# Rook Placements and Partition Varieties $P_{\gamma} \backslash M_{\lambda}$ 

Kequan Ding ${ }^{1}$<br>Institute for Advanced Study, Princeton, NJ 08540<br>DIMACS, Rutgers University, New Brunswick, NJ 08855<br>(ABSTRACT)

## 1. Introduction

Let $M$ be the set of all $m$ by $n$ matrices of rank $m$ over the complex field. Consider a partition $\lambda=\left(\lambda_{1}, \cdots, \lambda_{m}\right)$. Let $F_{\lambda}$ be the right justified Ferrers board corresponding to $\lambda$ as in [2], i.e., there are $\lambda_{i}$ positions in the $i$-th row. Define $M_{\lambda}:=\left\{a \in M \mid a_{i, j}=0,(i, j) \notin F_{\lambda}\right\}$. An $r$-rook placement on $F_{\lambda}$ is a placement of $r$ non-attacking rooks on $F_{\lambda}$. Let $R_{\lambda}^{r}$ be the set of all $r$-rook placements on $F_{\lambda}$. In the last thirty years, there have been many interesting progresses on rook placements. For example, see Foata and Schützenberger [4], Gouldman, Joichi, Reiner and White [6, 7, 8, 9, 10], Gould [11], Wachs and White [19], Garsia and Remmel [5], Sagan [17]. But the geometric aspect of the rook placements was only explored until recently [2]. In [1], we introduced the idea of invisible permutations, a length function for rook placements on a Ferrers board and rook length polynomial. The major result in [1] is an explicit formula for rook length polynomials. As a consequence, we also obtained an explicit formula for Garsia-Remmel polynomials. In [2], we introduced the notion of a partition variety as a quotient space $B \backslash M_{\lambda}$ where $B$ is the Borel subgroup of upper triangular matrices of $G L_{m}(\mathbf{C})$. We proved that $B \backslash M_{\lambda}$ is a projective subvariety which has the structure of a CW-complex. The Poincaré polynomials for cohomology of partition varieties with coefficients in real field $\mathbb{R}$ are proved to be rook length polynomials as introduced in [1] with $r=m$.

Definition 0.1 $A$ composition of $m$ is a tuple $\left(m_{1}, \cdots, m_{s}\right)$ of positive integers such that $\sum_{i=1}^{s} m_{i}=m$. Let $\gamma=\left(\gamma_{1}, \cdots, \gamma_{k}\right)$ be a composition of some

[^0]positive integer. Let $P_{\gamma}$ denote the parabolic subgroup of $G_{m}$ of the shape
\[

P_{\gamma}=\left($$
\begin{array}{cccc}
G_{\gamma_{1}} & * & \cdots & * \\
0 & G_{\gamma_{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & * \\
0 & \cdots & 0 & G_{\gamma_{k}}
\end{array}
$$\right)
\]

where $G_{\gamma_{i}}=G L_{\gamma_{i}}(\mathbf{C})$, and the $*$ 's are arbitrary matrices of the appropriate sizes.

In this paper we continue our study on the connection between the combinatorics of rook placements and the geometry of partition varieties in [2]. Here we consider the partition varieties in their most general setting $P_{\gamma} \backslash M_{\lambda}$ where $P_{\gamma}$ is a parabolic subgroup. Our main results are Theorem $0.18,0.19$ and 0.20 . Here, we have a unified treatment to the homology cohomology for both the flag manifold and the Grassmann manifold.

## 2. Preliminaries

Let $[n]$ denote the set $\{1, \cdots, n\}$. Sometimes, we write a partition $\lambda$ as $\lambda=\left(1^{\mu_{1}} 2^{\mu_{2}} \cdots n^{\mu_{n}}\right)$ where $\mu_{i}$ is the number of $\lambda_{j}$ 's which are equal to $i$. View a Ferrers board $F_{\lambda}$ of shape $\lambda$ as a subarray of an $m$ by $n$ matrix, where $n=\lambda_{1}$ and the $k$-th row has length $\lambda_{k}$ for $1 \leq k \leq m$. If $r \geq 1$ let $\nu_{r}=\sum_{i=1}^{r} E_{i, n-r+1}$. where $E_{i, j}$ is the matrix with 1 at $(i, j)$ and 0 's elsewhere. Let $W_{n}$ be the symmetric group on $[n]=\{1, \cdots, n\}$. Let $S(n)$ be the set of distinguished generators of $W_{n}: S(n)=\{(12),(23), \cdots,(n-1 n)\}$.

