 2d-1, Jf(ao^i, a2) = (</- 1, 0, 0);

i/(ao, ai, a2)=(0, 0, ^- 1).
(25)

2d-l<7d,

In particular, the cubica. 1 h-vector of a. shella. ble cubical (c/- l)-comp/ex is nonnega-tive.

Let us also restate, in cubical A-vector terminology, two recent results of G. Blind and
R. Blind. The restatement of Tlieorcm 5 actually reflects part of its original proof.

Theorem 4 [BBi]
A cuhical d-polytopc has at least 2 vertices, so that

^) (c)1C) ^ ^C,
IQ ^ ft) . (26)

Theorem 5 [BB;]
If P is a cubical polytope of an even dimension d > ^ then any shelling of the facets of P
contains an even number of steps of type (0, d - 1, 0). Therefore, all the numbers h\ } and
h(, 3c) (and in particular fo = h{y3c}) are even.

^

3 Generalized Dehn-Sommerville Equations

As an illustration, we shall now prove part (»') of Theorem 3 when /\ is the boundary
complex of a cubical c^-polytope. These equations will be derived from the Generalized
Dehn-Sommerville Equations for polytopes [G]. In fact, one of the (aesthetic) motivations
for introducing definition (5), and subsequently also (1), has been the attempt to rephrase
the Cubical Dehn-Sommerville Equations as a symmetry property like (20), in analogy with
the simplicial case.
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Let P be an arbitrary convex (f-polytope. The well-known Euler relation states that the
reduced Euler characteristic of the boundary of P, which is homeomorphic to a (rf- l)-sphere,
IS

E(-irv. -i(-P)=(-i)'-l.
J=0

(27)

Again, the convention /_i = 1 is to be used here. For an arbitrary (z - l)-face Fi-i of P
(0 < i < d), the link P/F,_i = lkp(F, _i) has the structure of a convex (d - z)-polytope, so
that (upon multiplying by -1)

^(-ir7, -i(-p/^) = (-i)d-. (28)
J=«

Summing over all (i - l)-faces of P (for a fixed z), one obtains the Generalized Dehn-
Sommerville Equations for an arbitrary (^-polytope P:

E(-ir7. -i,, -i(P) = (-i)d-/. -i(p) (o ̂  z < ri). (29)
J=l

(30)

(31)

Here /, -i,j-i is the number of flags F,_i C F, _i where F;_i (7?, -i) is an (i - l)-face (rcspec-
tively, a (j - l)-face) of P.

If P is a simplicial J-polytope then

/-i,. -i(^)= ̂ )^-i(p) (o^^^^)
and one obtains the Slmplicial Dehn-Sommerville Equations:

E(-i)J-'(^/. -i(^) = (-i)'-7, -i(/3) (0 ̂  z ^ rf).
j=, \l,

These are equivalent to the single polynomial equation

^/, -i^(l-<7)d-J=E/. -i(<?-l)d-
j=0 t=0

which, using definition (G), may be stated as

h(3\q)=qdh^(q-1).

This amounts to the symmetry of the simplicial h-vector:

hw = h['l, (O^z^ ̂ ).

Similarly, let P be a cubical J-polytope. Then

(32)

(33)

(34)

^,^(p), {(;:;)9;-7, -, (/'), . fi£-^:£A
"-l'J-n^-l^-ii^, if0=^<j<^, (35)
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and this implies (with a shift in indices) the Cubical Dehn-Sommerville Equations

E^(-2r'Q/, - (-i)d-1-/, (o ̂ ^ ̂ -1);
:^i(-l)J+V; = (-l)d/-i (Euler, z = -1).E

(36)

The last equation is Euler's relation for P. The other d equations may be rewritten as

E(-lrt (; )2J/; = (-1)'-1-127. (0 ^ ^ d- 1), (37)
J^ V,

so that the vector (/o, 2/i, 22/2, . . . , 2<i-l/d-i) for a cubical rf-polytope satisfies the same
linear equations (31) as the vector (/-i, /o, /i, ... 1/^-2) for a simplicial (d- l)-polytope.
This motivates definition (5), leading to the rewriting of (36) as

h(sc\q)=qd-lh^(q-1);
/i(3c)(-l) = 2d-1 + (-2)d-1 (Euler)

or equivalently

h(3c} = h(;l\
E

 

)i- (O^i^d-l);
tol(-l)l^c) = 2d-l + (-2)'-1 (Euler).

