ABOUT HOCHSCHILD HOMOLOGY

NANTEL BERGERON

ABSTRACT. We present here two recent results involving Hochschild homology. The first
one, with H. L. Wolfgang (and independently by M. O. Ronco), is a characterization of
the components of the decomposition of Hochschild (co)homology for commutative algebras
over a field of characteristic zero. More precisely, for H"(A, M) = @ H*"~%(4, M), we
show that

HE YA, M) = H™ (Shi(4, M) [shF+1 (4, M),

where Sh¥(A4, M) = Homy(Sh! A®"”, M) and ShE C QIS,] is the ideal of k-shuffles. This
characterization permit us to show some conjectures of Gerstenhaber and Schack. The
second result, with D. Bar-Nathan, is the computation of H'"~1(4,) of a certain simplicial
object A.. This is motivated by the ideas of Drinfel’d stating that the obstruction to the
construction of the Vassiliev knots invariants is in H'3(4.). We show that H!3(4.) =
0. Hence one can construct the Vassiliev invariants using a combinatorial (and algebraic)
argument. This avoids the use of the Kontsevish integrals and the Knizhnik-Zamolodchnikov
connection.

RESUME. Nous présentons deux résultats liés a ’homologie de Hochschild. Le premier,
en collaboration avec H. L. Wolfgang (et indépendamment par M. O. Ronco), est une car-
actérisation des composantes de la décomposition de ’homologie de Hochschild d’une algébre
commutative sur un corps de caractéristique zéro: pour H"*(A4, M) = & H*"~¥(A, M), nous
montrons que

Hk,n—k(A, M) = H® (Shf(A! M)/Shf+1(A’ M))’

ou Shi(A, M) = Homp(Sh! A®", M) et Sh: C Q[S,] est I'ideal des k-mélanges. Cette
caractérisation nous a permis de démontrer quelques conjectures de Gerstenhaber et Schack.
Le second résultat, en collaboration avec D. Bar-Nathan, est le calcul de H'"~(A.) pour
un certain objet simplicial A.. Ceci est motivé par les idées de Drinfel’d qui nous donnent
que |'obstruction a la construction des invariants de Vassiliev sur les noeuds est contenue
dans H'3(A.). Nous montrons que H'3(A,) = 0. Les invariants de Vassiliev peuvent donc
étre construits par des méthodes combinatoires (et algébriques). Ceci permet de contourner
I'utilisation des intégrales de Kontsevish et des connections de Knizhnik-Zamolodchnikov.
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1. ON THE DECOMPOSITION OF HOCHSCHILD HOMOLOGY

Let A be a commutative algebra over F, and M a symmetric A-bimodule. Define 8,4 =
A® A®", where all tensors are taken over F. This can be viewed as a symmetric A-bimodule
by multiplication on the left A factor. Let S, denote the symmetric group on n elements.
and let Q[S,] denote the group algebra. We define a (left) action of Q[S,] on B, A by letting
o € S, act on (ao,a1,az,...,a,) € B, A by (ao, Ay, 8oty ya,-1). We have that B.A is
a complex with boundary map 8 = 8, : B, A — B,_, 4, given by

On(a,a1,...,a,) = (aay,ay,...,a,)+
n-1
Z(—l)‘(a, Gy =0 5 BT 55 505) F
=1
(-1)*(ana,ai,... y@n_1).

Since A is commutative and M is a symmetric A-bimodule, it follows that H.(A, M) is the
homology of B.A®4 M, and H*(A, M) is the homology of Hom4(®B. A, M) = Homp(A®", M)
(See [1, 10, 11]). We write C.(A, M) = B.A®4 M, and C*(A, M) = Homg(A®", M). Note
that Co(A, M) and C°(A, M) can be identified with M in a natural way, and 8, = 0 implies
that Ho(A, M) = H°(A,M) = M.

