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Abstract

We give a simple, nonrecursive, combinatorial formula for any Kazhdan-Lusztig
polynomial of any Coxeter group. As consequences of our main result we obtain com-
binatorial formulas for each coefficient of any Kazhdan-Lusztig polynomial, and we
characterize those Bruhat intervals whose Kazhdan-Lusztig polynomial equals the g-
polynomial (as defined by Stanley) of the dual interval. The characterization is purely
combinatorial and depends only on the isomorphism type of the interval as a poset. In
particular, we obtain explicit formulas for the Kazhdan-Lusztig polynomials of intervals
which are lattices as well as for several other classes of intervals.

Dans cet article, on donne une formule simple, combinatoire, et nonrecursive pour
n’importe quel polynéme de Kazhdan-Lusztig dans n’mporte quelle groupe de Coxeter.
Par conséquent de notre résultat principal, on obtient des formules combinatoires pour
chaque coefficient de n'importe quelle polynéme de Kazhdan-Lusztig et on caracterise
les intervales de Bruhat dont le polynome de Kazhdan-Lusztig est égal au g-polynéme
(comme 1’a defini Stanley) de l'intervale dual. Le caractérisation est totalement com-
binatoire et ne depend que de type d’isomorphisme d’un interval comme poset. Parti-
culitrement, on obtient une formule explicite pour les polynomes de Kazhdan-Lusztig
des intervales qui sont treillis et méme pour plusieurs autres classes d’intervales.

Extended Abstract

In their fundamental paper [11] Kazhdan and Lusztig defined, for every Coxeter group W,
a family of polynomials, indexed by pairs of elements of W, which have become known as
the Kazhdan-Lusztig polynomials of W (see, e.g., [9], Chap. 7). These polynomials are
intimately related to the Bruhat order of W and to the algebraic geometry of Schubert
varieties, and are of fundamental importance in representation theory.

Our aim in this work is to give a simple, nonrecursive, combinatorial formula for any
Kazhdan-Lusztig polynomial of any Coxeter group (Theorem 1.4) , and to study some con-
sequences of it. The main idea involved in the proof and statement of this formula is that
of extending the concept of the R-polynomial (see, e.g., (9], §7.5) to any (finite) multi-
chain of W (so that, for multichains of length 1, one obtains, apart from sign, the usual
R-polynomials). Once this has been done, then the Kazhdan-Lusztig polynomial of a pair

1Parts of this work have been carried out while the author was visiting the Institute of Mathematics,
Hebrew University of Jerusalem, Jerusalem, Israel, and the Institut Gaspard Monge, Université de Marne-
la-Vallée, Noisy-Le-Grand, France.
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u,v turns out to be just the sum, over all multichains from u to v, of the corresponding
(generalized) R-polynomials. The R-polynomial of a multichain can be readily defined, and
computed, from the ordinary R-polynomials (see (5), (6), and (7)). Since several combina-
torial formulas and interpretations are known for these polynomials (see, e.g., [3], [7], and,
for the case of symmetric groups, [2]) and simple recurrences exist for them, we feel that this
formula is a significant step forward in the understanding of the Kazhdan-Lusztig polynomi-
als. Though combinatorial formulas for Kazhdan-Lusztig polynomials have appeared before
in the literature (see, e.g., [13], [17], (6], [4]), none of them hold in complete generality.

As consequences of our main result we obtain combinatorial formulas for each coefficient
of any Kazhdan-Lusztig polynomial. Even in their simplest special cases these formulas are
new (see Corollaries 1.9 and 1.10) and have interesting and non-trivial consequences. In
fact, we use one of these special cases to characterize those Bruhat intervals whose Kazhdan-
Lusztig polynomial equals the g-polynomial (as defined in [16]) of the dual interval (Theorem
1.13). Our characterization is purely combinatorial and depends only on the isomorphism
type of the interval as a poset. As a consequence of it we obtain explicit formulas for the
Kazhdan-Lusztig polynomials of intervals which are lattices (Theorem 1.14) as well as for
several other classes of intervals. Finally, we briefly sketch how it is possible to obtain
analogues of all our results for inverse Kazhdan-Lusztig polynomials.

