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Abstract

We analyze the problem of computing the minimum number er(C) of internal sim-
plexes that need to be removed from a simplicial 2-complex C so that the remaining
complex can be nulled by deleting a sequence of external simplexes. This is equivalent
to requiring that the resulting complex be collapsible to a lcomplex. By reducing a
restricted version of the Satisfiability problem SAT, we show that this problem is NP-
complete. This implies that there is no simple formula for er(C) terms of the Betti
numbers of the complex. The problem can be solved in linear time for graphs.

On analyze le probleme de calculer le nombre minimum er(C) de simplexes internes
que doivent etre enlever d’un 2-complexe simplicial C de sorte que le complex resultant
peut etre annuler en effagant une sequence de simplexes internes. Ceci est equivalent
2 demander que le complexe resultant est reduisible & un 1-complexe. En reduisant
une version restricteé du probleme Satisfiability, SAT, on demontre que ce probleme
est N'P-Complete. Ceci implique q’il n’y-as pas de formule simple pour trouver er(C)
en fonction de les nombres Betti du complexe. Le probleme peut etre resolu en temps
linear pour les graphs.

Keywords: Simplicial complex, collapsing, Betti number, algorithmic complexity, in-
tractable problem.

Introduction

We consider finite connected simplicial 2-complexes, all of whose maximal simplexes are 2-
dimensional. Such a complex can be viewed as a collection of 2-simplexes C = {s1, s2,. . -, S}
modulo an equivalence relation that identifies pairs of simplexes s; and s; with 7 # j along
a common edge or a vertex. It is known that a simplicial 2-complex C has a geometric

realization as a subset of the Euclidean 5-space in which each s; is a closed triangular plane

region. We refer the reader to the texts [3], [4], [6], [7], and [8] for more information.
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We study the properties of complexes in terms of the subcomplexes obtained by removal
of a subset of its 2-simplexes. A 2-simplex s € C is called an erternal simplex of C if s has
at least one proper face which not shared with any other simplex in C; otherwise s is called
internal. Given a 2-complex C and a 2-simplex s; € C, we denote by C — s; the 2-complex
obtained by restricting the given identifications defining C to {s1,...,Si-1,Sit1,...,5n}. We
say that C — s; is obtained from C by removing (erasing) the internal (external) simplex s;.
If C’ is obtained from C by erasing an external simplex of C, then we denote this by C ~» C'.
More generally if two complexes C and C,, are related by a sequence of erasures of external
simplexes C ~ C; ~ -+- ~ Cp, , then we denote this also by C ~ C,,. We say that the
complex C is erasable (or nullable) if C ~» ¢. As examples, the segment of a pipe in Figure
1 (a) is erasable. However the triangulation of the 2-dimensional sphere S? in Figure 1 (b),
and the complex (c) are not erasable since these have no external simplexes. Note that the

operation ~» is not a topological invariant, since it can destroy the fundamental group.
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Figure 1: (a) A pipe segment, (b) The sphere 5%, (c) Two spheres with a common edge.

Given a 2-complex C we define er(C) to be the minimum number of internal 2-simplexes
that need to be removed from C so that the resulting complex is erasable. For example, for
the complexes in Figure 1 (a), (b), and (c), we have er(C) = 0,1, and 2, respectively. The
quantity er(C) also gives the minimum number of internal 2-simplexes that need to be re-
moved from C so that the resulting complex can be collapsed to a 1-dimensional subcomplex.
If C collapses to a d or lower dimensional subcomplex, this is denoted by C \ d .

In this paper we show that the problem of computing er(C) for a given 2-complex is

intractable:

Erasability Problem :

INSTANCE : A pair (C, k) where C is a 2-complex and £ is a non-negative integer.
QUESTION : Is er(C) = k? i.e., does C contain a subset K of 2-simplexes of cardinality &
such that C — K ~ ¢7

The Erasability Problem can be paraphfa.sed as the following decision problem involving

collapsibility
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Collapsibility Problem :
INSTANCE : A pair (C, k) where C is a 2-complex and k is a non-negative integer.
QUESTION : Is er(C) = k7 i.e., does C contain a subset K of 2-simplexes of cardinality k&

such that C — K \, 17

The main result is

Theorem 1 The Erasability and the Collapsibility Problems are N'P-complete.