Definition 0.2 Let $\lambda$ be a partition such that $\nu_{r} \in F_{\lambda}$. When $r=0$, let $\nu_{0}=0$. For $\sigma \in R_{\lambda}^{r}$, the length function $l(\sigma)$ is defined by

$$
l(\sigma)=\min \left\{k+h \mid \sigma=s_{k} \cdots s_{1} \nu_{r} s_{1}^{\prime} \cdots s_{h}^{\prime}\right\}
$$

where $s_{i} \in S(m)$ and $s_{j}^{\prime} \in S(n)$ and

$$
s_{p} \cdots s_{1} \nu_{r} s_{1}^{\prime} \cdots s_{q}^{\prime} \in R_{\lambda}^{r}
$$

for each $1 \leq p \leq k$ and $1 \leq q \leq h$.

Thus $l(\sigma)$ is the minimum number of adjacent row and/or column transpositions required to get $\sigma$ from $\nu_{r}=\sum_{i=1}^{r} E_{i, n-r+i}$. This length function was first used as the length of rook matrices by Solomon [18].

Proposition 0.3 (Local Formula) Let $\sigma \in R_{\lambda}^{r}$. Write $\sigma=\sum_{i=1}^{r} E_{c_{i}, b_{i}}$ where $c_{1}<c_{2}<\cdots<c_{r}$. Let $\alpha_{i}$ be the number of zero rows above the $c_{i}$-th row in $\sigma, \gamma_{i}$ the number of zero columns to the right of the $b_{i}$-th column in $\sigma$, and $\beta_{i}$ the number of 1's to the "northeast" of the $i$-th 1 (not including the $i$-th 1). Then,

$$
\begin{equation*}
l(\sigma)=\sum_{i=1}^{r}\left(\alpha_{i}+\beta_{i}+\gamma_{i}\right) . \tag{1}
\end{equation*}
$$

Definition 0.4 Let

$$
R L_{r}(\lambda, q)=\sum_{\sigma \in R_{\lambda}^{r}} q^{l(\sigma)} .
$$

We call this a rook length polynomial (see [1] for the formula).
One of the main ideas in [1] is to extend a placement $\sigma$ of $r$ rooks on an $m$ by $n$ board to a placement $P(\sigma)$ of $m+n-r$ rooks on an $m+n-r$ by $m+n-r$ board. We identify $P(\sigma)$ with the corresponding permutation of [ $m+n-r$ ] and call $P(\sigma)$ the invisible permutation corresponding to $\sigma$.

Definition 0.5 Let $\sigma \in R_{n^{m}}^{r}$. Let $\sigma=\sum_{i=1}^{r} E_{c_{i}, b_{i}}$ with $c_{1}<c_{2}<\cdots<c_{r}$. Define a permutation $P(\sigma) \in W_{m+n-r}$ by

$$
P(\sigma)=\left(\begin{array}{ccc|ccc|ccc}
1 & \cdots & n-r & n-r+c_{1} & \cdots & n-r+c_{r} & d_{1} & \cdots & d_{m-r} \\
a_{1} & \cdots & a_{n-r} & b_{1} & \cdots & b_{r} & n+1 & \cdots & n+m-r
\end{array}\right)
$$

where $\left\{a_{1}, a_{2}, \ldots, a_{n-r}\right\}$ is the complement of $\left\{b_{1}, b_{2}, \ldots, b_{r}\right\}$ in $[n]$ with $a_{1}<a_{2}<\cdots<a_{n-r}$, and $\left\{d_{1}, d_{2}, \ldots, d_{m-r}\right\}$ is the complement of $\left\{n-r+c_{1}, \cdots, n-r+c_{r}\right\}$ in $\{n-r+1, \ldots, n-r+m\}$ with $d_{1}<d_{2}<$ $\cdots<d_{m-r}$.

Definition 0.6 (Projective Variety) A subset of the projective space $\mathbb{P}^{n}$ is called a projective variety if it is the set of common zeros of a collection of homogeneous polynomials. These homogeneous polynomials are called the defining polynomials of the projective variety.

If $X$ is a topological space and $A$ is a subset of $X$ then $\bar{A}$ denotes the closure of $A$.

