Juggling and applications to g-analogues

Richard Ehrenborg™ and Margaret A. Readdy
LACIM!
Département de mathématiques et d’informatique
Université du Québec a Montréal
Case postale 8888, Succursale A
Montréal Québec H3C 3PS§
CANADA

Abstract

We consider juggling patterns where the juggler can only catch and throw one ball at a time, and patterns
where the juggler can handle many balls at the same time. Using a crossing statistic, we obtain explicit
g-enumeration formulas. Our techniques give a natural interpretation of the q-Stirling'numbers of the second
kind and a bijective proof of an identity of Carlitz. Also, juggling patterns enable us to easily compute the
Poincaré series of the affine Weyl group Zd_,.

Résumé

Nous considérons les configurations de jonglerie dans lesquelles le jongleur ne peut attraper ou lancer
qu’une seule balle a la fois, ainsi que les configurations ou le jongleur peut manipuler plusieurs balles a la
fois. Utilisant une statistique de croisements, nous obtenons des formules explicites de g-énumération. Nos
techniques fournissent des interprétations naturelles pour les g-nombres de Stirling de deuxiéme espece ainsi
qu’une preuve bijective d’une identité de Carlitz. Les configurations de jonglerie nous permettent aussi de
calculer la série de Poincaré du groupe de Weyl affine Ay
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Figure 1: A juggling pattern with d =3, x = (0,1,2),and a = (1,2,3).
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1 Introduction

Consider the pattern in Figure 1. We can think of this picture as the pattern that juggling balls
describe as they are juggled. The horizontal axis is the time axis. At each integer time point one
ball is caught and then thrown. At time points 0, 3,6, ... each ball is thrown high enough so that
it lands one time unit later. Similarly, at time points 1,4,7,... each ball is thrown so that it lands
two time units later, while at time points 2,5, 8, ... each ball will land three time units later. Thus
this pattern is periodic with period d = 3. In this pattern there are two balls since the arcs describe
two infinite paths.

In this paper we will enumerate periodic patterns like the one just described. Figure 1 shows
a pattern where the juggler can only catch and throw one ball at a time. We will also consider
patterns where the juggler has the ability to catch and throw many balls at a time. See Figure 2
for an example of such a pattern. Among jugglers this is called multiplez. We say that a juggling
pattern is simple if the juggler can only catch and throw one ball at a time.

We denote the pattern in Figure 1 by the vectors x = (0,1,2) and a = (1,2,3). The fact that
there is one 0 in the vector x means that at times 0 mod d the juggler catches and throws one
ball. If there were three 1’s appearing in the vector x, this would mean that the juggler catches
and throws three balls at times 1 mod d. The entries of the vector a indicate how far each ball
is thrown, that is, when it will return to the juggler’s hand. Thus at time periods z; mod d the
juggler throws a ball @; time units. The pattern in Figure 2 is represented by d = 2, x = (0,0, 1),
and a = (1,4,1).

Buhler, Eisenbud, Graham, and Wright proved that the number of simple juggling patterns
of period d and at most n balls is equal to n¢ [1]. Their proof uses the fact that the number of
permutations with & excedances is equal to the Eulerian number A(n,k+1) [11, Proposition 1.3.12].
Stanley bijectified their proof. Using a completely different approach, we simultaneously generalize
the n¢ result in two ways. We include juggling patterns with multiplex and give g-analogues of
these results.

Between time points 1 and 2 in Figure 1, the paths of the two balls cross. We call this a
crossing. Since the pattern is periodic, similar crossings appear between 4 and 5, 7 and 8, etc.
There is one more crossing, namely between time points 2 and 3. Thus we say this pattern has two
crossings. Define the weight of a juggling pattern to be ¢ to the power of the number of crossings
of the pattern. The g-analogue of the n¢ result is the following:

Theorem 1 The sum of the weight of simple juggling sequences, with period d and at most n balls,

s equal to
(L g+ g™

As a corollary to this theorem, we are able to easily compute the Poincaré series of the affine Weyl
group Aq_;.

