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Abstract

Let r(w) denote the number of reduced words for an element w in a Coxeter group
W. Stanley proved a formula for 7(w) when W is the symmetric group A,, and he
suggested looking at r(w) for the affine group An. We prove that for any affine Coxeter
group X, there is a finite number of types of elements in X, such that to every element
w can be associated a type t, an element v in the finite group X,, and an n-tuple
(my,mg,...,m,) of integers m; > 0. Then r(w) = r{(m4,...,m,), and for every r}
and for large enough m;, a homogeneous linear n-dimensional recurrence holds. For
A,, this takes a nice combinatorial form. We also discuss a canonical reduced word for
w associated to its n-tuple.

Résumé

Soit r(w) le nombre de mots réduits pour un élément w d’un groupe de Coxeter.
Stanley a démontré une formule pour 7(w) au cas du groupe symétrique A,,, et il a posé
le probleme d’analyser r(w) pour le groupe affine A,. Nous montrons qu’il y a, pour
tout groupe de Coxeter affine X,,, un nombre fini de types d’éléments tels qu’on peut
associer a chaque élément w un type t, un élément v du groupe fini X,, et une suite
(m1,mg,...,m,) d’entiers m; > 0. Alors, r(w) = r¥(my,...,m,) et pour m; assez
grands, r} satisfait & une récurrence homogene linéaire n-dimensionelle. Pour 4,,, cela
prend une forme combinatoire plaisante. Nous présentons aussi une décomposition
réduite canonique pour w, associé a la suite des m;.
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1 Introduction

For an element w of a Coxeter group (W, S), a reduced decomposition of w is obtained by
writing w as a minimal product of generators. Let r(w) denote the number of reduced
decompositions of w. For example, in Az, the symmetric group on three elements generated
by the adjacent transpositions s; = (12) and s; = (23), the transposition (13) has two
reduced decompositions: s;s2s; and s25152.

Stanley [5] and Greene-Edelman (1] studied the number of reduced decompositions of
elementsin A,, showing an intimate relationship with standard tableaux of the corresponding
shape. Haiman [2] generalized their work to include the finite Coxeter group B, as well.
Thus, for most finite Coxeter groups, the combinatorics of r(w) is very well understood. In his
paper [5], Stanley also suggested that one should study the number of reduced decompositions
in the affine group A,. This is our purpose here.

We will mainly do the following. By working in the Coxeter complex, we shall show
that for any affine Coxeter group X, corresponding to a finite Coxeter group X, there is a
finite number of types of elements in X.., such that to every element w can be associated a
type ¢, an element v from the finite group X,, and an n-tuple (my, ms,...,m,) of integers
m; > 0. Thus, for any type ¢ and element v € X,, we can define the more concrete

function r¥(my,...,m,) ' r(w). Every r} is then shown to satisfy a homogeneous linear
n-dimensional recurrence. For any fixed type ¢, the same recurrence will hold for every v
but with different start values depending on the element v.

We will also discuss a canonical reduced word for w related to v, t and (m,,...,m,,).

Example. For A, there are two types, and there are six elements v in the finite
group A,. In this case the recurrence is in fact independent also of the type, so that
for both types t we have

Y (my,my) = r/(my — 1,ma) + ry(my, mqg — 1).

Also, in this case the start conditions are independent of v; for every v we have
77(0,m) = 7}(m,0) = 1 for all m > 0. Thus, in this case (dropping v and t) we get
the very simple explicit formula

my + m2>

mg

r(my,mp) = <

2 A geometric construction

Let X, denote an arbitrary finite reflection group in R", generated by n Coxeter generators
a1,...,0., and let H be the arrangement of reflecting hyperplanes, splitting R" into cones.
Then the group elements correspond bijectively to the cones. Every cone is bounded by n
walls, and they can be canonically labeled by o) through o,, such that when one cone is
mapped to another via a sequence of reflections, the labeling of the walls is invariant.
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Example. We will present a running example with B, as the Coxeter group “X,”.
B, is the group of 8 elements generated by reflections in two lines with an angle
between them of 45°.

