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Abstract

We consider juggling patterns where the juggler can only catch and throw one ball at a time, and patterns
where the juggler can handle many balls at the same time. Using a crossing statistic, we obtain explicit
g-enumeration'formulas. Our techniques give a natural interpretation of the ̂ -Stirling numbers of the second
kind and a bijective proof of an identity of Carlitz. Also, juggling patterns enable us lo easily compute the
Poincare series of the aflRne Weyl group Ad-i-

Rcsuinu

Nous considerons les configurations de jongleric dans lesquelles 1c jongleur ne pcut attraper ou lancer
qu'unc seulc balle a la fois, ainsi que les configurations ou Ie jongleur peut manipuler plusieurs balles a la
fois. Utilisant une statistique de croisements, nous obtenons des formules explicites de g-enumeration. Nos
techniques fournissent des interpretations naturelles pour les g-nombres de Stirling de deuxieme espece amsi
qu'une preuve bijective d'une identite de Carlitz. Les configurations de jonglerie nous permettent aussi de
calculer la serie de Poincare du groupe de Weyl affine Ad_i.

'Partially supported by CRM.
'Both authors are postdoctoral fellows at LACIM.
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Figure 1: A juggling pattern with d= 3, x = (0, 1, 2), and a = (1, 2, 3).
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1 Introduction

Consider the pattern in Figure 1. We can think of this picture as the pattern that juggling balls
describe as they are juggled. The horizontal axis is the time axis. At each integer time point one
ball is caught and then thrown. At time points 0, 3, 6,... each baU is thrown high enough so that
it lands one time unit later. Similarly, at time points 1, 4, 7,... each ball is thrown so that it lands
two time units later, while at time points 2, 5, 8,... each ball will land three time units later. Thus
this pattern is periodic with period d = 3. In this pattern there are two balls since the arcs describe
two infinite paths.

In this paper we wiU enumerate periodic patterns like the one just described. Figure 1 shows
a pattern where the juggler can only catch and throw one ball at a time. We will also consider
patterns where the juggler has the ability to catch and throw many balls at a time. See Figure 2
for an example of such a pattern. Among jugglers this is called multiplex. We say that a juggling
pattern is simple if the juggler can only catch and throw one ball at a time.

We denote the pattern in Figure 1 by the vectors x = (0, 1, 2) and a == (1, 2, 3). The fact that
there is one 0 in the vector x means that at times 0 mod d the juggler catches and throws one
ball. If there were three 1's appearing in the vector x, this would mean that the juggler catches
and throws three balls at times 1 mod d. The entries of the vector a indicate how far each ball

is thrown, tliat is, when it will return to the juggler's hand. Thus at time periods a;, mod d the
juggler throws a ball a; time units. The pattern in Figure 2 is represented by d= 2, x = (0, 0, 1),
and a = (1, 4, 1).

Buhlcr, Eisenbud, Graham, and Wright proved that the number of simple juggling patterns
of period d and at most n balls is equal to nd [1]. Their proof uses the fact that the number of
permutations with k excedanccs is equal to the Eulerian number /l(ra, ^+l) [11, Proposition 1. 3. 12].
Stanley bijectificd their proof. Using a completely different approach, we simultaneously generalize
the 7id result in two ways. We include juggling patterns with multiplex and give (/-analogues of
these results.

Between time points 1 and 2 in Figure 1, tlie patlis of the two balls cross. We call this a
crossing. Since the pattern is periodic, similar crossings appear between 4 and 5, 7 and 8, etc.
There is one more crossing, namely between time points 2 and 3. Thus we say this pattern has two
crossings. Define the weight of a juggling pattern to be q to the power of the number of crossings
of the pattern. The ly-analogue of the iid result is the following:

Theorem 1 The sum of the weight of simple juggling sequences, with period d and at most n balls,
is equal to

[l+q+---+qn-l\d

As a corollary to this theorem, we arc able to easily compute the Poincare series of the affine Weyl
group Ad_i.

The results for multiplex include a product of Gaussian coefRcients, which is presented in
Theorem 2. While studying tlic multiplex case, we came across a natural interpretation of S[n, k],
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Figure 2: A juggling pattern with ri= 2, x = (0, 0, 1), and a = (1, 4, 1).

the (/-Stirling numbers of the second kind, using intertwining numbers of blocks. This method
can easily be shown to be equivalent to Garsia and Remmel's [4] idea of obtaining the ly-Stirling
numbers from rook placements. We give a bijective proof of an identity of Carlitz [3] involving
5'[7i, k] by contracting simple juggling graphs.