The results for multiplex include a product of Gaussian coefficients, which is presented in
Theorem 2. While studying the multiplex case, we came across a natural interpretation of S[n, k],
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Figure 2: A juggling pattern with d = 2, x = (0,0,1), and a = (1,4,1).

the ¢-Stirling numbers of the second kind, using intertwining numbers of blocks. This method
can easily be shown to be equivalent to Garsia and Remmel’s [4] idea of obtaining the ¢-Stirling
numbers from rook placements. We give a bijective proof of an identity of Carlitz [3) involving
S[n, k] by contracting simple juggling graphs.

Observe for a multiplex juggling pattern that at each time point the number of balls the juggler
catches is equal to the number of balls he throws at that time point. In Section 5 we enumerate
patterns without this property; see Theorem 4. For this generalization of juggling patterns, we use
two vectors x and y to describe such patterns. The vector x describes how many balls are thrown
at cach time point, while the vector y describes the number of balls caught. The proof of this
theorem is easily bijectified, and as a special case this gives a bijection for Theorem 2.

The authors would like to thank Ron Graham for introducing them to the mathematics of
Juggling, and Sergey Fomin, Gilbert Labelle, and Richard Stanley for many helpful discussions.

2 Definitions

We say that two vectors u = (uy,ug,...,u,) and v = (v, 0s,...,vy) are similar if there exists a
permutation 7 € Sy, such that u; = v,(;) forall 7 = 1,2,...,m. We write u ~ v when u and v are
similar. Also, we will use the following two notations 0, = (0,0,...,0) and 1,, = (1,1,...,1).

m m

Definition 1 A juggling triple (d, x,a) consists of a positive integerd, a vector x = (Z1,Z2,...,Zm)
of integers and a vector a = (ay,az,...,an) of positive integers, such that the following two condi-
tions hold:

1. 0<z;<d-1 foralli =1,2,...,m.

2. (a+ x) mod d ~ x, where the mod d applies component-wise.

We call d the period, x the base vector, and a the juggling sequence.
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To a juggling triple (d,x,a) we associate the following directed multigraph G on the integers Z.
The vertex set of the graph is Z and the directed edge set is given by

EG)={(zi+k-dzi+a;i+k-d) : 1<i<m,keZ}.

Observe that all the edges are directed increasingly with respect to time. Moreover, the condition
(a + x) mod d ~ x implies that for every vertex its outdegree is equal to its indegree. Hence we
can decompose the graph into a finite number of edge-disjoint paths that are increasing. We call
the number of edge-disjoint paths the number of balls of the juggling triple (d,x,a). We denote
this number by ball(d,x,a), or by ball(a) when the time period and base vector are clear by the
context. It is easy to show that:

Lemma 1 The number of balls of the juggling triple (d,x,a) is given by % (a1 +ay+---+am).

Let a; be equal to the outdegree at vertex j in the associated graph. Thatis, for0 < j < d -1,
a; is the cardinality of the set {i : z; = j}. We say that a juggling triple is a simple juggling triple
if m = d and the base vector x is given by x = (0,1,...,d — 1). This implies that g = a; = --- =
ag-1 = 1. Every vertex in the associated graph of a simple juggling sequence has outdegree and
indegree one.

In the directed graph G we define a crossing to be a pair of two edges (z,y) and (u,v) such
that z < w < y < v. We say that two crossings (z1,y1) and (u1,v1), and (z2,y2) and (uz,vy) are
equivalent if there exist an integer k such that

gy =22+ hk-d, yy=y24+k-d, vy=upg+k-d, and vy =vy+k-d.

Define the number of ezternal crossings to be the number of classes of equivalent crossings of the
graph.