Definition 0.7 (Finite CW-complex,[15]) A Hausdorff space $X$ is called a finite $C W$-complex if $X$ has a partition $X=\bigsqcup_{i \in I} e_{i}$ into disjoint subsets $\left\{e_{i}\right\}_{i \in I}$ satisfying the following conditions:

- The index set I is finite.
- Each $e_{i}$ (called a cell) is homeomorphic to an open ball in some $\mathbb{C}^{n}$.
- If $x \in \overline{e_{i}}-e_{i}$, then there is some $e_{j}$ of lower dimension such that $x \in e_{j}$.

Theorem 0.8 (Chow's Theorem) If $X \subseteq \mathbb{P}^{n}$ is an analytic subvariety then $X$ is an projective subvariety.

Recall that $M_{\lambda}$ is a subset of the affine space $M$. We give it the subspace topology. In the next section we introduce the notion of $\gamma$-compatible partition $\lambda$ such that $P_{\lambda} M_{\lambda} \subseteq M_{\lambda}$. Thus we may consider the geometry in the quotient space $P_{\lambda} \backslash M_{\lambda}$. We give $P_{\lambda} \backslash M_{\lambda}$ the quotient topology. In this paper we use some known results on Grassmannians. There is an exposition in [3] on this which is a complex version of that in Milnor and Stasheff [15].
3. $\gamma$-Compatible Partitions and Partition Variety $P_{\gamma} \backslash M_{\lambda}$

Definition 0.9 Let $\gamma=\left(\gamma_{1}, \cdots, \gamma_{t}\right)$ be a composition of m. A partition $\lambda=\left(\lambda_{1}, \cdots, \lambda_{m}\right)$ is called a $\gamma$-compatible partition if $\lambda=\left(k_{1}^{\gamma_{1}}, \cdots, k_{t}^{\gamma_{t}}\right)$ where $k_{1} \geq k_{2} \geq \cdots \geq k_{t}>0$. (In this paper we use $\gamma$-compatible partitions only).

In the Ferrers board $F_{\lambda}$, we call the rows corresponding to $k_{i}^{\gamma_{i}}$ the $i$-th $\gamma$-block.

Definition 0.10 A rook placement $\sigma$ is said to be $\gamma$-compatible if $\sigma(i)<$ $\sigma(i+1)$ whenever $\sum_{j=1}^{j^{\prime}} \gamma_{j}<i<i+1 \leq \sum_{j=1}^{j^{\prime}+1} \gamma_{j}$, for some $j^{\prime}$. Let $R_{\lambda}^{r}(\gamma)$ denote the set of all $\gamma$-compatible rook placements on the board $F_{\lambda}$ with $r$ rooks, i.e., in every block of the Ferrers board, the column indices of rooks increase as the row indices increase.

Definition 0.11 Let $\lambda$ be a $\gamma$-compatible partition. Define the $\gamma$-rook length polynomial

$$
\begin{equation*}
R L_{r}(\lambda, \gamma, q):=\sum_{\sigma \in R_{\lambda}^{r}(\gamma)} q^{l(\sigma)} \tag{2}
\end{equation*}
$$

When $\gamma=\left(1^{m}\right)$, this is the rook length polynomial in Definition 0.4. By the Local Formula of the length function and induction, we have

Theorem 0.12 Let $\lambda$ be a $\gamma$-compatible partition. Then

$$
R L_{m}(\lambda, \gamma, q)=\prod_{i=1}^{t}\left[\begin{array}{c}
k_{i}-\gamma_{i+1}-\gamma_{i+2}-\cdots-\gamma_{t}  \tag{3}\\
\gamma_{i}
\end{array}\right]_{q}
$$

where $\left[\begin{array}{l}s \\ t\end{array}\right]_{q}=\frac{(s)_{q}!}{(t)_{q}!(s-t)_{q}!}$ and $(s)_{q}!=(s)_{q}(s-1)_{q} \cdots(1)_{q}$.
Corollary 0.13 If $t=1$, then $\lambda_{i}=n$ for each $i$ and

$$
R L_{m}(\lambda, \gamma, q)=\left[\begin{array}{c}
n  \tag{4}\\
m
\end{array}\right]_{q}
$$

Corollary 0.14 If $\gamma_{i}=1$ for all $i$, then every partition is $\gamma$-compatible.

$$
\begin{align*}
R L_{m}(\lambda, \gamma, q) & =R L_{m}(\lambda, q)  \tag{5}\\
& =\prod_{i=1}^{m}\left(\lambda_{i}-m+i\right)_{q} \tag{6}
\end{align*}
$$

Using Plücker coordinates and Chow's Theorem, we get
Theorem $0.15 P_{\gamma} \backslash M_{\lambda}$ is a projective variety if $\lambda_{i} \geq m-i+1,1 \leq i \leq m$ and $\lambda$ is $\gamma$-compatible.