Figure 1: The hyperplane arrangement of Coxeter group B;. The affine hyperplane used to
generate B, is indicated.

The affine group X, corresponding to the finite group X, is obtained by adding to the
set of generators a reflection in an affine hyperplane parallel to one of the hyperplanes in H.
Let ‘H denote the infinite affine hyperplane arrangement; thus H C H.
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Figure 2: The affine hyperplane arrangement of affine group B,, with the fundamental alcove
Cy painted.

Let C be the alcove complex defined by H, and let Cy be the fundamental alcove. A gallery
1s a walk in the complex, and a minimal gallery is a shortest possible gallery between two
alcoves. Any alcove C € C defines an interval [Cy, C], which is the subset of C consisting of
all alcoves that you can visit by walking minimal galleries from Cy to C, which is equivalent
to walks that cross only hyperplanes that separate Co from C. If we € X, is the group
element corresponding to alcove C., the interval [Cy, C] is isomorphic to the interval (e, wc]
in the weak order of .Y,,.

What we are going to do is covering the complex C by a finite set of congruent cones,
V = {V;:z € X,}, where each V, € V is bounded by some hyperplanes in H. We identify
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Figure 3: The interval [Co, C] with the three minimal galleries indicated.

a cone with the set of alcoves contained in it. This covering will have the following three
properties :

W V.£V,ifety, 2) (| Vo=Co (3)C€V=[CoClCVforalVeV
T€Xn

In words, there is one particular cone V; for every element z in the finite group Xu, only
the fundamental alcove C, lies in every cone, and all minimal galleries between Co and any
given alcove C stay in the cone in which C lies. Note that (3) implies

3)Ce () V=I[CoC]C () V for all subsets V' C V,

VeV’ Ve’

that is, if the alcove C lies in the intersection of several cones, then every minimal gallery
from Cy to C must be also contained in this intersection.

The cones are constructed in the following way. Build a thick wall from a pair of successive
parallel hyperplanes in H enclosing the fundamental alcove Co. In other words, each of the
hyperplanes in the finite arrangement H is thickened to a thick wall containing Cy. Now,
what we have got is a thickened version of the hyperplane arrangement for X, so these thick
walls bound a set of |X,| thick cones, and there is a natural way of assigning a thick cone
V, to every element v of X,. (A thick cone contains its thick walls.)
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Figure 4: The thickened arrangement of B,.
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Lemma 1. The set V = {V, : v € X,} of thick cones has the properties (1), (2) and (8)

above.

PROOF (1) is clear from above. (2) follows immediately from the construction. To prove
(3), let C be an alcove in V,. Since a gallery from C to Cy that leaves the cone V, must also
reenter the cone, it must cross some bounding hyperplane twice. Thus it cannot be minimal,
so all minimal galleries from C to Cy stay in the cone. O

Thanks to this lemma we know that when counting minimal galleries we can restrict our
attention to one thick cone instead of the entire complex. We shall now break the thick cone
V, into smaller pieces. V, is bounded by n thick walls, with a natural labeling H,, H, ..., H,
induced by the labeling of the corresponding thin walls. Make V, into a lattice of cells by
subdividing it by all hyperplanes of H that are parallel to any of the bounding hyperplanes
of V,. The figure should make the situation clear.

Z " 4 4 Z
/ ©2) / (12) / @2 /
/(0.1)/(1.1)/<2.1)/
/ (0.0) / (1.0 / 20 / H,

Figure 5: The cell decomposition of a thick cone.

Note that since the subdivision is caused by a subset of 7:(, the alcoves are finer objects
than the cells. Every cell will be a union of alcoves of C. The apez of a cell is the vertex
closest to the origin.

