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Abstract. A new bijection between the diagonally convex directed (dcd-) polyominoes and temai^' trees
makes it possible to enumerate the dcd-polyominoes according to several parameters (sources, diagonals.
horizontal and vertical edges, target cells). For a part of these results we also give another proof, which is based on
the cycle lemma. Thanks to the fact that the diagonals of a dcd-polyomino can grow at most by one, the problem of
q-enumcration of this object can be solved by an application of Gessel's q-analog of the Lagrangc inversion
formula.

Resume. Une nouvelle bijection entre les polyominos dirigis diagonalement convexes (polyominos d. d. c.)
et les arbres temaires permet l'6num6rauon des polyominos d. d.c. suivant plusieur paramfelres (sources, diagonalcs.
aretes horisontales et verticales, cellules cibles). Pour une panic de ces rfoultals nous donnons uno prcuvc
supplcmentaire, qui est baste sur Ie lemme gfeniralisee de Raney. Grice au fait que les diagonalcs d'un polyomino
d.d.c. croissent au plus d'une umt6, leur q-6numiration peut 6tre rtsolue en utilisant 1c q-analoguc dc la formulc
d'inversion de Lagrange du a Gessel.

<.

1. Definitions, conventions and notations

Binomial coefficients. Generally, we adopt the convention: if a binomial coefficient has a negative
numerator or denominator, then the value of the coefRcient is zero. Exceptionally, for those binomial coeERcients

which are indicated by an \ arrow we stipulate: | |=1.

The Gaussi'an po/ynomi'a/s aie defined by

_(, -,. )(, -, ").. (, -,-)
(--1 )(>-<. }..(--,.)

Ifk<0 orr < 0, we agree that =0 . Again, the only exception is
-1

-1
1=1 .

Formal sums. Let h(z)=h(z ; q) be a fonnal power series in z, whose coefficients are formal Laurent series
in q. For n > 0 we set

z")h(z) := thecoefficientofz" in h(z)

h'n](z) :=h(z)h(qz>.. h(qn-'z)
h'n'(z) :=h(z;q-l)h(q-z;q-}.. h[q-(n-)z;q-1]
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Segments. For ne N, n denotes theset {ie N : l<i < a}.
Lattice paths. We shall only work with those lattice paths whose step-set is {(1,0), (0,1)}. A path with

vertices Vo, v,,....., Vn is "1/2-good" if all the vertices v,,....., Vn lie in the half plane y < ^x.

Temary trees. Given a temaiy tree T, we first visit the root and then traverse its subtrees from left to
nght. Let u and v be two vertices of T. We put u<v ifF the first visit to u precedes the first visit to v. Thus we obtain
the prefix order on T (Fig. la). Further, we say that / is an odd (resp. even) leaf of T if \{k leaf of T: k^}\ is an
odd (resp. even) number (Fig. Ib).

(a) (b)
Figure 1. A tcmary tree T. (a) The vertices of T are labeled after the prefix order, (b) The odd and even leaves of
T arc shown.

A cell is a unit square (i, i+l|xtj, j+1], where i, jeZ. A polyomino is a finite union of cells which is
connected and has no finite cut set. Two polyominoes will be considered equivalent if there is a translauon that
transforms one into the other (reflections and rotations are not allowed).

A diagona/of a polyommo P is a nonempty intersection between P and a diagonal 'line" IJ [i, i+l|.\|j-i-
1 Z

j-i+11, where je Z. A polyomino whose diagonals consist of consecutive cells is said to be diagonally convcx.
A polyomino P is directed \!\\. has the following property:
if c isaccll ofPnotlyingonthesouthwestem-mostdiagonal ofP, then c-(1.0)cP or c-(0. 1)cP(or

both).
The cells of the first (i. c. the southwestem-most) diagonal of a directed polyomino arc called wurccy,

