A Computationally Intractable Problem on Simplicial Complexes

Ömer Eğecioğlu* and Teofilo F. Gonzalez
Department of Computer Science
University of California Santa Barbara, CA 93106

Abstract

We analyze the problem of computing the minimum number $\operatorname{er}(\mathcal{C})$ of internal simplexes that need to be removed from a simplicial 2 -complex \mathcal{C} so that the remaining complex can be nulled by deleting a sequence of external simplexes. This is equivalent to requiring that the resulting complex be collapsible to a 1 -complex. By reducing a restricted version of the Satisfiability problem SAT, we show that this problem is $\mathcal{N P}$ complete. This implies that there is no simple formula for $\operatorname{er}(\mathcal{C})$ terms of the Betti numbers of the complex. The problem can be solved in linear time for graphs.

On analyze le probleme de calculer le nombre minimum $\operatorname{er}(\mathcal{C})$ de simplexes internes que doivent etre enlever d'un 2 -complexe simplicial C de sorte que le complex resultant peut etre annuler en effaçant une sequence de simplexes internes. Ceci est equivalent à demander que le complexe resultant est reduisible à un 1 -complexe. En reduisant une version restricteé du probleme Satisfiability, SAT, on demontre que ce probleme est $\mathcal{N P}$-Complete. Ceci implique q'il n'y-as pas de formule simple pour trouver $\operatorname{er}(\mathcal{C})$ en fonction de les nombres Betti du complexe. Le probleme peut etre resolu en temps linear pour les graphs.

Keywords: Simplicial complex, collapsing, Betti number, algorithmic complexity, intractable problem.

1 Introduction

We consider finite connected simplicial 2-complexes, all of whose maximal simplexes are 2dimensional. Such a complex can be viewed as a collection of 2 -simplexes $\mathcal{C}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ modulo an equivalence relation that identifies pairs of simplexes s_{i} and s_{j} with $i \neq j$ along a common edge or a vertex. It is known that a simplicial 2-complex \mathcal{C} has a geometric realization as a subset of the Euclidean 5 -space in which each s_{i} is a closed triangular plane region. We refer the reader to the texts [3], [4], [6], [7], and [8] for more information.

We study the properties of complexes in terms of the subcomplexes obtained by removal of a subset of its 2 -simplexes. A 2 -simplex $s \in \mathcal{C}$ is called an external simplex of \mathcal{C} if s has at least one proper face which not shared with any other simplex in \mathcal{C}; otherwise s is called internal. Given a 2 -complex \mathcal{C} and a 2 -simplex $s_{i} \in \mathcal{C}$, we denote by $\mathcal{C}-s_{i}$ the 2 -complex obtained by restricting the given identifications defining \mathcal{C} to $\left\{s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right\}$. We say that $\mathcal{C}-s_{i}$ is obtained from \mathcal{C} by removing (erasing) the internal (external) simplex s_{i}. If \mathcal{C}^{\prime} is obtained from \mathcal{C} by erasing an external simplex of \mathcal{C}, then we denote this by $\mathcal{C} \leadsto \mathcal{C}^{\prime}$. More generally if two complexes \mathcal{C} and \mathcal{C}_{m} are related by a sequence of erasures of external simplexes $\mathcal{C} \leadsto \mathcal{C}_{1} \leadsto \cdots \leadsto \mathcal{C}_{m}$, then we denote this also by $\mathcal{C} \leadsto \mathcal{C}_{m}$. We say that the complex \mathcal{C} is erasable (or nullable) if $\mathcal{C} \leadsto \phi$. As examples, the segment of a pipe in Figure 1 (a) is erasable. However the triangulation of the 2-dimensional sphere S^{2} in Figure 1 (b), and the complex (c) are not erasable since these have no external simplexes. Note that the operation \leadsto is not a topological invariant, since it can destroy the fundamental group.

Figure 1: (a) A pipe segment, (b) The sphere S^{2}, (c) Two spheres with a common edge.
Given a 2 -complex \mathcal{C} we define $\operatorname{er}(\mathcal{C})$ to be the minimum number of internal 2 -simplexes that need to be removed from \mathcal{C} so that the resulting complex is erasable. For example, for the complexes in Figure $1(\mathrm{a}),(\mathrm{b})$, and (c), we have $\operatorname{er}(\mathcal{C})=0,1$, and 2, respectively. The quantity $\operatorname{er}(\mathcal{C})$ also gives the minimum number of internal 2 -simplexes that need to be removed from \mathcal{C} so that the resulting complex can be collapsed to a 1-dimensional subcomplex. If \mathcal{C} collapses to a d or lower dimensional subcomplex, this is denoted by $\mathcal{C} \searrow d$.

In this paper we show that the problem of computing $\operatorname{er}(\mathcal{C})$ for a given 2 -complex is intractable:

Erasability Problem:
INSTANCE : A pair (\mathcal{C}, k) where \mathcal{C} is a 2-complex and k is a non-negative integer.
QUESTION: Is $\operatorname{er}(\mathcal{C})=k$? i.e., does \mathcal{C} contain a subset \mathcal{K} of 2 -simplexes of cardinality k such that $\mathcal{C}-\mathcal{K} \leadsto \phi$?

The Erasability Problem can be paraphrased as the following decision problem involving collapsibility

Collapsibility Problem :

INSTANCE : A pair (\mathcal{C}, k) where \mathcal{C} is a 2-complex and k is a non-negative integer.
QUESTION: Is $\operatorname{er}(\mathcal{C})=k$? i.e., does \mathcal{C} contain a subset \mathcal{K} of 2 -simplexes of cardinality k such that $\mathcal{C}-\mathcal{K} \searrow 1$?

The main result is
Theorem 1 The Erasability and the Collapsibility Problems are $\mathcal{N} \mathcal{P}$-complete.

