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ABOUT HOCHSCHILD HOMOLOGY

NANTEL BERGERON

ABSTRACT. We present here two recent results involving Hochschild homology. The first
one, with H. L. Wolfgang (and independently by M. 0. Ronco), is a characterization of
the componenla of the decomposition of Hochschild (co)homology for commutative algebras
over a field of characteristic zero. More precisely, for Hn(A, M) = @kIIk'"~k(A, M), we
show that

Hk-n-\A, M) = ^"(Sh;(A, M)/sh.t+l(A, M)),
where Sh;(A, M) = Homr(Shi A®", Af) and Sh^ C Q[5n] is the ideal of ifc-shuffles. This
characterit&tion permit ua to show some conjectures of Gerstenhaber and Schack. The
second rcaull, with D. B&r-Nathaa, is the computation of ̂ l'"-l(^. ) of a certain simplicial
object A.. This is motivated by the ideas of Drinfel'd stating that the obstructioD to the
construction of the Vaaailicv knots invariants is in H1'3(A^). We show that ffl'3(^. ) =
0. Hence one can construct the Vassiliev mvariants using a combinatorial (and algebraic)
argument. This avoids the use of the Kontsevish mtegrals and the Knizhnik-Zamolodchaikov
coaneclion.

R^SUM^. Nous pieaentons deux resultats lies a 1'homologie de Hochschild. Le premier,
ca collaboration avcc H. L. Wolfgang (et independamment par M. 0. Ronco), est une car-
acKrisAlion dea compoeantcs de la decomposition de 1'homologie de Hochschild d'une algebre
commutalive sur un corps de caracteristique zero: pour H"(A, M) == QiHk'n~k(A, M), nous
montrona que

Hk-n-k(A, M) = ff"(Sh;(A, M)/sh;+l(A, M)),
ou Sh;(A, M) = Homr(Sh;A®",M) et Sh^ C Q[Sn] eat 1'ideal des Jk-melanges. Cette
caracterisalion nous a permis de demontrer quelques conjectures de Gerstenhaber et Schack.
Lc second resultal, en collaboration avec D. Bar-Nathan, est Ie calcul de Hl-n~l(A. ) pour
un certain objet simplicial A.. Ceci est motive par les idees de Drinfel'd qui nous donaent
quc 1'obstruction a la construction des mvariants de Vassiliev sur les noeuds est contenue
dans H1-3(A. ). Nous moatroas que H1'3(A, ) = 0. Les invariants de Vassiliev peuvent done
etre construita par dcs methodes combinatoires (et algebriques). Ceci permet de coatourner
1'utilisation des integr&Ies de Koatsevish et des conaections de Knizhnik-Zamolodchnikov.
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1. ON THE DECOMPOSITION OF HOCHSCHILD HOMOLOGY

Let A be a commutative algebra over F, and M a symmetric A-bimodule. Define <8n.4 =
A®Awn, where all tensors are taken over F. This can be viewed as a symmetric A-bimodule
by multiplication on the left A factor. Let Sn denote the symmetric group on n elements.
and let Q[<?n] denote the group algebra. We define a (left) action of Q[5n] on r8^A by letting
(7 £ <?n act on (00, 01, 02,... , Gn) e fSnA by (ao, a^-i, a^i,... , a^i). We have that (S. A is
a complex with boundary map 9 = 9n : fB^A -^ <Bn-iA,' given by

9n(a, ai,..., an) = (aai, 03,... , On)+
n-1

^(-l)'(a, ai,... , a,-a,+i,
t=l

0+

(-l)"(ana, ai,... , 0n_i).

Since A is commutative and M is a. symmetric A-bimodule, it follows that H. (A, M) is the
homologyof<BA®^M, andfi'*(A, Af) is the homology ofHom/((<B. A, A/) S HomF(A®", M)
(See [1, 10, Uj). we_write ̂ . (A, M) = <B. A (g»^ M, ~and C-(A, Af) = Homr(A®",'M). Note
that C'o(A, M) and C°(A, M) can be identified with M in a natural way, and 9i = 0 implies
that Ho{A, M) ̂  H°(A, M) ̂  M.