those of the last diagonal are called target cells.
The polyomino in Fig. 2 is diagonally convex and directed. It has one source and two target cells.
To any 1- source diagonally convex directed (dcd-) polyomino P having k diagonals we associate a

sequence <pi, . . . , p;k> defined by:

p, =p, =0. p,,., =X, _, +l-X, (2<i^k), P, =Y, _, +1-Y, (2<i<k)

where X, (resp. Yj) denotes the maximal abscissa (rcsp. ordinate) of the jlh diagonal of P. We call <pi, p2)c> tAe

sequence of losses of? because pzi. i (resp. p:, ) represents the number of unoccupied available places at the bottom
(resp. top) of the polyomino's i diagonal. See Fig. 2 for an example.

D
Figure 2. The sequence of losses of the polyomino P is: pi =p2 =0, p3 =l. p4 =. =Pii=0,

p, ;=p, 3=2. p|4=l. Pl5=Pl6=0. Pl7=l, Pl8=°- For example, pi i is zero and pi 2 is two because the sixth diagonal

occupies all the available places at the bottom and leaves two places free at the top.
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2. Introduction

Polvominoes are used in physics and chemist^- to model cn'stal growth, polymers etc. Despite strenuous
efforts, counung the general polyominoes remains an unsolved problem However. over the past 40 years
considerable progress has been made in solving various simpler, but non-trivial models For instance, nice results
arc kno\\Ti for the classes of parallelogram, column-convex. convex. directed and diagonally convex directed
polyominoes. See [2] or (16] for a surve)'.

The dcd-polyominoes model was used for the first time by the physicists Privman and SvrakiC 112; 13,
p. 99], who obtained'the area generating fiincuon for the 1-source case. The enumeration by the perimeter was
carried out later by Delest and F6dou (3] and Penaud [ 11].

In the present paper we enounce two easy proposiUons about dcd-polyominoes (Secuon 3), define a new
bijcction between the dcd-polyominoes and temary trees (See. 4) and employ this new bijecuon in ihc dcd-
pol^minocs non-q^numerauon (Sec. 5). In Sec. 6 a pan of the results of See. 5 is proved again by using Ranch's
generalized lemma". In Sec. 7 the dcd-polyominoes are q-enumerated with the aid of Gesscl's q-analog of the
Lagrangc invcrsion fonnula.

3. Basic properties

II seems to be useful to state some simple facts about dcd-polyominoes. which can be proved easily by
induction on k.

Proposition 1. Let P be a 1-source dcd-polyomino with k diagonals and let <pi, . . ,p2\> be ils sequence

losses. Then
2j

(a) Forjek, thejth diagonal of P contains j- £ p, cells.
1=1

(b)Phas 2-|{jek: p2,. i=0}] horizontal edges and 2-|(j6k : p2j=0}| vertical edges.

Proposition 2. A sequence of nonnegativc integers <pi. . . . , p2ic> is the sequence of losses of some 1-

2j
source dcd-polyomino if and only if Ip, < j ]Vje k | .

1=1 '.

4. A new bijcction between dcd-polyominoes with one source and tcrnar>- trees

Using Schiitzenberger's methodology [14], Delest and F6dou in [3] obtained the following interesting

result: the number of 1-source dcd-polyominoes with k diagonals is equal to ̂ ^["^ ' | > wtuch ls also the
number oftemary trees with k internal nodes. Although two different bijections between 1-source dcd-polyominoes
and temary trees were already given in (3] and (II], we believe that the follomng elementary one-to-one
correspondence between those polyominoes and 1/2-good paths sUll deserves to be mentioned.

Let P be a 1-source dcd-polyomino with k diagonals and let <pi, . . . , p2k> be its sequence of losses. We

assign to P a lattice path B, CP) startmg at (0, 0), ending at (2k+l, k), beginning with a horizontal step and making
p, verticals steps with abscissa i (Vi e 2k) (Fig. 3).