## 4. Cellular Decomposition of $P_{\gamma} \backslash M_{\lambda}$

In this section we give a cellular decomposition of the partition variety $P_{\gamma} \backslash M_{\lambda}$ and the topological implication of this cellular decomposition. Let $I(m, n)=R_{\left(n^{m}\right)}^{m}$. To state our results we need to construct a transversal for $P_{\gamma} \backslash M$ of the form $\bigsqcup_{\sigma \in I(m, n)} Y_{\gamma}(\sigma)$ where the sets $Y_{\gamma}(\sigma)$ are defined as follows: Let

$$
\begin{equation*}
H(\sigma)=H_{1}(\sigma) \cup H_{2}(\sigma) \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
H_{1}(\sigma) & =\{(i, j) \mid \sigma(i)<j, \text { for } j \notin J(\sigma)\}  \tag{8}\\
H_{2}(\sigma) & =\left\{(i, j) \mid \sigma(i)<j, \text { for } j \in J(\sigma) \text { and } \sigma^{-1}(j)<i\right\}  \tag{9}\\
J(\sigma) & =\{\sigma(i) \mid 1 \leq i \leq m\} \tag{10}
\end{align*}
$$

Define

$$
\begin{equation*}
Y(\sigma)=\sigma+\sum_{(i, j) \in H(\sigma)} \mathbf{C} E_{i, j} . \tag{11}
\end{equation*}
$$

Lemma $0.16 Y_{\gamma}(\sigma)$ is an affine space of dimension $l(\sigma)=|H(\sigma)|$.
For $\sigma \in I(m, n)$ define

$$
\begin{equation*}
X_{\gamma}(\sigma)=\left\{P_{\gamma} y \mid y \in Y_{\gamma}(\sigma)\right\} \subseteq P_{\gamma} \backslash M \tag{12}
\end{equation*}
$$

The space $X_{\gamma}(\sigma)$ has the subspace topology from $P_{\gamma} \backslash M$ and $Y(\sigma)$ has the subspace topology from $M$. There is a natural homeomorphism from $X_{\gamma}(\sigma)$ onto $Y_{\gamma}(\sigma)$ defined by $P_{\gamma} y \rightarrow y$. By row eliminations according to a parabolic matrix, we have

## Theorem 0.17 (Cellular Decomposition of $P_{\gamma} \backslash M_{\lambda}$ )

Let $\lambda$ be a $\gamma$-compatible partition. Then the partition variety $P_{\gamma} \backslash M_{\lambda}$ has the following cellular decomposition:

$$
P_{\gamma} \backslash M_{\lambda}=\bigsqcup_{\sigma \in R_{\lambda}^{m}(\gamma)} X_{\gamma}(\sigma)
$$

where $\bigsqcup$ denotes the disjoint union.
By the Ferrers board characterization of Schubert cells in Grassmannians, we have

Theorem 0.18 (Ehresmann Argument) a) There is a one to one correspondence $\Gamma$ between the set $\mathcal{C}_{\gamma}=\left\{\overline{X_{\gamma}(\sigma)} \mid \sigma \in R_{n^{m}}^{m}(\gamma)\right\}$ and the set of sequences of Ferrers boards $\mathcal{B}_{\gamma}=\left\{F^{\left(\mu_{t}\right)} \subset \cdots \subset F^{\left(\mu_{1}\right)}\right\}$ where $F^{\left(\mu_{k}\right)}$ is a Ferrers board of $\mu_{k}$ rows which is obtained by deleting $\gamma_{k-1}$ rows from $F^{\left.\mu_{( } k-1\right)}$ for $2 \leq k \leq t$. The correspondence $\Gamma$ is defined by