Observe for a multiplex juggling pattern that at each time point tlic number of balls the juggler
catches is equal to the number of balls he throws at that time point. In Section 5 we enumerate
patterns without this property; see Theorem 4. For this generalization of juggling patterns, we use
two vectors x and y to describe such patterns. The vector x describes how many balls arc thrown
at cadi time point, while the vector y describes the number of balls caught. The proof of this
theorem is easily bijectified, and as a special case this gives a bijcction for Theorcm 2.

The authors would like to tliank ROD Graliam for introducing llicm to tlic mathematics of
juggling, and Scrgcy Fomin, Gilbert Labcllc, and Richard Stanley for many helpful discussions.

2 Definitions

We say that two vectors u = (ui, U2,..., u^) and v = (vi, ̂ 2,.. ., Vm) are similar if there exists a
permutation TT £ 5m such that u, = IY(;) for all ? = 1, 2,.. ., m. We write u ~ v when u and v are
similar. Also, we will use the following two notations 0^ = (0, 0,. .., 0) and 1m = (1, 1,..., 1).

Definition 1 A ]u.gg]iiigtnp\e (d, x, a) consists of a positive integerd, a uecforx = (a;i, 2:2, . . -i^m)
of integers and a vector a = (ai, a2,.. ., Um) o/ positive integers, such that the following two condi-
tions hold:

1. Q<x, <, d-l for all i= l, 2,..., m.

2. (a + x) mod d ~ x, where the mod d applies component-wise.

We call d the period, x the base vector, and a the juggling sequence.
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To a juggling triple (d, x, a) we associate the following directed multigraph G on the integers Z.
The vertex set of the graph is Z and the directed edge set is given by

£(G) = {(a;; +k-d, Xi+a, +k-d) : l^i ^m, k CZ.} .

Observe that all the edges are directed increasingly with respect to time. Moreover, the condition
(a + x) mod d ~ x implies that for every vertex its outdegree is equal to its indegree. Hence we
can decompose the graph into a finite number of edge-disjoint paths that are increasing. We caU
the number of edge-disjoint paths the number of balls of the juggling triple (d, x, a). We denote
this number by 6a^(d, x, a), or by ball (a) when the time period and base vector are clear by the
context. It is easy to show that:

Lemma 1 The number of balls of the juggling triple (d, x, a) is given by ̂ -(ai+ a^+ . . . + a^).

Let a, be equal to the outdegree at vertex j in the associated graph. That is, forO <j ^ d-1,
Qj is the cardinality of the set {i : a;; = j}. We say that ajuggUng triple is a szmp/e juggling triple
if m = d and the base vector x is given by x = (0, 1,. .., ri - 1). This implies that do = a i = . .. =
Qd-i = 1. Every vertex in the associated graph of a simple juggling sequence has outdegree and
indegree one.

In the directed graph G we define a crossing to be a pair of two edges (a:, y) and (u, v) such
that x <u<y < v. We say that two crossings (3;i, yi) and (ui, Ui), and {x^^y^) and (u2>"2) are
ef/uivalent if there exist an intcger k such that

2:1 = x^+ k . d, yi = 7/2 4-fc . (/, ui = ^2 +^ . (/< and "i = v^+ k . d.

Define the number of external crossings to be the number of classes of equivalent crossings of the
graph.

An internal crossing of a juggling triple (d, x, a} is a pair (i. j) such that 1 <i<j ^ m,
x, = x.,, and «, > aj. For example, the juggUng triple (2, (0, 0, !), (1, 4, 1)) that appears in Figure 2
has no internal crossings, whereas the juggling triple (2, (0, 0, 1), (4, 1, 1)) has one internal crossing.
Observe that these two juggling triples have the same associated graph. No internal crossings
occur for a simple juggling triple since all the entries of the base vector are different. The number
o/crossmysof a juggling triple (rf. x, a) is the sum of the number of external and internal crossings.
We denote the number of crossing of a juggling triple by cross(^, x, a), or by cross(a) when there is
no confusion. We define the weight of a juggling triple (d. x, a) to be q to the power of the number
of crossings, that is, f/cross(^x'a'.