Let ew be the Eulerizin idempotents defined by
^ ^
^ewxk=^ E(a;+<f(<r))(a-+^)+l)---(a-4-(/(a)+n-l)sgn(a)a,
k=l "GSn

where cf(o-) = Card{i:o-. > o-.+i) is the number of descents of a. The Eulerian idempotents
eW appear in two different forms in the literature. The first form, that we denote 7^,
appears in [4, 7, 8, 17, 21]. They are defined by ' ----- .n

n

E/?w3;fc=^ T, ^+d{o-))(x+d(a)+l)... (x+d(a)+n-l)a.
fc=l ".. <T Sn

It is shown that the pW are projections into the direct summands of the symmetric powers
of the free Lie algebra. In the second form the e^ defined above, are the image of the p[k}
UDder the automorPhism 6'- Wn} -^ Q[<?n] defined by 6{a) = sgn(a)<7. They' are used In
[1, 10, 12, 13] and are the ones of primary interest to us.

In [8] we find that

(1. 1) ;d=pW+pW+... +pW
(L2) ^)^") = ^-^),
where/:{ =.° ifl t .7',and z if'= J- That is'the pware orthog°°al idempotents. Let Lie{^}

the free Lie algebra on the generators A = {a,, a^ ... ", a/} and let Q{\4) denote t'he
associative algebra generated by A. The Poincare-Birkhoff-Witt theorem states that

^{A) ̂  5(Lie{^}),
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where 5"(Lie(-4)) denotes the symmetric powers of L'ie{A). If we set the rank of the elements
of ̂  to be 1, then the algebra Q{-4) and S(Lie{A}) are both naturally graded

Q(-4)=eQ "(^},
n>0

S(L\e{A}) == @Sk(Lie{A}) =^@S^Lie{A}),
k>0 A;>0 n>0

where 5^(Lie(^4)) is the total degree n component of the ktb. symmetric power of Lie{A).
One of the main results of [8] is that p^ is an idempotent such that

(1. 3) Qn{A}pW ̂  Sk^L\e{A}).
The properties (1. 1) and (1. 2) then follow from (1. 3). We should also note that the characters
of the 5'n-module Q[*?n]p^) have been computed by Bergeron, Bergeron and Garsia in [4]
and independently (for Q[5n]e^) in [12].

If we translate to the e^ the above results, we get statements for super-Lie algebras [20]1.
Moreover we have [10, 13]

9Ak) = e^9n.
Combined with the identities (1. 1) cind (1. 2) for the e^, we have that

<B. A = ®fccW<B.A

is a splitting. That is, the ewfS. A are subcomplexes. This shows:

Theorem 1. [10, 13]
^(A, M)=®^^_fc(A, M),

Hn{A, M)=QkHk'n-k{A, M),

where

H^-k{A, M) = eW^(A, M)=^(eW<B. A®AM),
Hk-n-k{A, M) = eW^"(A, M)^^(HomF(eWA®-, M)),

Ho.o(A, M) = ^o(A, M), and H°'°(A, M} = H°(A, M).
This splitting is the finest possible for a general commutative algebra A.

Let us also recall an alternative expression for the e^ that will be useful later on. For
this we define a composition of n as a ^-tuple of positive integers, p = (pi, p2,. . . , pfc), such
that pi +p^+--- + pk = n. We refer to k as the number of parts of p, and we denote

this number by K(p). We will use the shorthand p |= n for "p is a composition of n. " For

1 In the literature, (e. g. [19]), these are sometime called graded Lie algebras. To avoid confusion with the
fact that the usual Lie algebras might be graded as-well, we prefer not to use this notation.

^ -25-



NANTEL BERGERON

o-   <?n, we define the descent set of a as D{a} = {i : a, > <7;+i), and for p ^= n, we define
5(P) = {Pl, Pl +P2,... ,Pl +p2 +---+pjk-i). Let p |=n, let

^= E ^   Q[^]
D(a)CS(p)

and let Xp == OXp. Let us write L{^ for the coefficient of tm in the expansion of (log(l + Q)*.
We note that L(^ = 0 unless m ^ fc. We have [8]

pw = z ̂ , ^.
p\=n

This implies

(1. 4) 4t) - E ̂ , ^.
p^n

In the following, we refer to the element Xp as the p-shuffles. The name shuffle is motivated
by the fact that when Xp acts on <BnA we actually shuffle the entries 1, 2, ..., n.