Definition (4), together with
(c) ^ ^d-l

'. 0 - ^ i

transforms these equations into the symmetry property

h^ = f& (0 ̂  z < d).

(38)

(39)

(40)

(41)

^

4 Remarks and Open Problems

If u is a vertex of a cubical (d - l)-complex K then the link (or vertex-figure) K/v is a
simplicial (d - 2)-complex. It was observed by Gabor Hetyei [H] that the short cubical h-
polynomial of A' is equal to the sum, over all vertices v of A", of the simplicial /t-polynomials
of Klv:

^-c)(9) = E ̂ -^(9). (42)
u6^

From the known properties of simplicial /i-vectors it thus follows that the short cubical /(-
vector is nonnegative for every locally Cohen-Macaulay (not necessarily shellable) cubical
complex, and is unimodal for the boundary complex of a convex cubical polytope. Similar
properties may be expected for the cubical A-vector.

Question 1: Is it true that
,
(^)hw > 0 (O^i^ d) (43)

for every Cohen-Macaulay cubical (d- l)-complex?
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Question 2: Is it true that

& ̂  ^Sc ) (1 ^ z ^ ^/2)

for the boundary complex of a convex cubical rf-polytope?

(44)

Note that Theorem 4 above provides an affirmative answer to Question 2 for? = 1.

Finally, attention should be payed to a notion of A-vector for general convex polytopes
(in fact, for arbitrary Eulerian posets) that was introduced by Stanley [83]. It is defined
by recursion on the poset elements, is symmetric (for Eulerian posets), and is unimodal for
rational convex polytopes. For (the boundary complex of) the rf-cube, a rather complicated
explicit formula was derived by I. Gessel [83, pp. 193-194]. It is different from our result
in Lemma l(zv) above. See also [C] for a discussion of the impact of shellability on this
/(-vector.

Further research into the various notions of /i-vector for cubical polytopes will doubtlessly
solve some of the current puzzles, replacing them by even more challenging problems.

References

[BBi] G. BLIND AND R. BLIND, Convex polytopes without triangular faces, Israel J.
Math. 71 (1990), 129-134.

[2] G. BLIND AND R. BLIND, Gaps in the numbers of vortices of cubical polytopes /,
J. Disc. and Comp. Geom., to appear.

[BL] L. J. BlLLERA AND C. W. LEE, A proof of the sufficiency of McMullcn's conditions
for f-vectors of simplicial convex polytopes, J. Combin. Theory (Scr. A) 31 (1981),
237-255.

[C] C. ClIAN, Plane trees and h-vectors of shellable cubical complexes, SIAM J. Disc.
Math. 4 (1991), 568-574.

[G] B. GRUNBAUM, Convex Polytopes, Wiley Interscience, New York, 1967.

[H] G. HETYEI, private communication.

[J] W. JOCKUSCH, The lower and upper bound problems for cubical polytopes^ J. Disc.
and Comp. Geom. 9 (1993), 159-163.

[Mci] P. McMULLEN, The maximum number of faces of a convex polytope, Mathematika 17
(1970), 179-184.

[Mcz] P. McMULLEN, The numbers of faces of simplicial polyiopes^ Israel J. Math. 9(1971),
559-570.

[Mo] T. S. MOTZKIN, Comonotone curves and polyhedra. Abstract 111, Bull. Amer. Math.
Soc. 63 (1957), p. 35.



^

[Si]

[S2]
[Ss]

R. P. STANLEY, The number of faces of a simplicial convex polytope, Adv. in Math. 35
(1980), 236-238.

R. P. STANLEY, Enumerative Combinatoncs (Vol. I), Wadsworth, Monterey, 1986.

R. P. STANLEY, Generalized h-vectors, intersection cohomology of toric varieties,
and related results, in: Commutative Algebra and Combinatorics (M. Nagata and
H. Matsumura, cds. ), Advanced Studies in Pure Math. 11, Kinokuniya, Tokyo, and
North-Holland, Amsterdam/New York, 1987, pp. 187-213.

^

-9-