Following the convention for (^-analogues, we define [n] = 1+^/+-. -+<7"-1 and [n]! = [1]-[2] . . . |n].
The Gaussian coefficient, or q-binomial coefficient, is given by

n H!
mj [m]! . [n - m}\ r

3 Simple and multiplex juggling

We wiU consider simple and multiplex juggling patterns. We begin by presenting the proof of
Theorem 1 by giving an explicit bijection $. Note that the base vector for a simple juggling
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pattern is (0, 1,..., d- 1), which we denote by 6d-

Define the map $ from simple juggling triples to Nd by 4>(d, ^d. a) = (4>]. (^2, . . . i4>d)i where

^ = |{(u. u) 6 E{G) : ?-1 < u < t-l+a, < v}|.

That is, (f)i counts the number of directed edges of the associated graph that crosses the edge
(i - I, ?'- 1 + a, ) from the '. inside. " Directly we have that cross [d, 6^'a. ) =<?'>! +^2 +... + <&d.

It is easy to obtain the statement

ball{d. 6d, a) = max(<?i>i, <^2,.. ., <^d) + 1.

Hence 4> is a bijection between simple juggling triples of period d having at most n balls and the
set {0, 1,. .., n - l}d. Now the theorem follows since

£ E £ ", ^>l+02+-+0d _ f^}d= [n}d.
0<(^i<n-l 0<<^>2<n-l 0<^d<"-l

Recall that for multiplex juggling Qj is defined to be the outdegrec at vertex j. We can now
state an analogous theorem for multiplex juggling.

Theorem 2 The sum of the weight of juggling triples, with period d, base vector x, and at most n
balls, is equal to

7; [ I n| | 71

.
UiJ la'rf-i

We will use this result when the period d is 1 to prove Carlitz's identity in Section 6. Observe that
Theorem 2 implies Theorem 1 in the case when OQ= a-i = ... = ad-i = 1. We omit the proof of
this theorem, since it will follow from Theorem 4.

4 The Affine Weyl group A(;_]

We will now consider the affine Weyl group A^-i. For more detailed accounts, see [5, 9].

Definition 2 Let A^-i be the group of bijections a : 7L
tions satisfy the following two conditions:

Z under composition, where the bijec-

1. a{i +d)= a(i) + d for all i,

2. E^(^)-<)-0.
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This combinatorial description of Aci-i is due to Lusztig. Ad-1 is a Coxeter group, and when
d> 2 it is generated by the simple reflections fioi -si,.. ., 5^-1, where

k + 1 if k = i mod d

Si{k) = { k-1 [fk=i+l mod d
k if A- ̂  i, i + 1 mod d.

An element a 6 A^-i may be written as a product of simple reflections. Define the length /(cr) of
the element o- as the smallest integer r such that one can write a as a product of r simple reflections.
Observe that AQ is the one element group.

Theorem 3 Let a be an element in A^-i and n a positive integer such. that n > max(t" - cr(t)) for
a// i = 1, 2,..., d. Form the sequence a = (ai, ffl2i . . ., "d)> where a, = (T(t) - z + ra. Then (d, ̂ , a)
is a juggling triple with ball(d, 6d, a.) = n and cross (d, 8 ̂  a.} = (n- 1) -d- /(a).

By Theorems 1 and 3 we obtain:

Corollary 1 The Poincare series of the group A^-i is given by:

l-<7d
, '{-) = _L_^
q"=~d~^-

"eA,t-i

5 A generalization of juggling

We now consider patterns where the number of balls caught at a particular time point does not
necessarily equal tlic number of balls thrown at that same time point. Similar to a juggling triple
we define a juggling quadruple.

Definition 3 .'I juggling quadruple ((/, x. y, a) consists of a positive integer d, two vectors x =
(2:i,.C2,...,.rm) and y = (yi, 2/2,..., ̂ m) of inlegers, and a vector a = (01, 02,..., a^) of positive
intcgers, such that the following two conditions hold:

1. 0^ x,, yi ^ c/ - 1 for all i = 1. 2..... in.

2. (a + x) mod d ~ y, where the mod d applies component-wise.

We call d the period. x the throw vector, y the catch vector, and a the juggling sequence.