Example 2.

^(2, 2). (ao, ai, a2, 03, 04) = (00, 01, 03, 03, 04) + (00, 01, 03, 02, 04) + (00, 01, 03, 04, 02) +
(ao, 03, 01, 03, 04) + (00, 03, 01, 04, 02) + (00, 03, 04, 01, 02).

We will make use of the following notations:

^p. (ao, ai, a2,... , a^) = ao ® (ai . . -a?, ujap, +i . . . Gp, +p, a. ... iuap, +... +p, _, +i ... an)

Xp. (ao, ai, a2,... , an) = ao® (ai . . . ap^ZS'api+i ... a^+^'S; ... "Sap, +...+p^_, +i ... On).
As the notation suggests, we can define uu and "S as binary associative operations on

A®", which we will call the shuffle and signed shuffle operations. (By convention, we take
W^0 = 0UJW = W"u70 = 0Tj3"w = iy.) Moreover, the shuffle operation is commutative, and

the signed shuffle operation is signed-graded commutative. That is U] ... Un, ^u>i ... u-n =
(-l)m"Wi... Wn^Ui... U^.

Let Sh^ = Q[Xp<7 : /c(p) = fc, o- e <?"]. We note that

s^+l c sh^
since a (/ + l)-shuffle can be expanded as a linear combination of /-shuffles. Moreover, we
have the interesting fact that the map 5 is a derivation for the signed shuffles.

Proposition 3. (see [14])

5(ao<g>(ai---a;"u7a, +r--an)) == 3(ao ® (ai ... a;))m(a, +i . . -On) +
(-l)'(ai... a;)Tr3(ao ® (a. +i ... On)).
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This implies that
3Sh^(A)CSht, (A),

where Sh^(A) = Sh^ <BnA. Hence Sh^(A) are subcomplexes of (BnA indexed by k such that

(B. A = Shi(A) D Sh^(A) 3-Sh^A) D ....

In particular we have that Sh^(A) (2>A M and Sh^(A, M) = HomA(Sh^(A), M) ^
HomF(Shi A®n, M) form chains of included subcomplexes. The main result of this section is
the following theorem. This was independently proved by Ronco [18].

Theorem 4.

(1. 5) ^.^(A, M) = ^(S^(A)^M/s^(A)®^M),
(1. 6) Hk'n-k{A, Af) = ^(Sh^(A, M)/sh^(A, M)),

This will be an immediate consequence of our next theorem.

Theorem 5.

)//,n-. (A, M) = ^(^. (A, M)/sh^(A)®^M),

)Hk'n-k{A, M) = ^(^(A, M)/S^I(A, M)),

r=l

k

r=l

(1. 7)

(1. 8)

Proof: We first show that

(1.9) Sh^+l=ker^^
in Q[^n]. From this it will follow that

[^e^)C. (A, M) = C-. (A, M)/sh^i(A)®^M,
i, r=l

S;e^)c-(A, M) = C''(A, M)/s^(A, M).
-r=l

and the theorem will be proved. To show (1. 9), we will need a lemma from [8]:

Lemma 6. [8] If p\=n and /c(p) > r then p(^)Xp = 0.

This gives us that e^r)Ap = 0 if /c(p) = k + 1 and r ^ fc. Heuce
k

ShwCker^^)).
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E4r))=Im

since the e^ are orthogonal idempotents and e^+- . . +e^") =1. So to get equality in (1. 9).
it suffices to show that e^) 6 Sh^+l for s ^ k + 1. But this follows easily from (1.4) since
L{^ = 0 unless K. (p) >^s>.k+l. D

Remark 7. Loday [13] shows that the decomposition of Theorem 1 is valid for ajiy functor
A°P -+ F- Module which factors through the category Fin/ of the sets [n] = {0, 1, 2,... , n)
with morphism /: [n] -» [n] such that /(O) = 0. Theorem 4 relies only on the identity (1. 9).
If we let Q[Fin/] be the algebra of morphisms of Fin', the identity (1. 9) was shown inside
Q[^n] c Q[Fin/]. Hence Theorem 4 is also valid for any functor Aop -> F - Module which
factors through the category Fin'.