Let e{¥) be the Eulerian idempotents defined by

= 1
b eFzk = — Y (z+d(o))(z+d(o)+1)---(z + d(c)+n —1)sgn(o)o,
k=1 * 0€ESn
where d(0) = Card{i : 0; > 041} is the number of descents of o. The Eulerian idempotents
en’ appear in two different forms in the literature. The first form, that we denote plx),
appears in [4, 7, 8, 17, 21]. They are defined by

kzn:pg‘):ck = % zé; (z+d(0))(z+d(0)+1)---(z+d(0) +n —1)0.
=1 ‘T o0€ESn

It is shown that the p{}) are projections into the direct summands of the symmetric powers
of the free Lie algebra. In the second form, the e(*) defined above, are the image of the p{*)
under the automorphism 6: Q[S,] — Q[S,] defined by 6(c) = sgn(o)o. They are used in
[1, 10, 12, 13] and are the ones of primary interest to us.

In [8] we find that

(1.1) id=p+p +--- + pf)

(1.2) PP = 6,09,

where 6;; = 0ifi # j and 1if: = j. Tha,t is, the p(¥) are orthogonal idempotents. Let Lie(A)
denote the free Lie algebra on the generators A4 = {a1,a2,... ,a;} and let Q(A) denote the

free associative algebra generated by .A. The Poincaré-Birkhoff-Witt theorem states that
Q(A) = S(Lie(4)),
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where S(Lie(.A)) denotes the symmetric powers of Lie(.A). If we set the rank of the elements
of A to be 1, then the algebra Q(.A) and S(Lie(.A)) are both naturally graded

Q(A) = D Qn(4),

n>0

S(Lie(A)) = @ S*(Lie(4)) = @ @ S*(Lie(A)),

k>0 k>0 n>0

where S}(Lie(A)) is the total degree n component of the kth symmetric power of Lie(A).
One of the main results of [8] is that p{*) is an idempotent such that

(1.3) Qn(A)pY) = Sk(Lie(A)).

The properties (1.1) and (1.2) then follow from (1.3). We should also note that the characters
of the S,-module Q[S,]pl k) have been computed by Bergeron, Bergeron and Garsia in [4]
and independently (for Q[S,]e(¥)) in [12].

If we translate to the e{!) the above results, we get statements for super-Lie algebras [20].
Moreover we have (10, 13]

a,,eff) = eg°_)13,..
Combined with the identities (1.1) and (1.2) for the el¥), we have that
%-A = @kegk)%tA

is a splitting. That is, the e!"'B. 4 are subcomplexes. This shows:

Theorem 1. (10, 13]
H,,(A, M) = @ka,n-—k(A, M)a

H™(A, M) = @ H"5(4, M),
where
Hin-k(AM) = eH,(A,M)=H,(PB.A0, M),
H " HAM) = e HY(A, M) 2 H,(Homg(e® 4%, M)),
Hoo(A,M) = Ho(A,M), and H°°(A,M)= H°(A,M).
This splitting is the finest possible for a general commutative algebra A.

Let us also recall an alternative expression for the e(*) that will be useful later on. For
this we define a composition of n as a k-tuple of positive integers, p = (p1,p2,--- ,pk), such
that pr + p2 +--- + pr = n. We refer to k as the number of parts of p, and we denote
this number by «(p). We will use the shorthand p |= n for “p is a composition of n.” For

'In the literature, (e.g. [19]), these are sometime called graded Lie algebras. To avoid confusion with the
fact that the usual Lie algebras might be graded as-well, we prefer not to use this notation.
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o € S,, we define the descent set of o as D(0) = {1 : 0; > 0i41}, and for p = n, we define
S(p) = {pl,Pl +p27"' yP1 +p2 + Sl +Pk-1}- Let P }: n, let

Xp = E o € Q[Sn]

D(0)CS(p)

and let X, = 6X,. Let us write L% for the coefficient of t™ in the expansion of (log(1 + t))*.
We note that L) = 0 unless m > k. We have [8]

k (k)
pSI) = Z Ln(p)XP'
pEn
This implies
By ==
pEn

In the following, we refer to the element X, as the p-shuffles. The name shuffle is motivated
by the fact that when X, acts on B,A we actually shuffle the entries 1, 2, ..., n.

