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ABSTRACT. First introduced by Alexsandrov in the 1950's, metric geometry allows
one to apply techniques of dlflFerential geometry to a very general class of metric
spaces. Recent work of Groinov explores the notion of "nonpositive curvature in
metric geometry. We disciiss these ideas and show how they connect to problems in
combinatorics involving the cd-index, the lower bound theorem, and arrangements
of hyperpl&nes.

^

Metric geometry dates back to the work of Alexsandrov in the 1950's. Recent
work of Gromov ([10], [11]) applying techniques of metric geometry to problems
in infinite group theory have led to an explosion of new activity in this area with
applications to topology, group theory, and combinatorics. In this talk I will in-
troduce the fandamental ideas of metric geometry and discuss connections with
several problems in combinatorics.

In differential geometry, the fundamental objects of study are smooth miinifolds
with Riemannian metrics. Metric geometry, while borrowing many ideas from dif-
ferential geometry, applies to a much more general class of metric spaces, known as
"geodesic metric spaces". A geodesic segment in a metric space X is an isometric
embedding of an interval into X. A metric space is a geodesic space if any two
points are connected by a geodesic segment. The fundamental tool in differential
geometry is the notion of curvature. It is possible to chaj-acterize (sectional) ci.ir-
vatiire in a Riemannian manifold by the shape of its triangles. (Vaguely, the inore
positive the curvature, the "fatter" the triangles, the more negative the ciirvatiire,
the "thinner" the triangles. ) Using this idea, it is possible to define a notion of
curvature in the context of geodesic metric spzices: a geodesic space X has curua-
ture ^ c if, locally, triangles in X are "at least as thin" as those in a Riemaniiiaji
manifold of constant curvatiire c.

It turns out that this notion of curvature, though seemingly very general and
very simple, is surprisingly powerful, especially in the case of spaces of nonpositive
curvature. For example, any geodesic metric space X with curvature < 0 is as-
pherical (that is, its imiversal covering space is contrzictible), and if X is compact,
its fundamental group satisfies a host of interesting group theoretic properties (see
[10], [9], [1]).
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What has this got to do with combluatorics? The coimection begins when we
ask how we can find metrics of nonpositive curvature. One way to do this is to
begin with an abstract cubical complex X (the cubical analogue of a simplicial
complex) and assign to each abstract n-cube the metric of a regular Euclideau n-
cube. This induces a geodesic metric on X. While each cube clearly has curvature
<: 0, the "thin triangle" condition may fail for this metric at a point where several
cubes come together. It tiims out that any such failure can be detected in the
combinatorics of the links of vertices in X. (Recall that the liuk of a vertex v is
the simplicial complex Lv formed by the poset of faces of X containing u. ) We say
that a simplicial complex is a flag complex if any collection of vertices which are
pairwise joined by edges, span a simplex.

Theorem (Groinov [10]). A cubical metric on X has nonpositive curvature if
and only if Lv is a flag complex for every vertex v in X.

If we construct oiir space X out of Euclidean simplicies (of varying shapes)
instead of Euclldeaji cubes, we still have a link condition to determine whether
the induced geodesic metric on X has nonpositive curvature, but the condition is
not purely combinatorial. The links, iu this case, come equipped with a natural
piecewise sphericzd geodesic metric. We say that Lv is large if any two poiuts in Lv
of distance ^ TT are connected by a uni'guc geodesic segment.

Theorem (Gromov [10], Bridson [3]). A piecewise Euclidean metric on X has
nonpositive curuature if and only if Lv is large for every vertex v.

I will discuss three combinatorial problems that arise in connection with these
link conditions. What follows is joint work with Michael Davis.

The Hopf Conjecture. An old conjecture of H. Hopf states that if M is a 2n-
dimensionzd manifold of nonpositive curvature, then it's Eiiler characteristic, ^(M),
should satisfy

(-1)"^(M) ^ 0.

The conjecture was originally stated for Rlemaimian manifolds, but makes sense in
our more general context. Suppose the metric on M is the geodesic metric induced
by a cubation of M as described above. In this case, the hypothesis that M has
nonpositive curvature is equivalent to the condition that links of vertices in M
are flag complexes. Since At is a manifold, these links are triangulations of the
(2n - l)-sphere. On the other hand, one can break up ^-(M) into a sum of local
contributions at the vertices,

X(M)=^K(L.)

where

K(L. ) = 1 - ^/O+^/l -... + (^)2n/2n-l
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/; = number of i-simplicies in Lv.

Thus we obtain a "local Hopf conjecture .

Conjecture [5]. If S2n~1 is triangulated as a flag complex, and /, is the number
o/ i-simplicies in the triangulation, then

(-!)(!-i/0+i/l-. --+(^)2n/2n-l)^0

Relations between the /, 's have been studied by Bayer and BiUera, Stanley,
and others by means of the cd-index. (See survey article [13]. ) It foUows from a
theorem of Stanley, that the local Hopf conjecture is true for the face-lattice of a
convex polytope (which is always a flag complex). The general conjecture is still
open.

The Lower Bound Theorem. Let /, be the number of i-dimensional faces of a simple,
n-dimensional polytope X. The lower bound theorem, proved by Bamette in [2],
gives lower bounds on the /, 's in terms of /n-i. For example,

(*) /n-2 >. n/n-1 -
^n+r
. n-1.

^

Metric geometry can be used to give a simple proof of this inequality. In [6] we show
that any hyperbolic structure on X (i. e. a reaUzation of X as a convex polytope
in H") gives rise to a large, piecewise spherical structure on the dual simplicial
complex, X*. This gives an embedding of the space of hyperboUc structures on
X into the space of piecewise spherical structures on X*. The dimensions of these
spaces are easily computable and give the inequality (*) above. It is likely that
other such inequalities can be obtained by similar meajis.

Arraneements of Hvoerolanes. There are many interesting combinatorial and topo-
logicaf questions concerning arrangements of affine hyperplanes in a vector space
(see [12]). One question which has been widely studied is when the space ̂ °b-
tained by removing a coUection of complex hyperplanes from C* is asph^rical. (This
is known as the jf(7r, l)-problem. ) It was proved by DeUgne [8] and Brieskom [4]
in the 1970's that for arrangements of hyperplanes arising as fixed planes of a finite
reflection group acting on R" (complexified), this is always the case. It was conjec-
tured that the same shoiild hold for infinite reflection groups. In [7], we prove that
this conjecture holds for a large class of infinite reflection groups. This is accom-
pUshed by finding a cubical complex X, homotopy equivalent to a covering space of
the hyperplane complement V, and proving that all links in X are flag complexes.
It follows that the cubical metric on X has nonpositive curvature and hence, X is
aspherical.
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