We write S = {ay,...,a,}< to mean that S = {ay,...,ae,} and a; < ... < a,. The
cardinality of a set A will be denoted by |A|. For S C P and j € P we let S; be the j-th
largest element of S, and S; L0if 5> 15, (s0 S = {Sisp,---,S1}<). Given a polynomial
P(q), and 1 € Z, we will denote by [¢'](P(q)) the coefficient of ¢* in P(g). For a € R we let
la] (respectively, [a]) denote the largest integer < a (respectively, smallest integer > a).

We follow [14], Chap. 3, for notation and terminology concerning partially ordered sets.
In particular, given a finite graded poset P and S C N we let Ps & {z € P:p(z) € S5},
where p : P — N is the rank function of P, and a(P;S) be the number of maximal chains of
Ps. We also let P; def Py if i € N. We say that a finite graded poset P as above 1s Eulerian
if P has a 0 and 1 and pu(z,y) = (=1)*"=#(= for all z,y € P, z < y. Recall (see, e.g., [14],
§3.14, p. 138, or [15], §2, p. 190) that to any Eulerian poset P as above there are associated
two polynomials, denoted f(P;q) and g(P;q), defined inductively as follows:

def

i) if |P| = 1 then f(P;q) = g(P;q) = L;

ii) if P has rankn+1 > 1 and f(P;q) = Lixo ki;q* then

,_
N3
il

9(P;q) = Y (ki — kima)g', (1)
1=0
(where k_; % 0);
iii) if P has rank n + 1 > 1 then
f(Pig) = Y g((0,aliq) (g — 1)~ 7). (2)
aeP\{i}
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The polynomials f(P;q) and g(P;q) were introduced in [15] and are two very subtle invari-
ants of the Eulerian poset P (see [14], §3.14, and [15], §§2,3, for further information). We call
g(P; q) the g-polynomial of P, and (ho, ..., hn), where h; L (f(P;q)), fori =0,...,n,
the h-vector of P.

We follow [9] for general Coxeter groups notation and terminology. Given a Coxeter
system (W, S) and 0 € W we denote by I(c) the length of ¢ in W, with respect to S, and

we let
Eo e (—1)'(").

We denote by e the identity of W, and we let T o {osoc™! : 0 € W, s € S} be the set
of reflections of W. We will always assume that W is partially ordered by (strong) Bruhat
order. Recall (see, e.g., [9], §5.9) that this means that z < y if and only if there exist r € N
and ty,...,t, € T such that t,...tyz =y and l(t;...taz) > I(ticr.. . taz) fori =1,...,7.
Given u,v € W we let [u,v] 4 {2 € W :u < z < v}. We consider [u,v] as a poset with the
partial ordering induced by W. In particular, we will often use notation such as [u,v]s or
[u,v); (S € N, i € N) to denote the rank-selected subposets of [u,v]. For simplicity we let
c(u,v) o |[w, Y]igw)-1(u)-1] and a(x,v) 4 |[u, v]a]. Tt is well known (see, e.g., [1], Corollary 1)
that intervals of W (and their duals) are Eulerian posets.

We denote by H(W) the Hecke algebra associated to W. Recall (see, e.g., [9], Chap.
7) that this is the free Z[g,¢~"}-module having the set {Tw : w € W} as a basis and
multiplication such that

_J Ly if l(ws) > {(w),
LT = { qTur + (g = DT, if i(ws) < l(w), (3)

for all w € W and s € S. It is well known that this is an associative algebra having 7.
as unity and that each basis element is invertible in H(W). More precisely, we have the
following result (see, (9], Proposition 7.4).

Proposition 1.1 Letv € W. Then

(Tu—l )—1 — q—l('u) Z(_l)l(u)—l(u) Ru,u(Q) Tu;

u<v

where R, ,(q) € Z[q].

The polynomials R, ., defined by the previous proposition are called the R-polynomials of

W. It is easy to see that deg(Ry,) = I(v) — I(u), and that R,.(q) = 1, for all u,v € W,

u < v. It is customary to let R, .(q) L0ifugv.