As basic building blocks, we make use of properties of certain special complexes. The simplest of these are the Klein bottle Figure 2 (a), and the complex called an AND gate shown in Figure 2 (b). The Klein bottle is a nonorientable surface which has no embedding in 3 -dimensional space. It is necessary and sufficient to remove a single 2 -simplex from it to make it erasable. Thus er (Klein bottle) $=1$. The complex in Figure 2 (b) can be used as a logical AND gate in the following sense: The portion C of the complex connected to the top via the circle Z can be erased (without removing a simplex from C) only when both portions A and B connected to X and Y, respectively, are erased. However if only A or only B is erased, C is left intact. Note that the interior of the common circle that is shared by the pipes containing X, Y, and Z is not part of the AND gate in Figure $2(\mathrm{~b})$, just as the interior of the top circle that appears in the Klein bottle in Figure $2(a)$ is not part of the Klein bottle.

Figure 2: (a) The Klein bottle, (b) An AND gate: C is erasable if both A and B are erasable.

2 Remarks

The Betti numbers β_{i} for $0 \leq i \leq d$ of a d-dimensional simplicial complex \mathcal{C} are topological invariants related to high dimensional connectivity properties of \mathcal{C}. The Betti number β_{0} is the number of connected components of \mathcal{C}, and intuitively, β_{i} is the number of " i-dimensional
holes" in \mathcal{C} (see [4]). Since $\operatorname{er}(\mathcal{C})$ appears to count the number of three dimensional regions enclosed by \mathcal{C}, we may expect some relationship between $\operatorname{er}(\mathcal{C})$ and the Betti numbers of \mathcal{C}. To this end, we first consider 1-dimensional simplicial complexes, also referred to as graphs. For a connected graph \mathcal{G} with n vertices and e edges (1-simplexes), the 1-dimensional Betti number has a simple interpretation: β_{1} is the maximum number of linearly independent elementary cycles in \mathcal{G} ([6] p. 71). Equivalently, β_{1} is the dimension of the circuit space of \mathcal{G}. For graphs, β_{1} and the rank r of the incidence matrix of \mathcal{G} are related by $\beta_{1}=e-r$, and thus β_{1} can be found by a rank computation in polynomial time. Actually the 1-dimensional Betti number for graphs can be expressed explicitly by $\beta_{1}=e-n+1$ as a consequence of the the Euler-Poincaré relation: for an arbitrary d-dimensional complex, this relation is

$$
\chi(\mathcal{C})=\sum_{i=0}^{n}(-1)^{i} \alpha_{i}=\sum_{i=0}^{n}(-1)^{i} \beta_{i}
$$

where α_{i} be the number of i-simplexes of \mathcal{C}. This common value is the Euler characteristic of \mathcal{C}.

It is known that all of the Betti numbers $\beta_{0}, \beta_{1}, \ldots, \beta_{d}$ of a general d-dimensional complex \mathcal{C} can be computed from the quantities α_{i}, and the ranks of the incidence matrices relating the i-dimensional simplexes of \mathcal{C} to its ($i-1$)-dimensional simplexes, $1 \leq i \leq n$. Consequently these invariants can be computed in polynomial time in the total number of simplexes of \mathcal{C} (see [8], [4], [6]).

It is interesting to note that when we restrict the operation of removal and erasure to 1 -dimensional simplexes, then the notions of erasability and collapsibility coincide. If \mathcal{G} is a graph then $\operatorname{er}(\mathcal{G})=\beta_{1}$. Therefore the Erasability Problem for graphs is in \mathcal{P}. The quantity $\operatorname{er}(\mathcal{C})$ and the Erasability Problem can be defined for higher dimensional complexes by extending the notions of internal and external simplexes of \mathcal{C} in the obvious fashion. However the intractability of the Erasability Problem for 2-complexes implies that the general problem for arbitrary $d \geq 2$ dimensions is necessarily $\mathcal{N} \mathcal{P}$-complete. Furthermore, since the Betti numbers can be computed in polynomial time, this also implies that there can be no simple formula that relates $\operatorname{er}(\mathcal{C})$ to the Betti numbers of the complex. More precisely, unless $\mathcal{P}=\mathcal{N} \mathcal{P}$, there can be no polynomial time computable function $f\left(x_{0}, x_{1}, \ldots, x_{d}\right)$ for which $\operatorname{er}(\mathcal{C})=f\left(\beta_{0}, \beta_{1}, \ldots, \beta_{d}\right)$.

Also note that the Erasability Problem is solvable in polynomial time for constant k, since it suffices to generate all k-element subsets \mathcal{K} of internal simplexes of \mathcal{C} and for each subset \mathcal{K} check in polynomial time whether $\mathcal{C}-\mathcal{K} \leadsto \phi$.

References

[1] Cook, S. A., The complexity of theorem proving procedures, Proceedings of the 3rd

Annual ACM Symposium on the Theory of Computing, Association for Computing Machinery, New York (1971), pp. 151-158.
[2] Garey, M. J., and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, New York, 1979.
[3] Glaser, L. C., Geometrical Combinatorial Topology, Vol. I, Van Nostrand Reinhold Company, New York, 1970.
[4] Hocking, J. G., and G. S. Young, Topology, Addison-Wesley Publishing Company, Reading MA, 1961.
[5] Karp, R. M., Reducibility among combinatorial problems, In R. E. Miller and J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press (1972), pp. 85103.
[6] Lefschetz, S., Introduction to Topology, Princeton University Press, New Jersey, 1949.
[7] Massey, W. S., Algebraic Topology: An Introduction, Harcourt-Brace, New York, 1967.
[8] Munkres, J. R., Elements of Algebraic Topology, Addison-Wesley Publishing Company, Menlo Park, 1984.