An internal crossing of a juggling triple (d,x,a) is a pair (¢,j) such that 1 <7 < 7 < m,
z3 = &y, and a; > ay. For example, the juggling triple (2,(0,0,1),(1,-,1)) that appears in Figure 2
has no internal crossings, whereas the juggling triple (2,(0,0,1),(4.1,1)) has one internal crossing.
Observe that these two juggling triples have the same associated graph. No internal crossings
occur for a simple juggling triple since all the entries of the base vector are different. The number
of crossings of a juggling triple (d.x,a) is the sum of the number of external and internal crossings.
We denote the number of crossing of a juggling triple by cross(d,x.a), or by cross(a) when there is
no confusion. We define the weight of a juggling triple (d.x,a) to be ¢ to the power of the number
of crossings, that is, ¢€70%% (¢:x.a),

Following the convention for g-analogues, we define [n] = 1+q+-- +q*~Vand [n]! = [1]-[2] - - - [n].
The Gaussian coefficient, or g-binomial coefficient, is given by

MEEs =

3 Simple and multiplex juggling

We will consider simple and multiplex juggling patterns. We begin by presenting the proof of
Theorem 1 by giving an explicit bijection ®. Note that the base vector for a simple juggling
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pattern is (0,1,...,d — 1), which we denote by éq4.
Define the map ¢ from simple juggling triples to N? by ®(d,bq4.a) = (1.2, ..., dq), where
¢i=H{(u.v) € E(G) : i—-1<u<i—1+4a; <v}.

That is, ¢; counts the number of directed edges of the associated graph that crosses the edge
(1= 1,1—=1+ a;) from the “inside.” Directly we have that cross(d,éq4.a) = ¢ + P2 + - - - + Pq.

It is easy to obtain the statement
ball(d.éq4,a) = max(¢1,P2,...,¢q) + 1.

Hence @ is a bijection between simple juggling triples of period d having at most n balls and the
set {0,1,...,n— 1}¢. Now the theorem follows since '

Z Z T Z q¢1+¢2+~~+¢>4 o [n]d,

0<¢;<n—1 0<py<n—1 0<pg<n—1

Recall that for multiplex juggling a; is defined to be the outdegree at vertex j. We can now
state an analogous theorem for multiplex juggling.

Theorem 2 The sum of the weight of juggling triples, with period d, basc vector x, and at most n

balls, is equal to
PR MESAN
(6 04) (€3] Q41 '

We will use this result when the period d is 1 to prove Carlitz’s identity in Section 6. Observe that
Theorem 2 implies Theorem 1 in the case when ag = a3 = --- = a4—; = 1. We omit the proof of
this theorem, since it will follow from Theorem 4.

4 The Affine Weyl group Aq_;
We will now consider the affine Weyl group Agy_1. For more detailed accounts, see [5, 9]

Definition 2 Let Aq_; be the group of bijections o0 : Z — Z under composition, where the bijec-
tions satisfy the following two conditions:

1. o(i+d)=o0(i)+d for all e,
2. Ti(o(i) -9 =0.
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This combinatorial description of fL_l is due to Lusztig. Zd_l is a Coxeter group, and when
d > 2 it is generated by the simple reflections sg, s1,.. ., sq—1, Where

k+1 ifk=1i1mod d
si(k)=¢ k-1 ifk=i¢+1mod d
k ifk#1,14+ 1mod d.

An element o € A4_, may be written as a product of simple reflections. Define the length I(o) of
the element o as the smallest integer r such that one can write o as a product of r simple reflections.
Observe that A is the one element group.

Theorem 3 Let o be an element in Aq_, and n a positive integer such that n > max(i — o(i)) for
all i =1,2,...,d. Form the sequence a = (ay,as,...,aq), where a; = o(i) — 1+ n. Then (d,d4,a)
is a juggling triple with ball(d,64,2) = n and cross(d,é4,a) = (n—1)-d - (o).

By Theorems 1 and 3 we obtain:

Corollary 1 The Poincaré series of the group Ag_q is given by:

d
> q,(o):(l_—q_?
= 1—¢
g€EA - 1)

5 A generalization of juggling

We now consider patterns where the number of balls caught at a particular time point does not
necessarily equal the number of balls thrown at that same time point. Similar to a juggling triple
we define a juggling quadruple.

" Definition 3 . juggling quadruple (d,x,y,a) consists of a positive integer d, two vectors x =
(Z1,Z2,..y2Zm) and 'y = (y1,Y2,---,Ym) of integers, and a vector a = (ay,aq,...,a,) of positive
integers, such that the following two conditions hold:

1.0<z;,y;, <d-=1foralli=1.2..... m.