We close this section, stating some of the results we can prove using Theorem 4. Some
of these results were conjectured in Gerstenhaber and Schack [11]. For /   Cn(A, A) and
g 6 Cm(A, A), define / U 5   C'n+m(A, A) by

/ U g{ai.. . a^+n, ) = /(ai. .. <in)5f(an+i . . . On+m).

This defines a signed-graded commutative product [9] on J7*(A, A), i.e. if /" G Hn(A, A}
and gm   Jfm(A, A), then fn U gm = (-l)nmgm U /". GerstenLaber also defines, for /" e
Cn(A, A) and gm   C"n(A, A) a composition product fn ogrn   Cn+m-l(A, A), as follows:
For i = 1,... , n, let

(/no. firm)(ai,... , an+m-i)=/"(ai,... , a,_i, ^m(a,,... , a;+^_i), a.+^,... , Qn+^_i).

If m = 0, the above definition holds, with gm() interpreted as a fixed element of A. and
if n = 0, /" o, gm is defined to be 0. Then let fnogm = E?=i(-l)('-l)(m-l)/" o, gm. As

Gerstenhaber points out, if / and ̂  are cocycles, then fog needs not be a cocycle. However,
defining [fn, gm] = fn ogm - (-i)("-D("-i)^m^n y^^ ^ well-defined Super Lie product on

the cohomology. Note that the grading is by degree, which is the dimension -l, i. e.

[/n^m]=-(-l)(n-l)(m-l)[^m, /n].

Let J, = ©r>,;-^*'r(A, A). Gerstenhaber and Schack [10] show that J'i is ai\ ideal of
J/'*(A, A) for the cup product by exhibiting it as the kernel of a natural map H'(A, A) -->
HCE{AfA}- In [11]» they conjecture that ^~, gives a decreasing filtration of H'{A, A) by
ideals for the cup product, possibly with .Fp U ^~g C .T-p^,. In fact, we can show this using
Theorem 4 and a generalization of the method of [10, 11]. Furthermore, we can show that
the J, are ideals for the Lie bracket and [^~p, ^] C 7y^. We can also use Theorem 4

-28-



ABOUT HOCHSCHILD HOMOLOGY

to compute the homology Hk'n~k(A, A) for A = Q[a;i, a:2,.. . ]/^(2) where J(2) is the ideal
generated by polynoinials of degree 2. This example can be used to show that in general

^2-°(A, A) U H2'°(A, A) g ^4-°(A, A).

This means that the cup product is not bi-graded in- general.

2. VASSILIEV KNOT INVARIANTS

Knots invaxiants of finite type (Vassiliev invariants) are known to be at least as powerful as
the Jones polynomial and its generalizations from quantum groups. As Vassiliev invariants
are much easier to define and mzmipulate ihas. quantum group iuvariants, it is likely that
they will play a more fundamental role than the various knot polyiiomials.

Any numericzd knot invariant V can be inductively extended to be aji invariant V('m^ of
immersed circles that have exactly m transversal self intersections using the formulas

y(o) ̂  ^ y(m) (r \/ \ ^ y(m-l) ^ \^ ^ _ y(m-l) ^ \^ ^

We caji think of the equation above as the definition of the mth partial derivative of a knot
invariant in terms of its (m - l)st partial derivatives. In a knot projectiou there caji be many
crossings, and so one can differentiate w\th respect to mdny different vaiiables. A Vzissiliev
invariant is one for which y(m+1) = 0 for some m >: 0. If V(m) ^ 0 and V(m+1) = 0, we
say that the invaricint is of type m. One fundamental question in knot theory is: is there a
Taylor tbeorem! In other words, do Vassiliev invariants separate knots.

We do not address the question above. We concentrate our investigation on the construc-
tion of Vassiliev invariants. hi [2], D. Bar-Natcin showed how Kontsevish [personal commu-
uication] coustructed {integrated) the Veissiliev invariajits from its (constant) weight systems
over R (mth derivative) using Knizhnik-Zamolodchnikov connection. This construction uses
rather sophisticated integrals with values in an associative algebra of graphs.

Sparked by the work of Piunikhin [16], helped by the ideas of Drinfel'd [5, 6], D. Baj-Natan
[3] developed a construction of the Vassiliev invariajits which is combinatorial and algebraic.
He reduced the problem to the computation of H1V3(A) for A a specific simplicial object.
We were left showing that Hl'3(A) = 0.