Lemma 2. Every cell of a cone 'V, is composed of alcoves in the saume way, and every possible
orientation of alcoves occurs exactly once in every cell.

Proor With respect to the affine hyperplane arrangement, the apex of any cell is equivalent
to the origin, since the n walls (of the cell) containing the apex are parallel to the n walls
bounding a cone in the X, -arrangement, so by reflections they generate an isomorphic hy-
perplane arrangement through the apex. Together with one of the other walls they generate
the entire affine arrangement. Hence, from an apex the arrangement can only look in exactly
one way, so in particular every cell must look the same. Also, from any alcove of the same
orientation as the alcove at the apex of the cell, the arrangement can only look in one way.
Since there are no additional hyperplanes parallel to cell walls, there can be just one alcove
of this orientation in every cell, and by symmetry the same must hold for every orientation.
a

Thus. if there are & possible orientations of alcoves, then an arbitrary cell D consists of &
alcoves. Since one thick cone can be obtained from another by reflections and translations,
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Figure 6: A By-cell and its decomposition into alcoves of four types.

the alcove decomposition of all thick cones are of course isomorphic. Therefore, we define
the type of an alcove in a specified cone to be the orientation relative to the cone. If there
are k different orientations of alcoves, then there are k types of alcoves.

Lemma 3. Let [)(Xn) be the number of parabolic subgroups of X, that are isomorphic to
X,.. Let k be the number of possible orientations of alcoves in X,,. Then
| Xl
p(Xn)

k=

PROOF A maximal parabolic subgroup can be identified with a vertex of the fundamental
alcove, since the n walls of the alcove that contain the vertex correspond to n generators.
The p(X,) parabolic subgroups isomorphic to X, can be identified with the vertices of the
fundamental alcove that are equivalent to the origin with respect to the affine arrangement.
Since hyperplanes of all orientations meet at the origin, clearly, all possible orientations of
alcoves are represented among the |.X,| alcoves that touch the origin. Of these there are
p(X,,) oriented as the fundamental alcove, one for each translation of the origin-equivalent
vertices to the origin. By symmetry, there are p(X,,) alcoves of each orientation among the

| Xl B

For a cell D, let D, be the alcove of type t in D, where t is one of the k possible types. We
can index the cells of V, by n nonnegative integer indices such that D"(0,0,...,0) is the cell
at the apex of the cone, and D"(my,mny,...,m,) is the cell separated from D"(0,0,...,0)
by m; hyperplanes parallel to H; for all : = 1,2,...,n.

Thus, every alcove of the cone V, can be described uniquely as D¥(m,, ..., m,) for some
indices my,...,m, > 0 and some type {.

3 Counting minimal galleries

We are interested in the number of reduced decompositions for an element w € .i’,,, which is
equivalent to the number of minimal galleries between the corresponding alcove C,, and the
fundamental alcove Cy. (7, belongs to some thick cone V, € V (possibly to several) and we
know that the minimal galleries never leave this cone.

Let 7(C) denote the number of minimal galleries to the alcove C. A fundamental obser-
vation is that, using the covering relation of the weak order,

) = Z r(C')  summed over all C’ covered by C
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By the analysis in the previous section, we know that any alcove C' in cone V,, can be uniquely
described as D}(m,,...,m,), for some type t and indices m,,...,m,. Thus, we may define
rY(mi,...,m,) := r(C), the number of minimal galleries between the fundamental alcove
Co and D}(m;,...,m,). We know that all covering relations occur within the cone V,. For
inner cells, when all my,...,m; > 1, it is not hard to prove (but omitted here) that the form
of the sum will depend on the type of the alcove only, that is, for all inner cells an alcove
of a given type t has always isomorphic covering relations. Thus, if there are k types, the
relation above implies a system of k recurrences for the r}.

