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Abstract

A new definition of an h-vector for cubical polytopes (and complexes) is introduced. It
has many properties in common with the well-known h-vector for simplicial polytopes.
In particular, it is symmetric, nonnegative and easily computable from a shelling of
the polytope. Lower or upper bounds on its components imply corresponding bounds
on the face numbers.

On introduit un nouveau h-vecteur défini pour des polytopes (ainsi que pour des
complexes) cubiques. Celui-ci possede de nombreuses propriétés enjouies par le h-
vecteur habituel des polytopes simpliciaux. Notamment, ce nouveau h-vecteur est
symétrique et positif et se calcule facilement a partir d’un effeuillage du polytope. Des
bornes inférieures et supérieures pour ses composantes entrainent des bornes pour le
nombres de faces.

*Research supported in part by the Israel Science Foundation, administered by the Israel Academy of
Sciences and Humanities.
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1 Introduction

A d-polytope P is the convex hull of finitely many points which affinely span R¢. The
intersections of P with its various supporting hyperplanes are its (proper) faces, and are
called vertices, edges or facets if they are of dimension 0, 1 or d — 1, respectively. (The
improper faces are P itself and the empty set.) A d-polytope is cubical if all its proper
faces (equivalently: all its facets) are combinatorially equivalent to cubes (respectively, to

(d — 1)-cubes).

More generally, let C4~! be the standard cube [0,1]4"! in R%"!, and let V, = vert C¢-!
be its set of vertices. A (finite, pure, abstract) cubical (d — 1)-complex consists of a finite
nonempty set V together with a (finite) nonempty collection {@4}aer of distinct injective
maps @, : Vo — V, such that ¢;'(¢s(Vo)) is the set of vertices of a (proper or improper)
face of C4~1, for all @, B € I. The images (under the various maps @) of i-dimensional faces
of C%"1 (0 < i < d—1) are the i-faces (or i-cubes) of the complex. The (vertex-sets of)
facets of a cubical d-polytope form a cubical (d — 1)-complex.

Now let K be a cubical (d — 1)-complex, and let f; be the number of i-cubes in it
(0 <17 <d—-1). Use the convention f_; = 1 to account for the empty set. The vector
(f-1,-.., fd=1) is known as the f-vector of K. Define a cubical h-vector (h h(c))

and a corresponding cubical h-polynomial h,\— (¢) for the complex K by

h(’\c( ) Zh(c) ;def Zf] 1¢J (1)

1=0

where , day
dola) = 2120 &
e , (2¢) (1-q)*"7 +q(-2¢)% :
1 e T+ ¢ (1=j=d). (3)
Define also a short cubical h-vector (A9, ..., h{9) by
RO =hD 1B (0<i<d-1), (4)
or equivalently
R (g Zh(sc) i def Zfl Q)11 5)

These definitions are reminiscent of the defining equation for the h-vector of a simplicial
(d — 1)-complex X, which is

h(q) = Zh(’) = Zf; g’ (1= q)*. (6)

1=0 1=0
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The simplicial h-vector has some very appealing properties, and has been found to be an
invaluable tool in the formulation and proof of results in the enumerative theory of sim-
plicial convex polytopes. Typical examples are the proof by McMullen [Mc,] of Motzkin’s
Upper Bound Conjecture [Mo], and the complete characterization result (“McMullen’s g-
conjecture”) [Mc,] proved by Stanley [S;] (necessity) and Billera and Lee [BL] (sufficiency).
The cubical h-vector introduced above shares some of these properties, and will hopefully
find appropriate use in the (recently reviving) study of cubical polytopes.

2 Properties of the Cubical h-Vector

Let us first collect a few immediate observations.

Lemma 1
Let K be a cubical (d — 1)-complex. Then:

(i) All h{) (0 < i < d) are integers.
(1)

}éc) _ 2d—1’ (7)
B = f — 2% (8)
and
B = (=2)4 (K, 9)
where )
x(K) = Z()(—l)j—lfj—l(l\) (10)

is the reduced Euler characteristic of I\
(ii1) More generally,
(c) igd—1 i i—joj-1 = fd 2= :
RO = (—1)y 2t + (-1 Y B fioi (1<i<d)  (11)
1=1 k=0
and

] : d—1 c c .
fi-1 =2"12<d_j> h9+h2] (<5< (12)
=1

In particular, lower or upper bounds on the cubical h-numbers imply corresponding
bounds on the f-numbers.

