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Shellabilily is a well-known combinatorial concept that expresses a certain orderliness in the
structure of a simplidal complex or a poset. Until recently it was always assumed that a shellable
complex or poset is pure (all maxima! faces or chains have equal size), for the simple reason that
all observed examples of any importance were pure. Recently, in joint work with M. Wachs [5],
shellability has been used to analyze the structure of some substantial nonpure examples, so it
seems worthwhile to take a fresh look at the concept from this more general point of view.

Shellability has been used as a tool for many purposes: it gives information about the topology
of a complex A and about the associated Stanley-Reisner ring K[^.]; it can be used to construct
algebraic bases for homology and for A"[A] and to compute Mobius functions of posets; it implies
bounds on the f-vcctor of A which have been of importance in polytope theory and reliability
theory, and the concept has also other good uses in f-vector theory.

The taJk will be based on the following three topics:

1. A general review of the basic aspects of shellability with special attention given to what can
be said in the nonpure case. (This is joint work with M. Wachs [5].)

2. A description of how noapure lexicographic shellability is used to analyze the intersection
lattices of the "k.equal" subspace arrangements of types A, B and D. (Joint work with M.
Wachs [5] and D. Sagan [6].)

3. Presentation of a new f-vector theorem [7] that uses nonpure shellability at one step in
the proof. This gives a common generalization of the theorems of Kruskal-Katona, Stanley
and Bjorner-Kalai, and also contains a characterization of the f-vectors of complexes whose
Stanley-Reisner ring has depth >. k, for some integer k.
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