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Abstract

Let r(w) denote the number of reduced words for an element w in a Coxeter group
W. Stanley proved a formula for r(w) when W is the symmetric group An, and he
suggested looking at r(w) for the affine group An. We prove that for any afRne Coxeter
group Xn there is a. finite number of types of elements in Xn, such that to every element
w can be associated a type <, an element v in the finite group Xn, and an n-tuple
(mi, m;,..., mn) of integers m; > 0. Then r(w) = r^(mi,..., mn), and for every r^
and for large enough m,, a homogeneoiis linear n-dimensiona. 1 recurrence holds. For
An, this takes a nice combinatorial form. We also discuss a canonical reduced word for
w associated to its n-tiiple.

Resume

Soit r(w) Ie nombre de mots reduits pour un element w d'un groupe de Coxeter.
Stanley a demontre une formule pour r(w) au cas du groupe symetrique An, et il a pose
Ie probleme d'analyser r(w) pour Ie groupe affine An. Nous montrons qu'il y a, pour
tout groiipe de Coxeter affine Xn, iin nombre fini de types d'elements tels qu'on peut
associer a chaque element w iin type. (, un element v du groupe fini Xn et une suite
(mi, m2,.. ., mn) d'entiers m; ^ 0. Alors, r{w) = r^(mi,..., mn) et pour m; assez
grands, r^ satisfait a une reciirrence homogene lineaire n-dimensionelle. Pour An, cela
prend line forme combinatoire plaisante. Noiis presentons aussi une decomposition
reduite canoniqi ie pour w, associe a la suite des m,.
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1 Introduction

For an element w of a Coxeter group (W, S), a reduced decomposition of w is obtained by
writing zu as a minimal product of generators. Let r(w) denote the number of reduced
decompositions of ?u. For example, in A;, the symmetric group on three elements generated
by the adjacent transpositions si = (12) and s^ = (23), the transposition (13) has two
reduced decompositions: ^iSz^i and s^s-iS'i.

Stanley [5] and Greene-Edelman [1] studied the number of reduced decompositions of
elements in An, showing an intimate relationship with standard tableaux of the corresponding
shape. Haiman [2] generalized their work to include the finite Coxeter group Br, as well.
Thus, for most finite Coxeter groups, the combinatorics ofr(w) is very well understood. In his
paper [5], Stanley also suggested that one should study the number of reduced decompositions
in the affine group An. This is our purpose here.

We will mainly do the following. By working in the Coxeter complex, we shall show
that for any affine Coxeter group Xn corresponding to a finite Coxeter group Xn, there is a
fiiiite number of typea of elements in Xn, such that to every element w can be associated a
type (, an element v from the finite group Xn, and an n-tuple (mi, m;,..., mn) of integers
m, ^ 0. Tlius, for any type ( and element v   Xn, we can define the more concrete
function r^(mi,... , m,, ) = r(iu). Every r;' is then shown to satisfy a homogeneous linear
n-dimensional recurrence. For any fixed type /,, the same recurrence will hold for every v
but witli differeiit .start valiies depeiicliiig on tlie element v.

We will also clisciiss a caiionical rediiced word for 111 related to v, t and (mi,... , m»).

Example. For AT. there are two types, and tliere are six elements v in the finite
groiip A;. Ill tlii.s ca.se the reciirrence is in fact independent also of the type, so that
for botli types /. we liave

r;'(mi, m.^) = r;'(mi - 1, 7712) +r^{m^m-i - 1).

Al.so, in tliiy ra.se tlie start conclitioiis are independent of v; for every v we liave
7-;'(0, ?n) = 7-;'(7»., 0) = 1 for all m > 0. Thus, in tliis case (dropping v and /. ) we get
tlie very siinple pxplicit formiila

r(mi, m-i) =
m-i + m-i

mi

2 A geometric construction

Let Xn denote ail arbitrary fiiiite reflection groiip ill R", geiierated by n Coxeter generators
o-i,... , (T,., and let. 7^ be tlie arrangeineiit of reHecting liyperplanes, splittiiig R" into cones.
Tlieii tlie group eleiueiit. y correspond bijectivply to the cones. Every cone is bounded by n
walls, aiicl tliey rail be caiioiiically lal)ele<l by ai through ^n, siich tliat when one cone is
ma])ped to aiiot. lier via a sequeiice of reHection.s, tlie labeliiig of tlie walls is invariant.
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Example. We will present a running example with B-t as the Coxeter group "Xn".
^2 is the group of 8 elements generated by reflections in two lines with an angle
between them of 45°.

Figure 1: The liyperplane arrangement of Coxeter group Bi. The affine hyperplane used to
generate B^ is indicated.

