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(ABSTRACT)

1. Introduction

Let M be the set of all m by n matrices of rank m over the complex field.
Consider a partition A = (Ai, . . ., Am)- Let F\ be the right justified Ferrers
board corresponding to A as in [2], i. e., there are A; positions in the i-tb. row.
Define M\:== {a ̂  M\ a, j = 0, (i, j) ^ F\}. An r-rook placement on F\ is
a placement of r non-attacking rooks on F\. Let R^ be the set of all r-rook
placements on F\. In the last thirty years, there have been many interesting
progresses on rook placements. For example, see Foata and Schutzenberger
[4], Gouldman, Joichi, Reiner and White [6, 7, 8, 9, 10], Gould [II], Wachs
and White [19], Garsia and Remmel [5], Sagan [17]. But the geometric
aspect of the rook placements was only explored until recently [2]. In [I],
we introduced the idea of invisible permutations, a length function for rook
placements on a Ferrers board and rook length polynomial. The major result
in [1] is an explicit formula for rook length polynomials. As a consequence,
we also obtained an explicit formula for Garsia-Remmel polynomials. In [2],
we introduced the notion of a partition variety as a quotient space B\M\
where B is the Borel subgroup of upper triangular matrices of GLm{C).
We proved that B\M\ is a projective subvariety which has the structure of a
CW-complex. The Poincare polynomials for cohomology of partition varieties
with coefficients in real field R are proved to be rook length polynomials as
introduced in [1] with r = m.

Definition 0. 1 A composition of m is a tuple (mi, . . . , m, ) of positive inte-
gers such that Z^^i m; = m. Lef 7 = (7i, -- . , 7^) be a composition of some
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positive integer. Let P-y denote the parabolic subgroup of Gm of the shape

\

p.=

(G,, *
0 G.t2

0 0 G,J

where G'-y; = GL^(C), and the *'s are arbitrary matrices of the appropriate
sizes.

In this paper we continue our study on the connection between the com-
binatorics of rook placements and the geometry of partition varieties in [2j.
Here we consider the partition varieties in their most general setting P^\M\
where P^ is a parabolic subgroup. Our main results are Theorem 0. 18, 0. 19
and 0. 20. Here, we have a unified treatment to the homology cohomology
for both the flag manifold and the Grdssmann manifold.

2. Preliminaries

Let [n] denote the set {1, - . . , n). Sometimes, we write a partition A as
A = (1/'1 2W ... n^") where /x, is the number of A/s which are equal to i.
View a Ferrers board F\ of shape A ELS a subarray of an m by n matrix,
where n = Ai and the k-th row has length A^forl < ^ ^m. If r ^ 1 let
^r = Sf=i ^»,n-r+i- where E, j is the matrix with 1 at (i, j) and O's elsewhere.
Let Wn be the symmetric group on [n] = {1, . . . , n}. Let 5"(n) be the set of
distinguished generators of Wn: S{n) = {(12), (23),..., (n - 1 n)}.

Definition 0. 2 Let X be a partition such that v^   F\. When r = 0, let
vo = 0. For a   R\, the length function /(o-) is defined by

/(cr) = min{k + h\a = Sk- .. Sii/rS^ . . . s'^}

where 5;   .S'(m) anrf s'^ £ 5'(n) and

Sp---Si^rS[--- S'g G R\

for each 1 <:p <: k and 1 ^ q< h.
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Thus J(o-) is the minimum number of adjacent row and/or colunrn transpo-
sitions required to get a from Vr = Y^,^ £.-, n_r+,. This length function was
first used as the length of rook matrices by Solomon [18].

Proposition 0. 3 (Local Formula) Let a   R\. Write a = E?=i ̂ c., 6.
where Ci <cz <... < Cr. Let o;, 6e the number of zero rows above the c, -th
row in cr, 7, the number of zero columns to the right of the bi-th column in
a, and Pi the number of 1's to the "northeast" of the i-th 1 (not including the
i-th 1). Then,

/(<r)= ^(a.. +A-+7. ). (1)
»=1

Definition 0.4 Let
RL^q)= ^ q1^.

<r fi;

We call this a rook length polynomial (see [1] for the formula).

One of the main ideas in [1] is to extend a placement o- of r rooks on an
m by n board to a placement P(a-) ofm +n - r rooks on an m+n-r by
m +n -r board. We identify P(o-) with the corresponding permutation of
[m+ n - r] and call P(cr) the invisible permutation corresponding to a.

