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Abstract

~ For a Coxeter group (W, S), the product of all generators s;,...,s, in any order
is called a Coxeter element. We show that these elements correspond to acyclic
orientations of the edges of the Coxeter graph, and that these in turn correspond to
minimal recurring positions in the chip-firing game of Bjorner, Lovasz and Shor.

Winding this correspondence backwards, we find that firing a legal node in the
game means reversing all edge directions leading into a sink, which for the n-letter
Coxeter word means moving the first letter to the end. Reachability is an equivalence
relation on these game positions and it corresponds to rotation equivalence of Coxeter
words. ’

These equivalence classes are, in fact, the conjugacy classes of the Coxeter ele-
ments. Several enumerative results about the conjugacy classes follow.

Résumé

Pour un systeme de Coxeter (W,S), on appelle élément de Coxeter tout pro-
duit s;,...,s, de tous les générateurs en ordre quelconque. Nous montrons que ces
éléments correspondent aux orientations acycliques des arétes du graph de Coxeter,
ceux qui correspondent aussi aux positions recurrents minimaux dans le “chip-firing
game” de Bjorner, Lovasz et Shor.

En réversant cette correspondance, nous trouvons que le “firing” d’un sommet
légal en ce jeu signifie 'inversion du sens de tous les arétes terminants en une sor-
tie, aussi correspondant au déplacement de la derniere lettre d’une mot de Coxeter
jusqu’au debut du mot. Accessibilité est une relation d’équivalence pour ces positions
du jeu et correspond a I’équivalence relatif a rotation des mots de Coxeter.

Ces classes d’équivalence sont, en fait, les classes des élements de Coxeter con-
jugués. Plusieurs resultats énumeratifs en résultes.

1 Introduction

For the theory of finite reflection groups, Coxeter elements play an important role. A
Coxeter element is a product w = s;8;--- s, of all the generating reflections s;, taken in
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any order. All Coxeter elements are conjugate and therefore have the same eigenvalues. It
turns out that these eigenvalues immediately determine the exponents of the group, and
this is probably the simplest way of computing these numbers. :

For infinite Coxeter groups, much less is known about the Coxeter elements. A’Campo
[1] showed that they have infinite order, Howlett [6] that they have a real eigenvalue > 1.
The affine case has been treated in more detail by Steinberg [9] and by Berman, Lee and
Moody [2].

Our interest in the matter is the enumerative aspect. Surprisingly, the combinatorics
turns out to be a special case of the chip-firing game by Bjorner, Lovdsz and Shor [4]. The
connection is as follows. Given a Coxeter element w = s;s; - - - s,, we put a certain number
of chips on each vertex s; in the Coxeter graph, namely the number of neighbours s; that
succeed s; in w. Every Coxeter element gives rise to a well-defined distribution of chips
and the legal play sequences correspond to rotations of the n-letter words. As a second
surprise, the reachability relation partitions these game positions precisely according to
conjugacy classes.

2 Edge orientations and chip-firing

Let G be a connected, undirected graph. An acyclic edge orientation is an assignment of
directions to all edges, such that the resulting digraph is acyclic. This is always possible.
A simple observation is that the resulting digraph contains at least one sink, i.e. a vertex
with no out-going edges.

We go on to explain the connection with the chip-firing game of Bjorner, Lovasz and
Shor, introduced in [4]. If each arrow-head is detached and pronounced a chip, we get a
distribution of chips on the vertices. This distribution contains all information, as stated
by the following result.

Proposition 1. An acyclic edge orientation can be retrieved from its distribution of chips,
i.e., the in-degrees determine all edge directions.

ProoF. It is well-known that an acyclic digraph must have a sink, so for some vertex, the
number of chips equals the degree. That reveals the orientation of all edges at that vertex.
But after removing these edges and their chips, we still have a distribution corresponding
to an acyclic edge orientation, so the procedure can be continued until all edge orientations
have been revealed. O

A legal move in the game consists of choosing a vertex with at least as many chips as
the degree and then moving one chip to each neighbour. Translated into edge orientations,
a legal move means choosing a sink and reversing its edges. Since neither sinks nor sources
belong to any cycles, the graph will still be acyclic and contain a sink, so the game goes
on forever. The following fact is crucial.

Proposition 2. Let u and v be two acyclic edge orientations. Then there is a legal game
from u to v if and only if there is a legal game from v to u.
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PRrOOF. If a single move can be inverted, so can a sequence of moves. Thus; it is sufficient
to consider the case when v is the result of firing a single vertex in position u. In order
to prove this by induction, we first strengthen the property like this: For every vertex r
that can be fired in position u, there is a continuation in which every other vertez is fired
ezactly once. Clearly, such a firing sequence leads back to u.