Example 2.
X(z,z)-(am ai,az,0as,a4) = (ao, a1, as,as,aq) + (ao, a1, as, az, ay) + (ao, a1, as, aq, az) +
(ao, a3, a1, az, aq) + (ao, a3, a1, a4, az) + (ao, as, ay, ay, az).
We will make use of the following notations:

Xp-(a0,a1,02,... ,8,) = a0 ® (@1°** Qp, Wap 41+ * Apigpy; W+ Whp, 4otpy_y 417~ Gp)

Xp.(a0,a1,02,...,8,) = a0 ® (@1 Qp, TWap, 41+ Apyyp, T =+ Wp, gotpy_y 41 °° - Gn).

As the notation suggests, we can define w and T as binary associative operations on
A®", which we will call the shuffle and signed shuffle operations. (By convention, we take
wwd =P0ww =wE) = 0Tw = w.) Moreover, the shuffle operation is commutative, and
the signed shuffle operation is signed-graded commutative. That is u;...upTw,...w, =
(1) w; ... w, Ty ... Up.

Let Sh¥ = Q[X,0 : (p) = k, o € S,]. We note that
Sh*! C Sh!

since a ([ + 1)-shuffle can be expanded as a linear combination of I-shuffles. Moreover, we
have the interesting fact that the map 9 is a derivation for the signed shuffles.

Proposition 3. (see [14])

O(ao® (a1 a;Taipy---ay)) = 3(a0®(01"'ai))37(a-'+1~--an)+
(—1)(a1---a;)TO(a0 ® (a1 - - an)).
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This implies that
dShi(A) C Shi_,(A),
where Sh*(A) = ShX B, A. Hence Sh¥(A) are subcomplexes of B, A indexed by k such that
B.A = Sh!(4) D Sh?(4) D-Sh3(4) D --- .

In particular we have that Sh*(4) ®4 M and Sh¥(4, M) = Homgu(Sh¥(4), M) =
Homg(Sh* A®", M) form chains of included subcomplexes. The main result of this section is
the following theorem. This was independently proved by Ronco [18].

Theorem 4.
(1.5) Hin-x(A,M) = H,(Shi(A)®a M [sp+i(4) g, M),
(1.6) H*(A,M) = H,(Shi(A,M)/spk+1(4, pr)),

This will be an immediate consequence of our next theorem.

Theorem 5.

k
(1.7) D Henro(AM) = H,(C-(AM)/spk+1(4) @, M),

(1.8) O HH (A M) = H, (C*(4, M) [shk+1(4, pr)),

r=1

Proof: We first show that

k
(1.9) Sh**! = ker (Z e$;>)

r=1

in Q[S,]. From this it will follow that

(zk: cS:’)) C_(A, M) — C.(A, M)/Shf+1(A) ®a M,

(Xk:eﬁ.") C(A,M) = C(AM)/spk+1( 4 pp).

r=1

and the theorem will be proved. To show (1.9), we will need a lemma from [8]:
Lemma 8. (8] If p = n and k(p) > r then p{) X, = 0.

This gives us that ()X, = 0if x(p) =k + 1 and r < k. Hence

k
ShX*! C ker (Z e£;>) .

r=1
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Now we note that

k n
ker (Z efﬂ) = Im ( > ef,’))
r=1 s=k+1

since the e{") are orthogonal idemFotents and e +---+e{™ = 1. So to get equality in (1.9).
it suffices to show that e{?) € Shy*! for s > k + 1. But this follows easily from (1.4) since

L())=0unlessn(p)252k+l. O

8
w(p

Remark 7. Loday [13] shows that the decomposition of Theorem 1 is valid for any functor
A — F—Module which factors through the category Fin' of the sets [n] = {0,1,2,... ,n}
with morphism f: [n] — [n] such that f(0) = 0. Theorem 4 relies only on the identity (1.9).
If we let Q[Fin’] be the algebra of morphisms of Fin’, the identity (1.9) was shown inside
Q[S.] C Q[Fin’]. Hence Theorem 4 is also valid for any functor A — F — Module which
factors through the category Fin'.