Definition 0. 5 Let a   RT̂
n. 

Let a = ^^^ Ec,, fc; ly^A ci < 02 <

Define a permutation P(cr) 6 Wm+n-r by
< Cr.

P(<7) = n-r+Ci

&1
n-r+Cr

br
C?l . .. dm-r

n+1 ... n+m-r

where {a-i, 02, ... , Qn-r} is the complement of {b\, 62; ... ; ^r} ^ [n]
with QI <a2< ... < Qn-r, and {c?i, d^, ... , dm-r] is the complement of
{n -r +CI, ---, TI - r + Cr} in {n-r+l,..., n-r+ m} with d-i < d^ <
. . . < d^-r .

Definition 0. 6 (Projective Variety) A subset of the projective space P"
is called a projective variety if it is the set of common zeros of a collection
of homogeneous polynomials. These homogeneous polynomials are called the
defining polynomials of the projective variety.
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If A' is a topological space and A is a subset of X then A denotes the
closure of A.

Definition 0. 7 (Finite CW-complex, [15]) A Hausdorff space X is called
a finite ClV-complex if X has a partition X = [J.-e/e. m(o disjoint subsets
{ei}i l satisfying the following conditions:

. The index set I is finite.

. Each e, (called a cell) is homeomorphic to an open ball in some C".

. If x   'e'i-e,, then there is some ej of lower dimension such that x G. ej.

Theorem 0. 8 (Chow's Theorem) // X C P" is an analytic subvariety
then X is an projective subvariety.

Recall that M\ is a subset of the affine space M. We give it the subspace
topology. In the next section we introduce the notion of 7-compatible par-
tition A such that P\ M\ C M\. Thus we may consider the geometry in the
quotient space P\\M),. We give P\\M), the quotient topology. In this paper
we use some known results on Grassmannians. There is an exposition in [3]
on this which is a complex version of that in Milnor and StashefF [15].

3. 7-CompatibIe Partitions and Partition Variety P^\M^

Definition 0. 9 Let 7 = (7i, ---, 7() be a composition of m. A partition
A = (AI, -- ., Am) z's ca//e<^ a 'y-compatible partition if\^ (k'!1 ,. . ., k^) where
ki>. k-2> ... ~^ kf > 0. (In this paper we use ̂ -compatible partitions only).

In the Ferrers board jF\, we call the rows corresponding to k^' the ?-th
7-block.

Definition 0. 10 A rook placement a is said to be -^-compatible if o-(z') <
a{i + 1) whenever E^i ̂  <i <i+l ̂  ^1 7,, /or some /. Let ̂ (7)
denote the set of all ̂ -compatible rook placements on the board F\ with r
rooks, i. e., in every block of the Ferrers board, the column indices of rooks
increase as the row indices increase.
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Definition 0. 11 Let \ be a ^-compatible partition. Define the .j-rook length
polynomial

RLr{\^q):= ^ ql(a\ (2)
<r6fi;M

When 7 = (lm), this is the rook length polynomial in Definition 0.4. By the
Local Formula of the length function and induction, we have

Theorem 0. 12 Let \ be a ^-compatible partition. Then

^^(A, 7, g)=F[
«=l

ki - 7.+1 - 7.+2 - ... - 7(
7.

(3)

^here [?], = ^^ ^ (, )^ = (^^(, _ i)^ ... (i)^.
Corollary 0. 13 //<==!, then A, = n /or eacft z and

n

RL^{\^, q)=
m

(4)

Corollary 0. 14 //'-y; = 1 for all i, then every partition is f-compatible.

RL^(\^, q) = RL^{\, q) (5)
m

= n(A, -m+Q, (6)
t"=l

Using Plucker coordinates and Chow's Theorem, we get

Theorem 0. 15 P^\M\ is a projective variety if A, ̂ m-z+l, 1 ^t < m
and \ is ̂ -compatible.