(iv) For the boundary complex of the d-cube:

R = =l =24t (13)
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The corresponding results for the short cubical h-vector are:

Lemma 2
Let K be a cubical (d — 1)-complex. Then:

(i) ALA® (0<i<d- 1) are integers.
()

AE(0) = B9 = fo (19)
and
d-1
W) = T AP =i, (15)
=0
(ii1) Explicitly,
 fd=1=j i
hf“’:Z( ?)(-1)*-1213 (0<i<d-1) (16)
= d—1-1
and _
i (A 1=1) (o : 7
fi=27% | by (0<j<d-1). (17)
1=0 d =1 =J

(iv) For the boundary complex of the d-cube:

RS = = hl) = o4, (18)

Following is a list of some more profound properties. For general terminology regarding
partially ordered sets, refer to [S,, Chapter 3].

Theorem 3 )
Let K be a cubical (d — 1)-complex, and denote by P(K) its lattice of faces augmented by
a maximal element. Then:

(i) If P(K) is semi-Eulerian (e.g., if K is a cubical subdivision of a (d—1)-manifold without
boundary) then its short cubical h-vector is symmetric:

R =l (0<i<d-1). (19)

(i) If P(K) is Eulerian (e.g., if K is a cubical subdivision of a (d — 1)-sphere) then its
cubical h-vector is symmetric:

K =hl (0<i<a). (20)

Equivalently, its short cubical h-vector is symmetric and satisfies the equation

d-1
R (—1) = 3o (—1)'AL = 2471 4 (~2)* T, (21)

1=0



(iii) Let Fy, ..., F,, be a shelling of the facets of K. Define the t-th shelling step (1 < t < m)
to be of type (ao, a1, az) if, out of the d — 1 pairs of antipodal sub-facets (i.e., (d — 2)-
faces) in Fy, exactly a; pairs (1 = 0,1,2) have ¢ sub-facets in common with the union
U,<t F, of preceding facets in the shelling. Necessarily ap + a1 + a; = d — 1, and either
ay=ay;=0,a0=a, =0o0ra; > 1. Then

ZAMM ) (22)

where the contribution of a shelling step of type (ao,ay,az) is
Adhig?(g) = 2°(1 + )" (29). (23)

Similarly,
1 (g ZAM” (24)

where the contribution of a shelling step of type (ao, a1, az) is

g-2°°(1 + q)*~'(29)%2, ifay > 1;
(q) 2d 1 if (ao,al,ag) (d o 1 0 0) (25)
2d 1 d 1[ (ao,al,ag) (0 0 d )

In particular, the cubical h-vector of a shellable cubical (d—1)-complex is nonnegative.

Let us also restate, in cubical h-vector terminology, two recent results of G. Blind and
R. Blind. The restatement of Theorem 5 actually reflects part of its original proof.

Theorem 4 [BB,]
A cubical d-polytope has at least 2¢ vertices, so that

R < B, (26)

Theorem 5 [BB,]
If P is a cubical polytope of an even dimension d > 4 then any shelling of the [acets of P
contains an even number of steps of type (0,d — 1,0). Therefore, all the numbers h ) and

h*?) (and in particular fo = h&) are even.

3 Generalized Dehn-Sommerville Equations

As an illustration, we shall now prove part (iz) of Theorem 3 when K is the boundary
complex of a cubical d-polytope. These equations will be derived from the Generalized
Dehn-Sommerville Equations for polytopes [G]. In fact, one of the (aesthetic) motivations
for introducing definition (5), and subsequently also (1), has been the attempt to rephrase
the Cubical Dehn-Sommerville Equations as a symmetry property like (20), in analogy with
the simplicial case.