We close this section, stating some of the results we can prove using Theorem 4. Some
of these results were conjectured in Gerstenhaber and Schack [11]. For f € C"(A, A) and
g € C™(A, A), define fU g € C™™(A, A) by

F U gt cin Bpim) = Flbg s o i )0(0544, « s Biigan)-

This defines a signed-graded commutative product [9] on H*(4, 4), i.e. if f* € H"(A, A)
and g™ € H™(A, A), then f* U g™ = (—1)""g™ U f". Gerstenhaber also defines, for f* €
C"(A,A) and g™ € C™(A, A) a composition product frsg™ € C™™-1(4, A), as follows:
Fori=1,...,7, let

(ffoig™)(a1,- -+ 1 8ngm-1) = fM(a1,... ,8ic1,9™(iy -+ 5 Gigme1)s Bigms- - - yGntm—1)-

If m = 0, the above definition holds, with ¢g™() interpreted as a fixed element of A. and
if n =0, f*o; g™ is defined to be 0. Then let frog™ = o, (=1)0-Dm=1fn o gm  Ag
Gerstenhaber points out, if f and g are cocycles, then fog needs not be a cocycle. However,
defining [f",g™] = fmog™ — (—1)("~D(m-1)gm5 fn yields a well-defined Super Lie product on
the cohomology. Note that the grading is by degree, which is the dimension —1, i.e.

7,7 = =(=1)-Dm=D g, o,

Let 7y = @,5, H™"(A, A). Gerstenhaber and Schack [10] show that F, is an ideal of
H*(A, A) for the cup product by exhibiting it as the kernel of a natural map H*(A,A) —
Hgg(A, A). In [11], they conjecture that F, gives a decreasing filtration of H*(A, A) by
ideals for the cup product, possibly with F, U F, C F,,. In fact, we can show this using
Theorem 4 and a generalization of the method of [10, 11]. Furthermore, we can show that
the 7, are ideals for the Lie bracket and [F,,F;] C F,,,. We can also use Theorem 4
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to compute the homology H*"*(A, A) for A = Q[z1,z2,...]/I(2) where I(2) is the ideal
generated by polynomials of degree 2. This example can be used to show that in general

H*°(A, A)U H*°(A, A) € H*°(A, A).
This means that the cup product is not bi-graded in general.

2. VASSILIEV KNOT INVARIANTS

Knots invariants of finite type (Vassiliev invariants) are known to be at least as powerful as
the Jones polynomial and its generalizations from quantum groups. As Vassiliev invariants
are much easier to define and manipulate than quantum group invariants, it is likely that
they will play a more fundamental role than the various knot polynomials.

Any numerical knot invariant V' can be inductively extended to be an invariant V(m) of
immersed circles that have exactly m transversal self intersections using the formulas

e (3] r=2(3)-00(X)

We can think of the equation above as the definition of the mth partial derivative of a knot
invariant in terms of its (m —1)st partial derivatives. In a knot projection there can be many
crossings, and so one can differentiate with respect to many different variables. A Vassiliev
invariant is one for which V(m+1) = 0 for some m > 0. If V(™) =£ 0 and V(™+1) = 0, we
say that the invariant is of type m. One fundamental question in knot theory is: is there a
Taylor theorem? In other words, do Vassiliev invariants separate knots.

We do not address the question above. We concentrate our investigation on the construc-
tion of Vassiliev invariants. In [2], D. Bar-Natan showed how Kontsevish [personal commu-
nication] constructed (integrated) the Vassiliev invariants from its (constant) weight systems
over R (mth derivative) using Knizhnik-Zamolodchnikov connection. This construction uses
rather sophisticated integrals with values in an associative algebra of graphs.