Example. In B, there are four types, which we may number 1 through 4 by decreas-
ing distance from the apex of the cell. For brevity, we do not specify the cone v, since
the recurrences do not differ, but only the boundary values. The figure below shows
that the recurrences are:

rl(mlamﬁ) T2 (m11m2)

ra(m, ms) = r3(my, ma)

ra(my,ma) = re(m1, m2) + ri(my, mz — 1)

ra(my,my) = ri(my — 1,mz) + ra(mq, mg — 1)
Elimination gives a single recurrence, which for any type ¢ has the form:

Tz(ml,mz) = '"z(ml - 1,m2) + 2r¢(m1,m2 - 1)

ARN
N
_// 4 3 AN

Figure 7: The arrows signify the covering relations between alcoves in B,.

The example above is quite representative for the general situation. We have a system
of & homogeneouns, first-order linear recurrences:

ty = E ALNW
el

where Ay is a first-order difference operator, plus a term 1 whenever the alcove of type ¢
covers the alcove of type t’ in an inner cell. Give the types any ordering satisfying t' > t when
t covers t’ in the cell. Thus, in this ordering the difference operator A, has no constant
term when t' < t.

We can now express the system of recurrences as a matrix multiplication:

(l -Al.l) Ay —Al,k T 0
AV R (1 —Agy) --- ~Ba ik {r2]| |0
—Agy Az (1=2Ak)/ \1s 0
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All elements below the diagonal lack constant terms, while all diagonal elements have con-
stant term 1. It is easy to verify that this property is preserved during Gaussian elimination
without pivoting. Thus, by completing the Gaussian elimination, we arrive at a diagonal
matrix diag(l — A}), or equivalently, a system of k independent linear recurrences:

T¢=A:Tr, t=1,2,...,k,

for some constant-free difference operators Aj. The total degree is bounded by 2¥~!, because
in the initial matrix the degrees were bounded by one, and for every row that is eliminated
the maximum degree can be at most doubled. Let us state this as a theorem.

Theorem 4. For every alcove type t there is a constant-free difference operator A} of degree
< 28=1 such that the numbers of minimal galleries ry(m,,...,m,) satisfy the homogeneous
n-dimensional linear recurrence

r(my,...,my) = Ajr(my, ..., my)

whenever all m; are sufficiently large.

4 Remarks

Remark 1. For the affine group A,, there is a more combinatorial way of stating the
recurrences. Lemma 3 gives for A, that the number of types is k = (n + Y/ (n+1)=n!,
so one should look for a natural bijection between orientations ¢ and permutations 7 =
mmy...m € S, = A,.—;. The easy way is to change the shape of the cells a little, so that
they coincide with cosets isomorphic to the parabolic subgroup A,_;. After gaining a lot of
insight (ask the author for details!) one can present the following permutational version of
the recurrences:

Theorem 5. Lct D(7) be the descent set of m, let s; denote the transposition (1,1 4+ 1) for
1= 1,2,...,n—1 and lct 7 be the rotation operator defined by T(mymy ... 7,) = mumy ... Tney.
The elements in a given cone of A, may be indezed by a permutation © and my,...,m, such
that 1. satisfics the recurrence

ra(ing, ... my) = Z Tom(tm, .o ymy) + ren(myy oo yme, — Limg, 0 +1,...,10,)
i€D(x)

Remark 2. The geometric construction also gives a canonical reduced expression for w.
The cone C' containing w is spanned by n directions, and a canonical way of getting to w is
by first going in direction 1, then in direction 2, and so on, last going in direction n. Walking
in direction z corresponds to an infinite periodic word v;. Ask the author for details!

Theorem 6. Every element of X, has a reduced erpression of the form wju,...u, where
every u; 1s a factor of the infinite periodic word v;.

For example, if s, 1, u are the generators of /i;;, then every w € /ig has a reduced word of
the form (... stustu...)(...sutsut...).

Remark 3. The obvious use of the recurrences would be to find asymptotics for ry. No
work in this area has been done as yet (at least not to the author’s knowledge).
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