The statement is true for the case -<— and induction over the number of vertices
proves the proposition: Fire some vertex z, to reach some position u;. Let u; — z be the
acyclic edge orientation obtained by deleting z and its edges. By the induction assumption,
it is clear that there exists a firing sequence from u; —z in which all vertices are fired exactly
once, and this is still legal after reinserting z and all its edges, since these edges are directed
out fromz. O

Remark 1. According to this result, reachability constitutes an equivalence relation that
partitions acyclic edge orientations into reachability classes.

Remark 2. The proposition is not generally true for chip-firing games. The simplest
counterexampleis u = 29 0 and v = 110 The position u can never reappear, although

the game is infinite.

By Theorem 3.3 in [4], the total number of chips in an infinite game must be at least
equal to the total number of edges. The distributions considered by us have exactly one
chip for each edge, so they are minimal among infinite game positions. This minimality,
together with the recurrence property in the last proposition, characterizes these positions.

Definition. A position is recurrent if there is some game in which it occurs twice. It is
minimal recurrent if no chip can be removed without destroying the recurrency.

Proposition 3. Minimal recurrent chip-firing positions are precisely positions correspond-
ing to acyclic edge orientations.

PrROOF. By Theorem 4.1 in (3], for any recurrent position u, there is a recurrent game
from u to u such that each vertex is fired exactly once. So along each edge a chip is fired
in each direction. Let us always use the same chip on the return route! After the game,
remove all chips that were not used. The result is a position corresponding to an edge
orientation. Further, it must be acyclic, for all vertices are fired and vertices in a circuit
can never be fired. O '

For many graphs, it is now a rather simple matter to enumerate acyclic edge orientations
and reachability classes. Two basic cases are covered by our next proposition.

Proposition 4. For a tree with n nodes, there are 2"~ acyclic edge orientations but only
one reachability class. For an n-cycle, there are 2™ — 2 acyclic edge orientations and n — 1

reachability classes of sizes ("), ('2‘), i ( n )

1 n-1
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PROOF. An n-vertex tree has got n — 1 edges with no restrictions on orientations. The
statement that all are reachable from each other is obvious for a two-vertex tree «-—-.
Assume that it is true for all n-vertex trees and consider an (n + 1)-vertex tree T,4; =
x—T, (where z is a leaf vertex) and two acyclic edge orientations on Ty41, v and v. By
assumption, their restrictions to T, can be connected by a game and if z is fired whenever
possible, this also defines a game on T,41, say from u’ to v'. Now, either v’ = u or v’ is
the result of firing z in u. The same argument for v’ confirms that u and v are in the same
reachability class.

For an n-cycle, exactly two orientations are forbidden, namely all n clockwise or all n
anti-clockwise. Consider the :) orientations with k anti-clockwise edges. Firing a node
may be seen as moving the anti-clockwise arrow one step forward, e.g. «+——-s=—— to

It is obvious that any position with k anti-clockwise arrows can be reached in this way.

O

3 Coxeter elements

An irreducible Cozeter group (W, S) is defined by a connected, edge labelled graph G with
vertex set S and labels in {3,4,...}. The group W is generated by the s; € S modulo the
relations s? = e (generators are involutions) and
s;s; = s;s; when there is no edge between s; and s;,
(si3;)™ = e when there is an m-labelled edge between them.

A product of all n generators, in any order, is called a Cozeter element. Two permutations
of s1,...,sn define the same Coxeter element if and only if one can be transformed into
the other by repeated application of the commutation rule s;s; = s;js; for nonconnected
vertices. This is a consequence of Tits's Word Theorem (see Brown [5]). Because of this,
the edge labels are not so important in our line of investigation. In most cases, we shall
not even mention them in our statements.

Every permutation of s;,...,s, induces an acyclic edge orientation on G by directing
the edge s; «— s; if s; precedes s;. Bu the above, we have the following simple result.

Proposition 5. There is a bijective correspondence between Cozeter elements and acyclic
edge orientations of the Cozeter graph.

We can choose a slightly different outlook and regard the acyclic edge orientation cor-
responding to a certain Coxeter element w as a poset. A specific n-letter word in the s;
representing w can be viewed as a linear eztension of the partial order and there is of
course a wealth of enumerative results to be applied. We confine ourselves to the following
useful observation.

Proposition 6. The sinks of the acyclic edge orientation corresponding to a Cozeter ele-
ment w are the s; that appear as the first letter of some n-letter word representing w. The

-148-



number of such words starting with s; can be expressed as

( n-l >e<G1)e(Gz>-~-e(Gk),

ny...0N0k

where the G; are the components of G — si, n; = |G;| and e(G;) denotes the number of
linear ertensions of the poset G;. This formula gives a recursion for the computation of

e(G).