Observe that when x = y, this is equivalent to a juggling triple.

E
The number of balls of a juggling quadruple is not well-defined. Instead will consider the sum

^1 a,. Observe that E^i «. = E^i(2/. - .r. ) mod d-
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Figure 3: A juggling pattern with ri= 3, x = (0, 0. 2), y = (2, 2, 2), and a = (2, 2, 3).

As before, to a juggling quadruple (rf, x, y, a) we associate the following directed multigrapli G
on tlie integers Z. The vertex set of the graph is Z and the directed edge set is given by

E(G) = {(xi + k . d, Xi +ai+k-d) : \ <: i ^ m, k   Z.} .

Let QJ be equal to tlie outdegree at vertex j in the associated graph, and f3j equal to the indcgree
at vcrtex j. That is, for0 ^j ^ ri- 1, Qj is the cardinality of the set {;' : x, = j], and similarly
f3j = \{i : y, = j}\. As for juggling triples, we define external and internal crossings in the same
manner. We say that tlie weight of a juggling quadruple is equal to q to the number of crossings.

Let V be the linear space . { (u;o, Wi,..., w<;-i)   IP- : u>o + u'i 4- ... + tUrf-i = 0 ^. Define the
linear map L : V - . V by L(e, -e,_i) = Irf-^-e, for ? = 0, 1,.. ., ri- 1 and expand the definition
by linearity. For a vector w   V, define £', (w) to be tlic ?'tli coordinate of tlic vector w.

To make notation easier, for two vectors n and k we write

710 I | "1 | |"d-l
4J l^-iJ Lfcrf-iJ'

where n = (no, ni,.. ., nd_i) and k = (ko, ki,.. ., kd-i).

Theorem 4 The sum of the weight of juggling quadruples (rf, x, y, a) having period d, throw vector
x, catch vector y, and ̂ =1 a, < N, where N = '^=i(yi - x, ) mod d, is equal to

[^. (JV. Id+L(a-/?))]
p

In the case when x = y, Theorem 4 implies Theorem 2.

As for Theorem 1 there is a bijective proof of Theorem 4. The bijection is between the set of
juggling quadruples having period d, throw vector x, catch vector y, and S^Li a; < N, and the
set of lists of d multisets MQ, Mi,..., M^-i , such that the entries of Mj are integers between 0 and

Ej (^-{N-ld+L(a - ft))) +^. The bijection is as foUows. Let f(d, x, y, a)= (^,.02,.. ., V?m),
where

^i = |{(u, v)   E{G} : x, <u< x, + a, < v}\ + |Q' : 1 <J < i, a;, = a;,, a, < ^}| .
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Define the multiset Mj, where 0<, j<:d-lbyMj= {V>, : a, + x, = j mod d}. Observe that the
cardinality of Mj is /3j. Since we may view multisets as weakly increasing sequences and we have
the following interpretation of the Gaussian coefficient:

s «
0<t'i<>2<-<ifc<n-^

>l+»2+-+!k _ n|
k\'

this completes the proof of Theorem 4.

6 g-Stirling numbers of the second kind

The ^-Stirling numbers have been well-studied in the literature. See for example [4, 6, 7, 8, 12].
Let Tlk[n] denote the set of all partitions of {l, 2,..., n} into k blocks. For two integers i and j
define the interval int(i, j) to be the set

m((t, j) = {n e Z : min(i, j) < n < max(!', j)}.

Observe that the interval is symmetric in i and j, that is, int(i, j) = int(j, i)

Definition 4 For two disjoint nonempty subsets B, C of {1, 2,..., n}, define the intertwining
number t(B, C) to be the cardinality of the set {(<>, c)   B X C : int (b, c} n (5 U C) = 0}.
The intertwining number is independent of order, that is, t{B^C) = L(C, B). For a partition
7T = {Z^i, 2?2, . . . , ̂ . } of the set {1, 2,.. ., n} define the intertwining number (. (TT) to be

i(^)= ^ c(B,, B, ).
Ki<j<A-

Since the intcrlwiniiuj number of two blocks is independent of their order, the intertwining number
of a partition does not depend upon how the blocks are ordered.