Sparked by the work of Piunikhin [16], helped by the ideas of Drinfel’d [5, 6], D. Bar-Natan
[3] developed a construction of the Vassiliev invariants which is combinatorial and algebraic.
He reduced the problem to the computation of H'*(.A) for A a specific simplicial object.
We were left showing that H'?(A) = 0.

More precisely, let G1? be the set of graphs with vertices of degree 1 and 3, with an
orientation on each vertex of degree 3, and with u labeled vertices of degree 1. Below is an

example of a graph in G )
1
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Let Gy = IFG};"’/J be the F-module spanned by G modulo the ideal J generated by the
local relations on graphs depicted as follows (see [2]):

_gl_
Letting S, act by permutation on the u labels of the graphs in G13, we have a structure of

Sy-module on G,. Notice that @5 Gy is a graded algebra.
Consider now the F-module (F*)*. We have a S, on this space by letting (vy, vs,... ,v,)o =

(Bty 5 Do 5505 D ) Lol By 5 = (F‘)"/S,, be the F-module (F*)* modulo the action of S,. \We
put on B, a structure of symmetric (co)-simplicial objects (i.e. a functor A — F-module

that factors through Fin’) as follows. Let 6;: Bny — Bny1. be defined by Si(vry... ,vy) =
(biv1, ... ,6iv,) where for the standard basis {e;,es,... ,e,} of F* we have
€; lf] <1,
Si(ej) =qeit+ e ifj=1,
€j+1 if 7 >1.

Similarly, one defines s;: B, , — B,_;, with
€; if y <1,
s,-(e,-) =10 lf] = i,
€j-1 lf] > 1.
The simplicial objects we are concerned with are A, = @,>¢ Gu ®F Bn.., and we want to
show that H'""1(A4,) = 0 for n > 2. -

To this end, notice first that A, is a graded algebra (ranked by u) and the maps é; and s,
preserve the degrees. Hence H"/(A.) = @50 H.?(A..), where Any = G, ®F Bn.. Second,
notice that A, , is of the form (S,-module) Qp B, .. This will follow, if we can show that
H'""1(R) ®f B.) = 0 for n > 2 and for any irreducible S,-module Rj. Since the right

regular 5,-module R contains every irreducible S,-module R, it is enough to show that
HY" YR Q®p B.,) =0 for n > 2. Now, we have

R ®r B, ., = (F*)".
Using Kinneth formula and Eilenberg-Zilber Theorem [14], we have
(P & B ()0) = 1 (),

where the isomorphism from left to right is given by the map (] @ [hs) ® - @ [hy] —
[y Th, & --- Th,). From theorem 4, it is clear that Hl'"'l((l[")“) = 0 for u > 2. We are

left with proving the result for u = 1. But in this case it is easy to check that H (F)=0
for n > 2. We have proved:
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Proposition 8. H'""1(A,) =0 forn > 2.

Remark 9. Although we have concluded our program, we would like to point out that
the construction of Vassiliev invariants depends on direct computations in H"?(A.). The
vanishing of H'3(.A.) garanties our computations will succeed but this may be very difficult.
To avoid this [2], one can compute in H'?(A.), where A, are simpler simplicial objects
described below. But for this, one would need to show that H'?(A.) = 0. This is a
beautifull combinatorial problem to look at.

Let A, =F(t;;:1<i<j<n) / J’ where J’ is the ideal generated by the elements

[tijrtka] and  [tik + tjks il

with 1, §, k, [ distinct and [f,g] = fg — gf. For simplicity, we have assumed that ¢;; = t;; in
the defining relations of J’ above.

Let
(1 if | <, (20 if [ <1,
bes <+ Thisa if I =4, 0 ifl =1z,
Oitkg = S tkata ifk<i<l, Sitkt =  tki-1 ifk<i<l,
biter + tiga g if k=1, 0 if k=1,
\tk+1'1+1 if <k, be1 -1 2 <k

and extend these maps algebraically to A!,. We leave it to the reader to check that é; and
s; are well defined.

Conjecture 10. H'3(AL) =0/
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