2. (a+ x) mod d ~ y, where the mod d applies component-wise.
We call d the period. x the throw vector, y the catch vector. and a the juggling sequence.

Observe that when x = y, this is equivalent to a juggling triple.

The number of balls of a juggling quadruple is not well-defined. Instead will consider the sum
S ™, a;. Observe that } i, a¢; =Y /% ,(y; — z;) mod d.
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Figure 3: A juggling pattern with d = 3, x = (0,0.2),y = (2,2,2),and a = (2,2, 3).

As before, to a juggling quadruple (d,x,y,a) we associate the following directed multigraph G
on the integers Z. The vertex set of the graph is Z and the directed edge set is given by

EG)={(zi+k-dyzi+a;+k-d) : 1<i<m, keZ}.

Let a; be equal to the outdegree at vertex j in the associated graph, and §; equal to the indegree
at vertex j. That is, for 0 < j < d — 1, a; is the cardinality of the set {t : z; = j}, and similarly
B; = |{i : yi = j}|. As for juggling triples, we define external and internal crossings in the same
manner. We say that the weight of a juggling quadruple is equal to ¢ to the number of crossings.

Let V be the linear space {(‘U)(),’U)], ceyWio1) ERY  wotwy + 4wy = 0}. Define the
lincarmap L :V — V by L(e;—e;—;)=14—d-e; for i =0,1,...,d—1 and expand the definition
by linearity. For a vector w € V, define E;(w) to be the 7th coordinate of the vector w.

To make notation easier, for two vectors n and k we write

=Ll Gl [
k] ko ky kg—v]’
where n = (ng,nq,...,n4-1) and k = (ko, k1, ..., k4—1).

Theorem 4 The sum of the weight of juggling quadruples (d.x,y,a) having period d, throw vector
X, catch vector y, and Z?:] a; < N, where N = Y72 (y; — z;) mod d, is equal to

[5-<N.1d+L<a—m)]
) .

In the case when x = y, Theorem 4 implies Theorem 2.

As for Theorem 1 there is a bijective proof of Theorem 4. The bijection is between the set of
juggling quadruples having period d, throw vector x, catch vector y, and Z?:l a; < N, and the
set of lists of d multisets My, My, ..., Mg_1, such that the entries of M, are integers between 0 and

E; (4 (N 14+ L(a = ) + B;. The bijection is as follows. Let ¥(d,x,y,a) = (41, %2, - ., bm),
where

Vi = {(u,0) € B(E) + eu<@Fasvll+ i 12 =0y ar<a:}
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Define the multiset M;, where 0 < j <d—-1by M; = {#; : a; +2z; = j mod d}. Observe that the
cardinality of M; is ;. Since we may view multisets as weakly increasing sequences and we have
the following interpretation of the Gaussian coefficient:

izt — |

this completes the proof of Theorem 4.

6 ¢-Stirling numbers of the second kind

The ¢-Stirling numbers have been well-studied in the literature. See for example (4, 6, 7, 8, 12].
Let IIx[n] denote the set of all partitions of {1,2,...,n} into k blocks. For two integers ¢ and j
define the interval int (¢, 7) to be the set

int (i,7)= {n € Z : min(z,j) < n < max(, J)}.

Observe that the interval is symmetric in ¢ and j, that is, int(z,j) = int(7,¢)

Definition 4 For two disjoint nonempty subsets B, C of {1,2,...,n}, define the intertwining
number «(B,C) to be the cardinality of the set {(b,c) € B x C : int(b,c)n(BUC) = 0}.
The intertwining number is independent of order, that is, «(B,C) = «(C,B). For a partition
© = {DB,DBy,..., By} of the set {1,2,...,n} define the intertwining number () to be

um)y= > uBy, B;).
1<i<y<k

Since the intertwining number of two blocks is independent of their order, the intertwining number
of a partition does not depend upon how the blocks are ordered.