PROOF. In any n-letter word representing w, each sink s; has all its vertex nelghbours
to the right, so it can be freely moved to the left end of the word.
The n; letters in component G; may come in e(G;) different relative orders. The factor

Sn:‘ i reflects the number of ways that the n — 1 positions after the first letter may be

istributed over the G;. D
If the first letter of a Coxeter word is moved last, the correponding vertex obviously
changes from sink to source. Conversely, every sink is a first letter of some Coxeter word
corresponding to the edge orientation and therefore, any chip-firing play corresponds to
rotation of the word.

Proposition 7. Rotation of Cozeter words induces an equivalence relation on the set of
Cozeter elements, that corresponds precisely to the reachability relation on the set of acyclic
edge orientations.

If w=s;8;-5,, then sws]! = s55---5,5, so rotation equivalent elements are conju-
gate. The converse is also true.

Proposition 8. Cozeter elements belong to the same conjugacy class if and only if they
are rotation equivalent.

PROOF. What we have to prove is that acyclic edge orientations in different reachability
classes correspond to nonconjugate elements. According to Proposition 4, there is nothing
to be proved when the graph is a tree. We refer to [5] for a proof in the general case. The
principal idea of this proof appears in the proof of our next proposition. O

For an important class of Coxeter groups, including all finite and affine groups, propo-
sitions 4, 7 and 8 enumerate conjugacy classes of Coxeter elements. For the tree case, this
is an old result (see [7], 8.4) but the cycle case may be new. Recall that an n-cycle with
all edges labeled by 3 is the graph of the affine group denoted by A,._;.

Proposition 9. In A,_; (and in all groups with n-cycle Cozeter graphs) the Cozeter ele-

) (;), 0555 (n 1) A representatwe

ozeter element w = s;, ---s;, be-

n

ments fall into n—1 different conjugacy classes of sizes (lc)
of the k-th class is wy = 5182 SkSpSn—1 - Sk41. A
longs to class k if ezactly k of the indices precede their numerical successors. The nume'rical
successor of ¢ is defined as 1 + 1, unless 1 = n in which case it is 1.
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PROOF. In the proof of Proposition 4, class k is characterized as having k anti-clockwise
oriented edges s; «— s;;1, and that is also the number of s; that precede s;41 in wg. What
remains to be shown is that wy and wy are nonconjugate if k # k'. Instead of referring to
the previous proposition, we shall give a direct argument.

If two group elements are conjugate, then so are their m-th powers. Let us study
elements of the form s;w{"s;, where m = n! (or at least divisible by 1,2,...,n— 1). When
s; is a sink or a source, this is of course a one-step rotation of wy'. We shall prove that in
all other cases, it is equal to w( itself! Then, we can iterate and draw the conclusion that
every conjugate of w( is a rotation, whence the statement about wy can be deduced.

In fact, s;wx = wesi—; if 3 <1 < k and sjwx = WkSita fk4+2<i:1<n-1,ascan
be verified directly. The double-step relations s;w} = wisx and spw? = wisr42 have more
complicated, but still trivial, verification. We conclude that, unless s; is the first or last
letter in wg, we have s;w™ = wps; if m is divisible by k and by n — k. The remaining
details are easy. O

Example. Consider As. In the Coxeter element w = $385515254, 1, 3 and 5 precede their
numerical successors, so w 1s conjugate to w3 = $152538534. In fact, we have uwu™! = w;

with u = s48553.

In A._, (as in all Coxeter groups with n generators), there are n! Coxeter words and
one may ask how many of these that fall into each conjugacy class. We know that rotating
the word does not alter its conjugacy class, so it is enough to consider permutations where
n comes last. In that case, n does not precede its numerical successor, so the conjugacy
class number k is (n — 1) minus the number of inversions among numerically adjacent pairs
(1,2),(2,3),...,(n —2,n —1). Ignoring the n we get a permutation 7 € Sp—;. Now, 7 +1
precedes r in 7 if and only if 7 is a descent in 71, so we can write k = n—1—d(r~!). But
it is known that the Eulerian numbers count permutations with given number of descents.

The definition is
A(n —1,m) = |{7 € Snoq 1 d(r) = m = 1},

see Stanley’s book [8]. Putting m = n — k we get the following formula. Recall that there
are n rotations of every word obtained above.

Proposition 10. In A,_; (and in all groups with n-cycle Cozeter graphs), the n! words
representing Cozeter elements are partitioned by conjugacy into n — 1 classes of sizes

nAln—1,n—k) fork=1,...,n—1.
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