$$
\Gamma\left(\overline{X_{\gamma}(\sigma)}\right)=\left(F_{\lambda\left(\sigma_{\mu_{\mathrm{t}}}\right)}, \cdots, F_{\lambda\left(\sigma_{\mu_{1}}\right)}\right)
$$

where $\sigma_{k}=\sum_{i=m-k+1}^{m} E_{i, \sigma(i)}$ and $\lambda\left(\sigma_{k}\right)$ is a partition obtained by rearranging the numbers in $\{n-\sigma(i)+1\}_{i=m-k+1}^{m}$ into non-increasing order.
b) Let $\sigma \in R_{n^{m}}^{m}(\gamma)$. Then $X(\sigma) \subseteq \overline{X\left(\sigma^{\prime}\right)}$ if and only if $F_{\lambda\left(\sigma_{\mu_{i}}\right)} \subseteq F_{\lambda\left(\sigma_{\mu_{i}}^{\prime}\right)}$, for $1 \leq i \leq t$.

Theorem 0.19 For any given composition $\gamma$ of $m$, let $\lambda$ be a $\gamma$-compatible partition. For $\sigma$ and $\sigma^{\prime} \in R_{\lambda}^{m}(\gamma)$, let $P(\sigma)$ and $P\left(\sigma^{\prime}\right)$ be the invisible permutations of $\sigma$ and $\sigma^{\prime}$, respectively.
a) $X(\sigma) \subset \overline{X\left(\sigma^{\prime}\right)}$ if and only if $X *(P(\sigma)) \subset \overline{X *\left(P\left(\sigma^{\prime}\right)\right)}$.
b) $X *(P(\sigma)) \subset \overline{X *\left(P\left(\sigma^{\prime}\right)\right)}$ if and only if $P(\sigma) \leq P\left(\sigma^{\prime}\right)$
where

- the order " $\leq$ " is the Bruhat order of the symmetric group $W_{n}$.
- we use $X *(P(\sigma))$ to denote the Schubert cell of $P(\sigma)$ in the homogeneous space $P_{\left(1^{n-m}, \gamma\right)} \backslash G_{n}$ where $\left(1^{n-m}, \gamma\right):=(\underbrace{1, \cdots, 1}_{n-m}, \gamma_{1}, \cdots, \gamma_{t})$.

Note that the boundary operator $\partial=0$ over the complex field. We have
Theorem 0.20 (Main Theorem) Let $\lambda$ be a $\gamma$-compatible partition. Then
a) the partition variety $P_{\gamma} \backslash M_{\lambda}$ is a $C W$-complex consisting of all the cells $X(\sigma)$ of $P_{\gamma} \backslash M$ which fit into the board $F_{\lambda}$

$$
\begin{equation*}
P_{\gamma} \backslash M_{\lambda}=\bigsqcup_{\sigma \in R_{\lambda}^{m}(\gamma)} X_{\gamma}(\sigma) . \tag{13}
\end{equation*}
$$

b) the Poincaré polynomial for cohomology of the partition variety $P_{\gamma} \backslash M_{\lambda}$ with real coefficients is

$$
\begin{align*}
\operatorname{Poin}\left(P_{\gamma} \backslash M_{\lambda}, \mathbf{R}\right) & =\sum \operatorname{dim} H^{i}\left(P_{\gamma} \backslash M_{\lambda}, \mathbb{R}\right) q^{i} \\
& =R L_{m}\left(\lambda, \gamma, q^{2}\right) . \tag{14}
\end{align*}
$$

Corollary 0.21 (Homogeneous Space $P_{\gamma} \backslash G_{m}$ ) Let $\gamma$ be any decomposition of $m$. Then
a) The homogeneous space $P_{\gamma} \backslash G_{m}$ is a $C W$-complex.
b) The homology (and the cohomology) groups of the homogenous space $P_{\gamma} \backslash G_{m}$ are given by

$$
\begin{aligned}
\operatorname{Poin}\left(P_{\gamma} \backslash G_{m}, \mathbb{R}\right) & =R L_{m}\left(\left(m^{m}\right), \gamma, q^{2}\right) \\
& =\prod_{i=1}^{t}\left[\begin{array}{c}
m-\gamma_{i+1}-\gamma_{i+1}-\cdots-\gamma_{t} \\
\gamma_{i}
\end{array}\right]_{q^{2}}
\end{aligned}
$$