As an example, consider the partition TT = {{1, 3, 6}, {2, 4}, {5}} in Figure 4. The intertwining
number of the two l)locks {1, 3, 6} and {2, -1} is 4, which is equal to the number of crossings between
the solid line and the dastied line. Also the intertwining number of TT is equal to 7, which is the
total number of crossings in Figure 4.

Definition 5 The ([-Stirling numbers of the second kind, S[n^k\, are defined by

S[n. k}=Y^f)l(') (n>l andk>}. },
K

where the sum ranges over all partitions TT with k blocks, that is, n^tnj. When n =0 or k
define S[n, k} = S^.k-

= 0,

Observe that the intertwining number of two disjoint blocks is greater than or equal to 1. Hence
the intertwining number of a partition TT is greater than or equal to (^), where k is the number of
blocks ofpr. Tliis implies the Stirling number 5[7t. ^'] is divisible by q^).
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Figure 4: Computation of the intertwining number of the partition TT = {{1, 3, 6}, {2, 4}, {5}}.
^7T)=, ({1, 3, 6}, {2, 4})+^{1, 3, 6}, {5})+/({2. 4}, {5})=4+2+1=7.

This definition is equivalent to the definition by Garsia and Remmel [4]. There is a natural
bijection between partitions of {l, 2,..., n} into k blocks, and rook placements of n - k rooks on
the triangular board of shape (0, 1,..., ?» - 1). (This bijection is given after Corollary 2. 4. 2 in [11].)
It is easy to see that the intertwining number of a partition is equal to the Garsia-Remmel statistic
of the corresponding rook placement. Thus, our combinatorial approach to ^-Stirling numbers of
the second kind differs from that of Sagan [8] and Waclis and While [12].

By conditioning on which block of a partition of tlic set {1, 2,.. ., n} the elcnient n lies, we can
easily derive the following recurrence:

Lemma 2 The ({-Stirling numbers of the second kind satisfy

S[n. k] = ^-1 - 5[n - l, ^-- 1] + [/;] . S[n - 1, /;],

wlierc ii, l: > 1.

The following identity is due to Carlitz [3]. It is a, (/-analogue of a well-known identity for
Stirling numbers of the second kind. (See for example [11]. ) Milne proved this ̂ -identity by using
finite operator techniques on restricted growth functions [7]. See also de Medicis and Leroux [6] for
a combinatorial proof.

Theorem 5 (Carlitz [3])

[n]d= ^S[d, m}. [m]\
m=0

<

Proof: The idea of the proof is to study simple juggling graphs of period d. We contract d
consecutive vertices of the graph to form a multiplex juggling graph of period 1. Carlitz's identity
will follow by keeping track of what happens to the crossings in the graph under contraction.

Let (d, i?d, a) be a simple juggling triple. Observe that (d, <?d, a) does not have any internal
crossings. By Theorem 1, we know that the sum of the weight of such juggling triples with at most
n balls is [n] . Contract the vertices k . d, k -d-\- l,..., (k+ 1) -d - 1 of the associated graph G
into a new vertex k. We then obtain a graph associated with a juggling triple (l, 0m, c). Observe
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that 1 < m <d, since some arcs will be contracted to arcs of length 0. Thus we remove them.
Formally, this contraction is described by letting 6, = | al+J |, and removing the zero entries
from the sequence (61, 62,..., <>d) to produce the juggling sequence c = (ci, C2,.. ., Cm). Note that
ball {d, 6d, a) = ball (1, 0^ c).

Observe that m edge-disjoint paths partition the vertex set {0, 1,..., d - 1} into m disjoint
blocks. Thus this is a partition TT with m blocks. Moreover, the intertwining number of TT is the
number of crossings that occur between time points 0 and d - 1.

Now we see what happens to a crossing (.c, y), (u, v) when the graph G is contracted. Four
cases occur. First, if the vertices y and u are contracted together, then the crossing is counted by
the g-Stirllng number S[d, m}. In the three remaining cases, we may assume that y and u are not
contracted together. If none of the vertices a;, y, u, and v are contracted together, then the crossing
remains an external crossing of (l, 0m, c), and thus is counted by [^]. If x and u are contracted
together, but not y and u, then the crossing becomes an internal crossing of (l, 0m, c), and thus is
counted by ["]. Finally, if y and v are contracted together, then we may view this as an inversion
of a permutation of m elements. The weight of all such inversions is counted by the factor [m]!. a
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