4. Cellular Decomposition of P^\M\

In this section we give a cellular decomposition of the partition variety
P^\M\ and the topological implication of this cellular decomposition. Let
J(m, n) = -R^m). To state our results we need to construct a transversal for
P-y\M of the form i\ael(m, n) ̂ -r(o") where the sets Ky(<7) are defined as follows:
Let

H{a}=H^)UH, {a) (7)
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where

^i(^) = {(^J) 1^(0 <J, for j^J(a)} (8)
H2(^) = {(ij) | <r(i) < j, for j 6 J(a) and a-l(;) < 2} (9)
J(a) = {a(i)\l^i<m} (10)

Define

Y(a)=a+ ^ CE.,,. (11)
('J)efiW

Lemma 0. 16 Y^a) is an affine space of dimension l{cr) = \H(a)\.

For o-   /(m, n) define

^(a)={^y|y6K, (<T)}CP^\M. (12)

The space A'-y(o-) has the subspace topology from P^\M and Y[a) has the
subspace topology from M. There is a natural homeomorphism from X^a)
onto Ky(<7) defined by P^ y -» y. By row eliminations according to a parabolic
matrix, we have

Theorem 0. 17 (Cellular Decomposition of P^\M^
Let X be a ^-compatible partition. Then the partition variety P^\M), has the
following cellular decomposition:

P^\M, = [] ^(a)
aeR^(i)

where [J denotes the disjoint union.

By the Ferrers board characterization of Schubert cells in Grassmannians,
we have

Theorem 0. 18 (Ehresmann Argument) a) There is a one to one cor-
respondenceF^ between the set C^ = {X^a) \ a- e ^(7)} and the set of
sequences of Ferrers boards B^ = {F^ C .. . C F(w)} w/iere F^*) zs a Fer-
rers board of fik rows which is obtained by deleting ^k-i rows from F^k~^
for 2 < k <, t. The correspondence F is defined by

r(^(°-))=(^(^), --., ^(^)),
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where Ok = S^:m-fc+i -^I»X«) an^ ̂ {ak) is a partition obtained by rearranging
the numbers in [n - o-(z') + Ij^m-fc+i m^° non-increasing order.

b) Let a   ̂ (7). Then X(a) C X(a') if and only if F^(^) C F^^),
forKi^t. ~ ' ' ' ' ' "" '~'1''

Theorem 0. 19 For any given composition 7 of m, let X be a ^-compatible
partition. For a- and a'   ̂ (7), let P(a) and P(cr') be the invisible permu-
tations of a and a- , respectively.

a) X(a) C ^(a/) if anri only ifX * (P(<r)) C X*(P(<7/)).

b) X* (P(a)) CX* (P(<7/)) i/ and only if P {a) < P{a')

where

. the order "<" is the Bruhat order of the symmetric group Wn.

. we use X * (P{cr)) to denote the Schubert cell of P(cr) in the homoge-
neous space -P(in-m^)\G'n where (l"-m, 7) := (1, .. . , l, 7i, - . . , 7t).

n-m

Note that the boundary operator 5=0 over the complex field. We have

Theorem 0. 20 (Main Theorem) Let \ be a ^-compatible partition. Then
a) the partition variety P^\M\ is a CW-complex consisting of all the cells

-Y(cr) of P^\M which fit into the board F\

P^\MX = U ̂ R^(-t) ^(^) . (13)

b) the Poincare polynomial for cohomology of the partition variety P^\M\
with real coefficients is

Poin(P^\M^R) - ^d\mH\P^\M^Ti. )qt

= A^(A, 7, 92). (14)

Corollary 0. 21 (Homogeneous Space P^\Gm) Let^ be any decomposi-
tion of m. Then

a) The homogeneous space P^\Gm is a CW-complex.
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b) The homology (and the cohomology) groups of the homogenous space
f-r\Gm are given by

Pom(P^\G'n,, R) = ^L^((mm), 7, g2)
n. [ m - 7,-+i - 7.+i - ... - 7<

7.
= n

t=l

Corollary 0. 22 (Flag Manifold)
a) The flag manifold Bm\Gm is a CW-complex consisting of Bruhat cells.
b) The homology (and the cohomology) groups of the flag manifold Bm\Gm

are given by

Poin(B^\G^, R) = RL^((mm), (lm), q2)

= (^)^!
Corollary 0. 23 (Grassmann Manifold)

a) The Grassmann Manifold Gm\AInrn is a CW-complex consisting of
Schubert cells.

b) The homology (and the cohomology) groups of the Grassmann manifold
are given by

Pom(G^\Mnn., R) = E^((nm), (mm), g2)

r:i.
m |

1̂'
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