Corollary 0.22 (Flag Manifold)
a) The flag manifold $B_{m} \backslash G_{m}$ is a $C W$-complex consisting of Bruhat cells.
b) The homology (and the cohomology) groups of the flag manifold $B_{m} \backslash G_{m}$ are given by

$$
\begin{aligned}
\operatorname{Poin}\left(B_{m} \backslash G_{m}, \mathbb{R}\right) & =R L_{m}\left(\left(m^{m}\right),\left(1^{m}\right), q^{2}\right) \\
& =(m)_{q^{2}}!
\end{aligned}
$$

## Corollary 0.23 (Grassmann Manifold)

a) The Grassmann Manifold $G_{m} \backslash M_{n^{m}}$ is a $C W$-complex consisting of Schubert cells.
b) The homology (and the cohomology) groups of the Grassmann manifold are given by

$$
\begin{aligned}
\operatorname{Poin}\left(G_{m} \backslash M_{n^{m}}, \mathbb{R}\right) & =R L_{m}\left(\left(n^{m}\right),\left(m^{m}\right), q^{2}\right) \\
& =\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q^{2}}
\end{aligned}
$$

## References

[1] K. Ding, Invisible Permutations and Rook Placements on a Ferrers Board, Proceedings of the Fourth Conference on Formal Series and Algebraic Combinatorics, Publications du LACIM, Université du Québec à Montréal, Québec, 1992, p.137-154. To appear in Discrete Mathematics.
[2] K. Ding, Rook Placements and Cellular Decomposition of Partition Varieties $B \backslash M_{\lambda}$, preprint.
[3] K. Ding, Rook Placements and Cellular Decomposition of Partition Varieties, Ph D thesis, University of Wisconsin-Madison, 1993.
[4] D. Foata and M. Schützenberger, On the rook polynomials of Ferrers relations, Colloq. Math. Soc. János Bolyai, 4, Combinatorial Theory and its Applications, Vol. 2, (P. Erdös et al. eds.) North-Holland, Armsterdam, 1970, p. 413-436.
[5] A. M. Garsia and J. B. Remmel, $q$-counting rook configurations and a formula of Frobenius, J. Combin. Theory Ser. A 41(1986) 246-275.
[6] J. R. Goldman, J. T. Joichi, and D. E. White, Rook theory I, Rook equivalence of Ferrers boards, Proc. Amer. Math. Soc. 52(1975), 485-492.
[7] J. R. Goldmán, J. T. Joichi, D. L. Reiner, and D. E. White, Rook theory II, Boards of binomial type, SIAM J. Appl. Math. 31 (1976), 618-633.
[8] J. R. Goldman, J. T. Joichi, and D. E. White, Rook theory III, Rook polynomials and the chromatic structure of graphs, J. Combin. Theory, Ser. b 25 (1978) 135-142.
[9] J. R. Goldman, J. T. Joichi, and D. E. White, Rook theory IV, Orthogonal sequences of rook polynomials, Studies in Appl. Math., 56(1977) 267-272.
[10] J. R. Goldman, J. T. Joichi, and D. E. White, Rook theory V, Rook polynomials, Möbius inversion and the umbral calculus, J. Combin. Theory, Ser. A 21(1976), 230-239.
[11] H. Gould, The $q$-Stirling numbers of the first and second kinds, Duke Math. J., 28(1961), 281-289.
[12] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley \& Sons, Inc., New York, 1978.
[13] H. Hiller, Geometry of Coxeter Groups, Pitman Books Limited, 1982.
[14] J. E. Humphreys, Linear Algebraic Groups, Springer-Verlag, New York, 1975.
[15] J. Milnor and J. Stasheff, Characteristic Classes, Annals of Mathematics Studies, no. 76, Princeton University Press, 1974.
[16] J. Riordan, An introduction to combinatorial analysis, Wiley, New York, 1958.
[17] B. Sagan, A maj statistic for set partitions, Europ. J. Combin., 12(1991), 69-79.
[18] L. Solomon, The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field, Geometriae Dedicata 36(1990) 15-49.
[19] M. Wachs and D. White, $p, q$-Stirling numbers and set partition statistics, J. Combin. Theory Ser. A 56:1(1991) 27-46.


[^0]:    ${ }^{1}$ The author wish to thank Professor Louis Solomon for his encouragements during this research. This research is partially supported by Alfred P. Sloan Foundation Grant 93-6-6 and NSF Grant STC 91-19999.