The R-polynomials can be used to define the Kazhdan-Lusztig polynomials. The fol-
lowing result is not hard to prove (and, in fact, holds in much greater generality, see (16],
Corollary 6.7 and Example 6.9) and a proof can be found, e.g., in [9], §§7.9-11, or (11], §2.2.

Theorem 1.2 There is a unique family of polynomials { Puy(q)}uwew C Zlq], such that, for
allu,ve W:

1) Puu(q) =0 ifu o s
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) Peulg)=1;
i) deg(Pus(a)) < (1 (I(v) = I(u) — 1)), if u < v;
iv)
fO- (i) = Y Rua(a)Posla), (4)

u<lz<v
ifu<w.

The polynomials P,,(g) defined by the preceding theorem are called the Kazhdan-Lusztig
polynomials of W. Note that parts iii) and iv) of Theorem 1.2 actually yield an inductive
procedure to compute the polynomials P,,(q) for all u,v € W, taking parts i) and ii) as
initial conditions.

Throughout this work (unless otherwise explicitly stated) (W, S) denotes a fixed (but
arbitrary) Coxeter system.

We can now define the crucial concept of this work, namely the R-polynomial of a mul-
tichain. This is a polynomial which can be associated to any (finite) multichain of W and
which reduces (essentially, see (7)) to the ordinary R-polynomial if the multichain has length
one. The importance of this concept lies in the fact that it plays a fundamental role in the
computation of the Kazhdan-Lusztig polynomials of a Coxeter group (see Theorem 1.4).

Given a polynomial p(z) f ¢ oa:z' (with coefficients in some ring) and j € Z we let

Ui(p) = E a;z’. (5)

So, for example, Us(z — 3z? + 22%) = —3z? + 22%, and Uj(p) = p, for any polynomial p, if
e

Given a multichain ap < a; < ... < a,py (r € N) in W we define a polynomial
Ras,ar,..narsy () inductively as follows,

def 1
Rao,al,...,a,+1(Q) = Rao,al(q)Ul’izﬁ] (qdel ..... Qe (E)) ) (6)

(where d % I(a,4,) — {(a;)) if r € P, and

Rapsarreans (q) & (=1)0M0IR - (q) (7)

if r = 0. We call Rag,a,,...ar4, () the R-polynomial of the multichain ay < a, <...< @y
For example, in W = S4 we have that

1
722134,2314,2413@) = 7221:54,:2314((1) Uy <QR2314,2413 (;))

1
= —R2134,2314(q) U, (—q32314.2413 (;))

= (1-q)Ui(g—1)=q—¢*.

An important property of the R-polynomial of a multichain is the following.
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Proposition 1.3 Letr € P and ap < a; < ... < ar41 be a maultichain in W such that
Rag,.args F 0- Then arq1) — Uar) > 1,‘and ays) — ) 2 2 fori=1,...,7=1. In
particular l(a,4+1) — l(ay) > 2r — 1. ‘

We can now state the main result of this work.

Theorem 1.4 Let u,v € W. Then

Puo(9)= D Relq) (8)

CeC(uw)
where C(u,v) denotes the set of all multichains from u to v.

Note that, by Proposition 1.3, the sum on the RHS of (8) is finite.
Given a finite Coxeter system (W, S) we denote by wo the longest element of W.

Corollary 1.5 Let (W, S) be a finite Cozeter system, and u,v € W. Then

Pu,v(‘]) = Pwouwo.wovwo(Q) &

The following result is known (see, e.g., [6], p. 356), but is made particularly transparent
by Theorem 1.4.

Corollary 1.6 Letu,v € W. Then

Pu,v(q) = Pu—l'v-—l(q) .0

We can use Theorem 1.4 to obtain explicit formulas for the coefficients of Kazhdan-Lusztig

polynomials.
The next result shows that the summation set on the RHS of (8) becomes smaller when

we extract the coefficient of g*.

Theorem 1.7 Let u,v € W, and k € N. Then

[¢°)(Pun(a)) = [1C D Relq)),

C€eCk(u,v)
where Ci(u,v) denotes the set of all multichains from u to v of length < k + 1.