Let P be an arbitrary convex d-polytope. The well-known Euler relation states that the
reduced Euler characteristic of the boundary of P, which is homeomorphic to a (d—1)-sphere,

1S
d

> (=17 fima(P) = (1) (27)

=0
Again, the convention f_;, =1 is to be used here. For an arbitrary (i — 1)-face F;_; of P
(0 <7 < d), the link P/F;_; = lkp(Fi_,) has the structure of a convex (d — i)-polytope, so
that (upon multiplying by —1)

d

Y (=1Y 7 fimim(P/Fiy) = (-1)*. (28)

1=t

Summing over all (¢ — 1)-faces of P (for a fixed ), one obtains the Generalized Dehn-
Sommerville Equations for an arbitrary d-polytope P:

d
S (-1 ficjaa(P) = (1) fia(P)  (0< i< d). (29)
Here f;_, ;-1 is the number of flags F;_; C F;_; where F;_; (Fj-1) is an (z — 1)-face (respec-

tively, a (j — 1)-face) of P.
If Pis a simplicial d-polytope then

fimtir(P) = (j)fj_l(P) 0<i<i<d) (30)
and one obtains the Simplicial Dehn-Sommerville Equations:
d .
Sy (1) falP) = (-0 f(P) 05 i<) G1)
j=1
These are equivalent to the siﬁgle polynomial equation
d . - d x
2 find(l=q)* 7 =3 fin(g = 1)* (32)
7=0 1=0

which, using definition (6), may be stated as
R9(q) = ¢*ht) (™). (33)
This amounts to the symmetry of the simplicial A-vector:

Y =he)  (0<i<d), (34)

Similarly, let P be a cubical d-polytope. Then

(T2 o (P), ifL1<i<<d;

f;-l.j—l(P):{fj_l(p)’ f0=1<) £4d,
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and this implies (with a shift in indices) the Cubical Dehn-Sommerville Equations

{2?3( () f; = (F1E G (0 <d-1); -
DI (1P = (<1 (Buler,i = 1),

The last equation is Euler’s relation for P. The other d equations may be rewritten as

S ()en=oo-rs sisdon, =

=i

so that the vector (f0,2f,,22f2,...,2d“1fd_1) for a cubical d-polytope satisfies the same
linear equations (31) as the vector (f-1, fo, f1,- -, fa—2) for a simplicial (d — 1)-polytope.
This motivates definition (5), leading to the rewriting of (36) as

h(sc)( ).__ d— lh(ac)( ),
{h(”)(q 1) = 26- 1+(q 2)¢-!  (Euler) (28)

or equivalently

{M”& - (0<i<d-1) (39)
(=1)'h (59 — 9é-1 4 (_2)4-1  (Euler).
Definition (4), together with
i) = 9d-1, (40)
transforms these equations into the symmetry property
R =r{) (0<i<d). (41)

4 Remarks and Open Problems

If v is a vertex of a cubical (d — 1)-complex I then the link (or vertex-figure) K'/v is a
simplicial (d — 2)-complex. It was observed by Gabor Hetyei [H] that the short cubical k-
polynomial of /" is equal to the sum, over all vertices v of K, of the simplicial ~-polynomials
of K/v:

A (a) = 3 hid)ula) (42)

veV

From the known properties of simplicial h-vectors it thus follows that the short cubical A-
vector is nonnegative for every locally Cohen-Macaulay (not necessarily shellable) cubical
complex, and is unimodal for the boundary complex of a convex cubical polytope. Similar
properties may be expected for the cubical h-vector.

Question 1: [s it true that
BY>0  (0<i<d) (43)
for every Cohen-Macaulay cubical (d — 1)-complex?
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Question 2: Is it true that
M <kl (1<i<df2) (44)

for the boundary complex of a convex cubical d-polytope?

Note that Theorem 4 above provides an affirmative answer to Question 2 for z = 1.

Finally, attention should be payed to a notion of h-vector for general convex polytopes
(in fact, for arbitrary Eulerian posets) that was introduced by Stanley [S;]. It is defined
by recursion on the poset elements, is symmetric (for Eulerian posets), and is unimodal for
rational convex polytopes. For (the boundary complex of) the d-cube, a rather complicated
explicit formula was derived by I. Gessel [S;, pp. 193-194]. It is different from our result
in Lemma 1(7v) above. See also [C] for a discussion of the impact of shellability on this
h-vector.

Further research into the various notions of h-vector for cubical polytopes will doubtlessly
solve some of the current puzzles, replacing them by even more challenging problems.
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