The affine group Xn corresponding to the finite group Xn is obtained by adding to the
yet of generators a reHectioii in an affine hyperplane parallel to one of the hyperplanes in 1-L.
Let 7i denote tlie infiiiite affine liyperplane arrangement; thus "H. C'H.

Figure 2: Tlie affiiie liyperplane arrangeinent of affine group B'^, witli tlie fuiiclameiital alcove
Co pciiiitecl.

Let C be the alcove coniplex defined by 'H, and let Co be the fundamental alcove. A gallery
is a walk in the complex, and a minimal gallery is a shortest possible gallery between two
alcoves. Any alcove C 6 C defines an interval [C'o, C'], which is the subset of C consisting of
all alcoves that you can visit by walking minimal galleries from Co to C, which is equivalent
to walks that cross only liyperplaiies that separate Co from C. If nic   Xn is the group
elenient corresponding to alcove C, tlie interval [C'u, C>] is isomorpliic to the interval [e, «;c]
in tlie weak order of A'n.

What \ve are going to do is covering the complex C by a finite set of congruent cones,
V = {Vz:x ̂ . X,, }, wliere eacli 14   V is bounded by some hyperplanes in 'H. We identify

<
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Figure 3: The interval [Co, C} with the three minimal galleries indicated.

a cone with the set of alcoves contained in it. This covering will have the following three
properties :

(l)l4^l/, if.r^y, (2) H 14= Co, (3)C V^[C'o, C]cVforallV6V
r6Xn

In words, there is one particular cone K for every element x in the finite group .¥", only
tlie fuiidamental alcove Co lies in every cone, and all minimal galleries between Co and any
given alcove C stay in the cone in wliich C lies. Note that (3) implies

(3') C  D ^ ^ [G,, C1] C H V for all subsets V C V,
vev v^v'

tliat is, if tlie alcove C lies in tlie intersection of several cones, then every minimal gallery
froiu Cu to C miiKt l)e also contained in this intersection.

Tlie coiies arc ronst. ructed ill tlie following way. Build a thick wall from a i)<iir of successive
I>arallel liyperplaiies ill H enclosing the fundamental alcove Co. In other words, eacli of the
liyi)er])la. iics in tlie fiiiite arraiigement 'H is tliir. kenecl to a thick wall containiiig Co. Now,
wliat we liave got, is a tliickeiicd versioii of the liyperplane arrangement for .Y,,, .so these tliick
walls I)OIIIKI a set, of \Xn\ tliick coiie.s, aiid tliere is a natural way of <isyigi>iiig a tliick roiic
V,, to every <lleiii(liit. v of .Y,,. (A tliick roiie coiitains its tliick walls.)

Figure 4: Tlie thickened arrangement of 8-2.
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Lemma 1. The setV = {V^ :v G. Xn] of thick cones has the properties (1), (2) and (3)
above.

PROOF (1) is clear from above. (2) follows immediately from the construction. To prove
(3), let C be an alcove in Vv. Since a gallery from C to CQ that leaves the cone V^ must also
reenter the cone, it must cross some bounding hyperplane twice. Thus it cannot be minimal,
so all minimal galleries from C to Co stay in the cone. D

Thanks to this lemma we know that when counting minimal galleries we can restrict our
attention to one thick cone instead of the entire complex. We shall now break the thick cone
Vv into smaller pieces. V,, is bounded by n thick walls, with a natural labeling Hi, H-^,. .., Hn
induced by the labeling of the corresponding thin walls. Make Vv into a lattice of cells by
subdividing it by all liyperplanes of 'H that are parallel to any of the bounding hyperplanes
of V,,. The figure should make the situation clear.

/ 1 / y_ /

(0.2) (1^1 (2. 2)

t0. 1) / (1. 1) / (2, 1)

(0.0) / (1.0) / (2.0) / H

Figiire 5: The cell decomposition of a thick cone.

Note tliat siiice tlie subdivision is caused by a subset of 'K, the alcoves are finer objects
tliaii tlie cells. Every cell will l>e a iinion of alcoves of C. Tlie apex of a cell is the vertex
closest to tlie origiii.

Lemma 2. Every cell of a cmic V,, is composed of alcoves ill the samt: wuy, and every possible
oricidal.imi of alcoves occiir.s exactly oiice in every cell.