Using the preceding result it is possible to express the coefficients of Kazhdan-Lusztig
polynomials solely in terms of coefficients of (ordinary) R-polynomials.

Theorem 1.8 Letu,v € W, and k € N. Then
k & ! I(v)+Sr+S
[*](Pus(e)) = 2 > [[lg et totsstbniyon, .. (a)) . (9)
SC[k] (a0,-ays)41)€ECs(uw) =0

where Cs(u,v) is the set of all multichains ag < a < ... < qg41 fromu tov such that

Sep1 <l(v)—Ua,) =S, < S, =1, forr=1,...,|5], and where So e l(v) = l(u) — k.
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For small values of k the formula in Theorem 1.8 yields very explicit information on
(¢¥](Puy)- Even for k = 1 and k = 2 the resulting formulas are new and have non-trivial
consequences. :

Corollary 1.9 Let u,v € W. Then
[2)(Pus(a)) = (=1))7) [g](Run(9)) + c(x, )
where c(u,v) is the number of coatoms in [u,v].

Corollary 1.10 Let u,v € W. Then

[@1(Pun(@)) = (1) (Run(@) + 3 (1) [g](Rua(g)) + [, ]3]

a€lu,v]]

- Z [Q](Ra,u(Q)) + a([u,v]', {1’ 3}) .

a€lu,v]3

A consequence of Corollary 1.9 is the following result which was conjectured by G. Kalai,
[10].

Corollary 1.11 Let u,v € W be such that P,,(q) = 1. Then
l(v) = l(u) > c(u,v).

A further application of Corollary 1.9 is the following result which was first proved by
Dyer (see [5]).

Corollary 1.12 Letv € W. Then
[9)(Pen(q)) = c(e,v) — ale,v). (10)

Note that (10) does not hold in general. For example, if W = S;, u = 2143, and v = 4231
then [¢](Puy) = 1 but ¢(u,v) =4 and a(u,v) = 4.

We can also use Corollary 1.9 to characterize those pairs of elements u,v € W such that
P, .(q) equals the g-polynomial of [u,v]*. Our characterization is purely combinatorial and
depends only on the isomorphism type of the poset [u,v].

The next result greatly generalizes Theorem 4.8 of [2]. We denote by S; the poset
isomorphic to the Bruhat order on Sj.

Theorem 1.13 Let u,v € W, u < v. Then the following are equivalent:
1) [u,v] does not contain any interval isomorphic to S;

i) Ruu(g) = (g = 1)-1);

iii) [q)(Run(q)) = (=1)')"®(U(w) - i(v)),

iv) [q](Pun(q)) = c(u,v) = Ulv) + I(u);

v) Puu(q) = g([w,v]" q).
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The preceding theorem has many consequences. The main one is probably the following
which is obtained by combining Theorems 1.13 and 1.8, and which gives, in particular, an
explicit combinatorial formula expressing the Kazhdan-Lusztig polynomial of any interval
which is a lattice solely in terms of its combinatorial structure.

Theorem 1.14 Let u,v € W, u < v, be such that [u,v] does not contain any interval
1somorphic to S3. Then

S|
Y IS - l(ar41)-1(ar)
[0](Pun(@)) = 3 (—1))7IoHE > (~1)2im e IT (z(u)—l(zl)-s -5 )

SClk] (a0s---8| 5|41 )ECs(uyv) r=0 T)TOrTOr4l

where Cs(u,v), and So, have the same meaning as in Theorem 1.8. O

Another consequence of Theorem 1.13 is the following result which was first proved, in the
case of symmetric groups, by M. Haiman and G. Kalai ([8]).

Corollary 1.15 Let u,v € W, u < v, be such that [u,v] is a lattice. Then R,,(q) =
(g — 1)) O

Two further non-trivial consequences of Theorem 1.13 are the following.

Corollary 1.16 Let u,v € W, u < v, be such that [q](Ruu(q)) = (=1)! =) (I(w) = I(v)).
Then Rey(q) = (g — 1)@ forallu<z <y <v. O

Corollary 1.17 Let u,v € W, u < v, be such that [q](Puv(q)) = c(u,v) = (v) + {(u). Then
P.,(q) = g([z,y]%;q) forallu <z <y <v. O :

Theorem 1.13 also enables us to use results from the theory of g-polynomials to compute
explicitly the Kazhdan-Lusztig polynomials of some classes of intervals. For n € N we denote
by B, and Q, the Boolean algebra of rank n and the face lattice of an n-dimensional cube,
respectively.