As an example, consider the partition 7 = {{1,3,6},{2,4},{5}} in Figure 4. The intertwining
number of the two blocks {1,3.6} and {2,4} is 4, which is equal to the number of crossings between
the solid line and the dashed line. Also the intertwining number of 7 is equal to 7, which is the
total number of crossings in Figure 4.

Definition 5 The ¢-Stirling numbers of the second kind, S[n, k], are defined by

Snk]=>"¢"  (n>1andk>1),

where the sum ranges over all partitions m with k blocks, that is, llx[n]. When n = 0 or k = 0,
define S[n, k] = 6, .

Observe that the intertwining number of two disjoint blocks is greater than or equal to 1. Hence
the intertwining number of a partition = is greater than or equal to (;), where £ is the number of

blocks of #. This implies the Stirling number S[n. k] is divisible by q(:).
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Figure 4: Computation of the intertwining number of the partition 7 = {{1,3,6},{2,4},{5}}.
o) = 1({1,3,6), {2,4)) + 1({1,3.6),{5}) + «({2.4}, {5} =4+ 2+ 1 = 7.

This definition is equivalent to the definition by Garsia and Remmel [4]. There is a natural
bijection between partitions of {1,2,...,n} into k blocks, and rook placements of n — k& rooks on
the triangular board of shape (0,1,...,n —1). (This bijection is given after Corollary 2.4.2 in [11].)
It is easy to see that the intertwining number of a partition is equal to the Garsia-Remmel statistic
of the corresponding rook placement. Thus, our combinatorial approach to ¢-Stirling numbers of
the second kind differs from that of Sagan [8] and Wachs and White [12].

By conditioning on which block of a partition of the set {1,2,...,n} the element n lies, we can
easily derive the following recurrence:

Lemma 2 The ¢-Stirling numbers of the second kind satisfy
S, k)= ¢* - Sn—1,k= 1]+ [k]- S[n - 1,k],

where n, k> 1.

The following identity is due to Carlitz [3]. It is a g-analogue of a well-known identity for
Stirling numbers of the second kind. (See for example [11].) Milne proved this ¢-identity by using
finite operator techniques on restricted growth functions 7). See also de Médicis and Leroux [6] for
a combinatorial proof.

Theorem 5 (Carlitz [3])

Proof: The idea of the proof is to study simple juggling graphs of period d. We contract d
consecutive vertices of the graph to form a multiplex juggling graph of period 1. Carlitz’s identity
will follow by keeping track of what happens to the crossings in the graph under contraction.

Let (d,é4,2) be a simple juggling triple. Observe that (d,é4,a) does not have any internal
crossings. By Theorem 1, we know that the sum of the weight of such juggling triples with at most
n balls is [n]¢. Contract the vertices k -d,k-d+ 1,...,(k+1)-d — 1 of the associated graph G
into a new vertex k. We then obtain a graph associated with a juggling triple (1,0,,,c). Observe
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that 1 < m < d, since some arcs will be contracted to arcs of length 0. Thus we remove them.
Formally, this contraction is described by letting b; = lﬁd:i'—'—lJ, and removing the zero entries

from the sequence (by,bo,...,bq) to produce the juggling sequence ¢ = (c1,¢2,...,¢m). Note that
ball(d,b4,a) = ball(1,0.,,c). '

Observe that m edge-disjoint paths partition the vertex set {0,1,...,d — 1} into m disjoint
blocks. Thus this is a partition = with m blocks. Moreover, the intertwining number of x is the
number of crossings that occur between time points 0 and d — 1.

Now we see what happens to a crossing (z,y), (u,v) when the graph G is contracted. Four
cases occur. First, if the vertices y and u are contracted together, then the crossing is counted by
the ¢-Stirling number S[d, m]. In the three remaining cases, we may assume that y and u are not
contracted together. If none of the vertices z, y, u, and v are contracted together, then the crossing
remains an external crossing of (1,0.,c), and thus is counted by []. If z and u are contracted
together, but not y and v, then the crossing becomes an internal crossing of (1, 0m, c), and thus is
counted by [”]. Finally, if y and v are contracted together, then we may view this as an inversion
of a permutation of m elements. The weight of all such inversions is counted by the factor [m]!. O
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