More precisely, let G]^3 be the set of graphs with vertices of degree 1 and 3, with an
orientation on each vertex of degree 3, and with u labeled vertices of degree 1. Below is an
example of a graph in G^ .

'^

^
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Let Gu = FG'^'3/3 be the F-module spanned by G^'3 modulo the ideal 3 generated by the
locaJ relations on graphs depicted ELS follows (see [2]):

. ° +-4- X an<l
-^

Y
Letting <Su act by permutation on the u labels of the graphs in G"^, '3, we have a structure of
<?u-module on Qu. Notice that ©u>o^u is a graded algebra.

Consider now the F-module (Fn )u. We have a <?" on this space by letting (vi , 1^2,... , fu )o- =
(v<,, ,u<,,,... , u^). Let 5»,u = (Fn )"/<?" be the F-module (Fn )u modulo the action of S^. \\'c
put on B« a structure of symmetric (co)-simplicial objects (i. e. a functor A -* F-module
that factors through Fin/) as follows. Let 61: B^, u -* ̂ n+i, u be defined by <?. (i>i,. .. , t^) =
(5, ui,... , £,Vu) where for the standard basis {ei, ea,... , Cn} of F" we have

ej

Simildrly, one defines s, : Bn.v

ifj<t,
^. (ej) = ^ e. +e«+i if J = »,

^ej+i iij>i.

-8n-i, u with

£j if j <i,
s.-(ej)=^0 ifj=t,

^ej_i ifj>i.

The simplicial objects we are concerned with are An = ©u>o ̂u ®F Sn. u, and we want to
show that Hl'n-l(A^ =0for n ^ 2.

To this end, notice first that An is a graded zdgebra (ranked by u) and the maps 6, and s,
preserve the degrees. Heuce H^(A^ = @^oH^(A^), where An, ^ = Q, ®p B^. Second,
notice that An,^ is of the form (^-module) (gp B^- This will follow, if we can show that
Hl'n~l(R\ ®F -S. u) = 0 for n ^ 2 and for any irreducible <Su-module R),. Since the right
regular ̂ u-module R contains every irreducible <?u-module R\, it is enough to show that
Hl'n-l{R ®F 5. ^) =0 forn > 2. Now, we have

^®F^,̂ (Fl)u.

Using Kunneth formula and Eilenberg-Zilber Theorem [14], we have

jf"(Ft )®" ^ ^-"((r)®") ̂  zfn((r)u]
where the isomorphism from left to rig^ht is given by the map [/ij 0 (/i;] (g) ... ® [/^] -»
[hi-^h^ . . . '^'h^] From theorem 4, it is clear that Jf1 '"-1 ((P)u) =0 foru ^ 2. We are

left with proving the result for u = 1. But in this case it is easy to check that //"(P) == 0
for n ^ 2. We have proved:
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Proposition 8. Hl'n-l{A. ) =0 forn^2.

Remark 9. Although we have concluded our program, we would like to point out that
the construction of Vassiliev invariants depends on direct computations in H1'2{A. ). The
vanishing of Jfl>3(-4») garantles our computations will succeed but this may be very difficult.
To avoid this [2], one caji compute in Hl'2(A'^, where -4/. are simpler simplicial objects
described below. But for this, one would need to show that H1'3(A'^ = 0. This is a
beautifull combinatorial problem to look at.

Let A'n = ^{ti, j '. I ^i <J ̂  n}/^' where 3' is the ideal generated by the elements

[ti, j, tk, i] and [t,, k + tj, k, tij},

with i, j, k, I distinct and [,, 5] = fg - gf. For simplicity, we have assumed that tij = (j, ; in
the defining relations of 7 above.

Let

S{tk,i =

tk,l
tk, i + tk,i+l

tk, I+l

if / < z,
if / = i,
ifA;< z < /, Silk,: = ^

<«,;+i + ^'+i, '+i if A; = i,
tk+i. l+i if i < k,

tk,l
0

tk, l-l
0

if / < z,
if / = z,
if k <i <l,

ifk=i,
tk-i, t-i if i < k,

aiid extend these maps algebraically to A^. We leave it to the reader to check that <$, and
3; are well defined.

Conjecture 10. H1'3{A[) = 0 !
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