Corollary 1.18 Letu,v € W, u < v, be such that [u,v] = By)-i(u) (as posets). Then
P,.(u)=1.

Corollary 1.19 Let u,v € W, u < v, be such that [u,v] = Qj (as posets) where d &
l(v) = l(u) — 1. Then

Pl =3 e () () a2 1 (1)

1.'=0d_1:_+_1

Nia

Equivalently, [¢')(P..(q)) is the number of plane trees with d + 1 vertices such that ezactly 1

vertices have > 2 sons, for all 1 € N. In particular, deg(P,.(q)) = ng
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Let k € N. Recall (see, e.g., [15], p.-191) that a finite graded poset P with 0 is said to be
k-simplicial if [0, z] is isomorphic to a Boolean algebra for all z € Py. It is well known (see,
e.g., [1]) that intervals of W, and their duals, are 2-simplicial. .

For brevity, we say that an interval [u,v] is Ss-free if it satisfies condition i) of Theorem

6.3.

Proposition 1.20 Letu,v € W, u < v, and k € N. Suppose that [u,v]* is k-simplicial and
S3-free. Then ‘
[qJ](P (q)) — zj:(_l)i—j (l(v)-l(u)—i) I[u 'U]?l
bthd par I(v)=1(u)—3 Pt
for g =0,...,|_k—'2tl_|.

For k = 3 we can also prove the converse of Proposition 1.20.

Proposition 1.21 Let u,v € W, u <v. Then the following are equivalent:
. : i ieq [U(v)=l(u)—i - .
i) [97(Pas(a)) = (-1 (7097 ) [, ol forj <2
1=0
i1) [u,v]* is S3-free and 8-simplicial.

We now briefly outline how it is possible to obtain analogues of all the results in this work
for the inverse Kazhdan-Lusztig polynomials. Recall (see, e.g., (9], §7.13, or [12], p.190) that
these are the polynomials { P;,(q)}uvew uniquely defined by the condition that

> (~1)O Pua(q) Pru(g) = Buw (12)

u<a<v

for allu,v € W, u < v.
For any multichain ap < a; < ... < ar41 (1 € N) of W we now define a polynomial
Rio.. s, (@) as follows. We let

® def N 1 ®
Riorars (3) = Upeny, (qdRao ..... g (;)) Ravar () (13)

(where d ¥ I(a,) — I(ao)), if 7 € P, and

R; () & (—1)fes)-led R, o . (q), (14)

@Qyeeey Gr41

if r = 0. We call the polynomial R; .  (q) the dual R-polynomial of the multichain
B S By K ori K Qg
The analogue of our main result is the following.

Theorem 1.22 Let u,v € W. Then

P;(q)= ). TRe(g).0
ceC(u,v)
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In the case that (W,S) is a finite Coxeter system there is a simple relation between
R-polynomials and dual R-polynomials of multichains.

Proposition 1.23 Let (W, S) be a finite Cozeter system, and ao < a1 < ... < ar41 be a
multichain in W. Then

R:o,...,ﬂ,*.x (q) = Rwoarﬂ.---.‘ﬂoao(Q) 'D

The analogue of Corollary 1.9 is the following.

Corollary 1.24 Let u,v € W. Then

[q)(P2.(9)) = (~1)') 7 [g](Rus) + a(u,v),
where a(u,v) is the number of atoms in [u,v]. O
The analogue of Theorem 1.13 is the following.
Theorem 1.25 Let u,v € W, u < v. Then the following are equivalent:
i) [u,v] does not contain any interval isomorphic to S3;
i) Rua(g) = (q—1)®~"™);
iii) (g)(Rus(g)) = (1) (U(u) = I(v));
iv) [q)(Py.(q) = a(u,v) — I(v) + (u),
v) Pi.(q)=9([u,v];q) O

Similar analogues hold for all the other results.
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