As basic building blocks, we make use of properties of certain special complexes. The
simplest of these are the Klein bottle Figure 2 (a), and the complex called an AND gate
shown in Figure 2 (b). The Klein bottle is a nonorientable surface which has no embedding
in 3-dimensional space. It is necessary and sufficient to remove a single 2-simplex from it
to make it erasable. Thus er(Klein bottle) = 1. The complex in Figure 2 (b) can be used
as a logical AND gate in the following sense: The portion C of the complex connected to
the top via the circle Z can be erased (without removing a simplex from C') only when both
portions A and B connected to X and Y, respectively, are erased. However if only A or only
B is erased, C is left intact. Note that the interior of the common circle that is shared by
the pipes containing X, Y, and Z is not part of the AND gate in Figure 2 (b), just as the
interior of the top circle that appears in the Klein bottle in Figure 2 (a) is not part of the
Klein bottle.

(a)

Figure 2: (a) The Klein bottle, (b) An AND gate: C is erasable if both A and B are erasable.

2 Remarks

The Betti numbers §; for 0 < i < d of a d-dimensional simplicial complex C are topological
invariants related to high dimensional connectivity properties of C. The Betti number S, is

the number of connected components of C, and intuitively, §; is the number of “i-dimensional
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“holes” in C (see [4]). Since er(C) appears to count the number of three dimensional regions
enclosed by C, we may expect some relationship between er(C) and the Betti numbers of C.
To this end, we first consider 1-dimensional simplicial complexes, also referred to as graphs.
For a connected graph G with n vertices and e edges (1-simplexes), the 1-dimensional Betti
number has a simple interpretation: f; is the maximum number of linearly independent
elementary cycles in G ([6] p. 71). Equivalently, $; is the dimension of the circuit space of
G. For graphs, 5 and the rank r of the incidence matrix of G are related by f; = e —r, and
thus B can be found by a rank computation in polynomial time. Actually the 1-dimensional
Betti number for graphs can be expressed explicitly by 8y = e —n + 1 as a consequence of
the the Euler-Poincaré relation: for an arbitrary d-dimensional complex, this relation is

n

x(C) =) (-1)ai= Zj(:)(—l)iﬁc )

i=0
where o; be the number of i-simplexes of C. This common value is the Euler characteristic
of C.

It is known that all of the Betti numbers By, fi, . . ., B of a general d-dimensional complex
C can be computed from the quantities ;, and the ranks of the incidence matrices relating
the z-dimensional simplexes of C to its (i—1)-dimensional simplexes, 1 < ¢ < n. Consequently
these invariants can be computed in polynomial time in the total number of simplexes of C
(see [8], [4], [6])-

It is interesting to note that when we restrict the operation of removal and erasure to
1-dimensional simplexes, then the notions of erasability and collapsibility coincide. If G
is a graph then er(G) = B;. Therefore the Erasability Problem for graphs is in P. The
quantity er(C) and the Erasability Problem can be defined for higher dimensional complexes
by extending the notions of internal and external simplexes of C in the obvious fashion.
However the intractability of the Erasability Problem for 2-complexes implies that the general
problem for arbitrary d > 2 dimensions is necessarily N'P-complete. Furthermore, since the
Betti numbers can be computed in polynomial time, this also implies that there can be no
simple formula that relates er(C) to the Betti numbers of the complex. More precisely, unless
P = NP, there can be no polynomial time computable function f(z¢,z;,...,zq) for which
er(C) = f(Bo, b1, -, Ba).

Also note that the Erasability Problem is solvable in polynomial time for constant k,
since it suffices to generate all k-element subsets K of internal simplexes of C and for each

subset X check in polynomial time whether C — K ~» ¢.
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