PltOOF Witli respect to tlie affine hyperplane arrangement, the apex of any cell is equivaleiit
to tlie origiii, since tlie n walls (of the cell) containing the apex are parallel to the n walls
boiinding a cone ill the .Y,, -arrangement, so by reflections they generate an isomorpliic hy-
perplaiie arrangement tlirough the apex. Together with one of the other walls they generate
tlie entire affiiie arraiigemeiit. Hence, froin an apex the arrangement can only look in exactly
one way, so ill particular every cell must look the same. Also, from any alcove of the same
orientation as tlie alcovc at the apex of the cell, the arrangement can only look in one way.
Since there are 110 adflitional liyperplanes parallel to cell walls, there can be just one alcove
of this orientatioii ill every cell, and by symmetry the same must hold for every orientation.
a

Tlius. if there are k possible orientations of alcoves, then an arbitrary cell D consists of k
alcoves. Since one tliick cone can be obtained from another by reflections and translations,
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Figure 6: A 52-cell and its decomposition into alcoves of four types.

the alcove decomposition of all thick cones are of course isomorphic. Therefore, we define
the type of an alcove in a specified cone to be the orientation relative to the cone. If there
are k different orientations of alcoves, then there are k types of alcoves.

Lemma 3. Let p(Xn) be the number of parabolic subgroups of Xn that are isomorphic to
A,,. Let k be the number of possible orientations of alcoves in Xn. Then

k= |A-n|
p(^)

PROOF A maximal parabolic subgroup can be identified with a vertex of tlie fundamental
alcove, since the n walls of the alcove that contain the vertex correspond to n generators.
Tlie p(X,, ) parabolic yubgroiips isomorphic to Xn can be identified with the vertices of the
finidaniental alcove tliat are eqiiivalent to the origin with respect, to the affine arraiigement.

Siiice liyppr()laiie, s of all orieiitations nieet, at tlie origiii, clearly, all possible orientations of
alcovc. s are rei)r<\s<aiit. p(l aiiioiig tlie |.Y,J alcoves tliat toucli tlie origin. Of the.se t. liere arc
;;(.Y,t) oriented a.s tlie fiiiidaineiital alcove, oiie for eacli tran.slation of tlie origin-eqi iivaleiit

verticc.s to tlie origiii. By yyinmetry, tliere are p(Xn) alcovey of each orientatioii among tlic
IA-,. 1. a

For a cell Z5, let, D, t>e (. lie alcove of type ( in D, wliere t is one of tlie k possil)le types. We
rail iiidex tlie cells of V,, by 71 iioiiiiRgative integer indices siicli tliat Z5"(0, 0,... , 0) is tlie cell
at. tlie apex of tlie roiie, and 25"(mi, 7/>..j,..., m,, ) iy tlie cell -separated froni Z5"(0, 0,.. . , 0)
by in, liyi)erplaiies [)arallel to //, for all i. = 1, 2,... , /i.

TliiiK, every alcove of tlie cone V,, caii l)e described uniqi iely a5 D;'(mi,. . . , m, J for some

iiidice.s rn,,..., m,, ^ 0 and soine type /..

3 Counting minimal galleries

We are interested in tlie iiuniber of reduced (lecompositioiis for an element vi   .Y,,, wtiicli is
equivaleiit to tlie liiiiiilj er of iniiiiinal gallerie.s between tlie corresponcling alcove C',,, and the

fuiida. inental alrove C'o. C.',,, beloiigs to soine tliirk coiie V,, 6 V (possibly to several) and we
kiiow tliat, (. lie iiiiiiiiiial galleries iiever leave tliis coiie.

Let r(C7) rleiiot. e tlie iiiiinl)er of niiiiiinal galleries to tlie Alcove C. A funclaineiital o!)ser-
vatioii iy tliat., ii.siiig t. lie roveriiig relat. ioii of tlie weak order,

r((^) ^ i^7'(C") summed over all C' covered by C
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( By the analysis in the previous section, we know that any alcove C in cone V,, can be uniquely
described ds D\'(m. i,..., m.n)i for some type t and indices mi,.. ., mn. Thus, we may define
r^(mi,... , mn) := ?. ( '), the number of minimal galleries between the fundamental alcove
Co and D'f{m-i,..., nin). We know that all covering relations occur within the cone Vv. For
inner cells, when all mi,..., mfc ̂  1, it is not hard to prove (but omitted here) that the form
of the sum will depend on the type of the alcove only, that is, for all inner cells an alcove
of a given type t has always isomorphic covering relations. Thus, if there are k types, the
relation above implies a system of k recurrences for the r^.

Example. In B^ there are foiir types, which we may number 1 through 4 by decreas-
ing distance from the apex of the cell. For brevity, we do not specify the cone u, since
the recurrences do not differ, but only the boundary values. The figure below shows
tliat tlie recurrences are:

ri(mi, m2) ^^m^m^}
r2(mi, m2) = r3(mi, m2)
r3(mi, m2) = r4(mi, m2) + ri(mi, m2 - 1)
r4(mi, m2) =ri(mi - l. m, ) + r2(mi, m; - 1)

Eliiniiiation gives a single recurrence, whicli for any type t has the form:

r((mi, m2) = r((mi - l, m2) + 2r<(mi, m2 - 1)

Figiire 7: Tlie arrows sigiiify the covering relatioiis lietweeii alcoves ill B^.

Tlie exaiii]»le al)ovp is ([iiite reprpspntative for tlie general sitiiation. We liave a system
of ^ lioiuogeiieoiis, fir.st-order liiiear recurrences:

n = ^Ai. t-rc
('

wliere A( c is a flrst-OKler clifFerenre operator, plus a term 1 whenever tlie alcove of type (
covers tlie alcove of type t' ill an inner cell. Give the types any ordering satisfying (' > ( wlien
/ covers /' in ttie roll. Tliu.s, ill t. liis ordering tlie difference operator A(, (' ha.s no constaiit
tcrni wlien f' < f.

We can now express tlie syst.eiii of recurrences as a matrix miilti])lication:
\/(1-Ai. i) -Ai,, ... -Ai,,

-A,, i (l-A^., ) .. - -A^.,

\ -A^..i -A k.2 :l-. \t,, )/ \r,/

/rl\
7-2

/0\
0

\0/
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All elements below the diagonal lack constant terms, while all diagonal elements have con-
stant term 1. It is easy to verify that this property is preserved during Gaussian elimination
without pivoting. Thus, by completing the Gaussian elimination, we arrive at a diagonal
matrix diag(l - A/(), or equivalently, a system of k independent linear recurrences:

r(=A/<r,, <=l, 2,..., A:,

for some constant-free difference operators A{. The total degree is bounded by 2<:-1, because
in the initial matrix the degrees were bounded by one, and for every row that is eliminated
the maximum degree can be at most doubled. Let us state this as a theorem.

Theorem 4. For every alcove type t there is a constant-free difference operator ^ of degree
^ 7k~l such that tlie numbers of minimal galleries r((mi,... , mn) satisfy the homogeneous
n-dinieiisional linear recurrenc.e

r((mi,..., mn) = A(7-((mi,... , mn)

vihenever all nt, are. sufficiently large.

4 Remarks

Remark 1. For tlie affine groiip A,,, there is a more combinatorial way of stating the
rccurrencRs. Leniina 3 gives for A,, tliat tlie number of types is k = (n + l)!/(n + 1) = n!,
so oiie slioul<l look for a iiatural hijection between orientations ( and pennutations TT =
TTiTT.^ . . . 7T, i 6 5',, = A,, -i. Tlie easy way is to change the shape of the cells a little, so tliat
tliey coiiicide witli co.sei.s isoiiiorpliic to the parabolic subgroup A,i_i. After gaining a lot of
iii.siglit (ask llie aiitlior for <letails!) one can present the following permutational version of
tlie reciirrence. s:

Theorem 5. Let D{^) be. the desccni fict of TT, let 5, denote the trnnsposition (i, i + 1) for
;' = 1, 2,. .. , 71- 1 (Hltl Ir. t T be the rotatinn operator defined by r{TT\TT-i ... TT,, ) = T^,, V\ .. . 7Tn_i.
Tlic. c. lc. iiieiits ill d (jivcii cmif: of A^ may hr. indexed by a pernndation TT and mi,.. . , rrin such
t. lidt. 7-n. satisficfi the. rrcurrciicc

Tn(lU^. . . , /»") = ^ r, ^(in^.. . , m,. ) + r^(mi,... , m^ - l, m^, +i + 1,.. . , ?"")
. 6D(^)

Remark 2. Tlie geoiiietric coiistnictioii al.so give.s a canonical rpfluced expressioii for 111.
Tlie coiie C roiitaiiiiiig »» is si)aiinpfl liy n directions, and a canoniral way of getting to zu is
l)y first goiiig ill direction 1, then in direction 2, and so on, last going in direction n. Walking
ill direction i rorrespoiids to an infiiiitc periorlic word u;. Ask the author for details!

Theorem 6. Every demnit of Xn has a reduced c. ipression of the form uii^---un wfiere
fvcry K, is a factor of (lie nifinitc periodic word v,.

For exaniple, if .->, /, u are tlie generators of Ai, then every i» 6 A; has a reduced word of
t. lie fonii (. . . stti.ft. v . .. )(... siitsiif ... ).

Remark 3. Tlie ol)vioiis use of tlie recurrencey would be to find asymptot. ics for r^. No
work ill tliiy area lias l)eeii doiie ds yet (at lea-st not to tlie author's knowledge).
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