The north-most points of B)(P) with abscissas 2j-l and 2j Q ek) are Q^=] 2J-1, I p, | and
,=}

R, = 2j, Ip, , respectively. By Proposition 2, £ p, <Ip, <j. Thus Qj and R, lie below the line y=^-x and
-J [-'"^r'J' ' ' - - .^ . ^

Bi(P)isa 1/2-goodpath. _ . ^ , ,.
Next, ~let W be a 1/2-good path from (0, 0) to (2k+l, k). It is well-known (see, for example,

and Zaks [4]) that there is a unique temary tree with k internal nodes T=B2(W) having the property:
the i'11 (ie3k±l) vertex of T in prefix order is an internal node iff the ith step G-om the endpoint of W is a

vertical step (Fig. 4).
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Theorem 1. The composition B^oB, is a bijection between the 1-source dcd-polyommoes with k
diagonals and temaiy trees with k internal nodes.

Remark. Notice that the dcd-polyominoes with r sources can be naturally embedded into those with one
source. The embedding C, consists in replacing the first diagonal of a given polyomino by a 'triangle" [^. r (Figs. 5
and 6).

<o,d 2S

28 27 26
01234

21 20 17

IS

16

11

12
w

9 10 11 12 13 14 15 16 17 18 19

Figure 3. The path W=B](P). where P is the polyomino of Fig. 2. The steps of W are numbered in the reverse
order in view of Fig. 4.

16 18

25

Figure 4. The temary tree T=Bz (W), where W is the
path of Fig. 3.

Figure 5. This is fY.i.

C4(P) 8

Figure 6. The polyominoes P and C<(P).
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5. The non-q-cnumeration with the aid of the new bijection

Definition 1. Let y (r, k, /, m, e) be the set of dcd-polyominoes having r sources, k diagonals. 2t
horizontal edges, 2m vertical edges and e target cells.

Let 3 (r, k, /, m, e) be the family of ternai^- trees T which have the following properties: i) T has r+k-1
internal nodes; ii) the event 'the prefix order successor of an even (resp. odd) leaf of T is again a leaf' takes place /
(resp. m) times; iii) the left branch of T is of length c; iv) the prefix order list of veruces of T ends with al least
2r+l leaves.

Proposition 3. The composition 83081 oC, is a one-to-one correspodence between ̂ .(r. k, /, m, c) and 3 (r.
k, /, m. e).

Proof. A closer look at the mappings B;, B| and C,.

Thus it is of interest to study frL(d, x, y, t, /), the generating function for non-trivial tcmarv trees in
variables d=intemal nodes, x=syllables (even leaf, leaf), y=syllables (odd leaf, leaf), t=lcngth of the left branch.
/=final leaves.

We shall also need the functions ft(d. x, y, /):=fa/ri , fr(d, x, y, t):=fTL/»-i . f (d, x, y):=fTi. ^. /. i , gnXd. x.

y, t, /):= fn. (d, y, x, t, /) and similarly defined gL, gr and g.

Proposition 4. a) The cocff. ofdS;')'"!"' in fr (resp. gj) is the number of 1-source dcd-polyominocs having
k diagonals, 2t (resp. 2m) horizontal edges, 2m (resp. 2t) vertical edges and c target cells

b) We have fi=gT.
Proof. Since every non-trivial temary tree ends with at least three leaves, a) follows from Proposition 3

with r=l. Part b) follows from a) by reOecting the dcd-polyominocs in the line y=x.

Now we partition the non-trivial temary trees into eight classes Jooo. ̂ 001.. . . . Jiii: the trees belonging to
the class 3^ have a non-trivial left (resp. middle, right) subtrec ifT a (rcsp p,y ) is 1. Keeping in mind that CVCQ'
temary tree has odd number of leaves, we find that the contributions to fn. arc:

from Jooo: dxyt/1
from ̂ 010: dxt7gL
from ,7ioo: dxyt^frL
from J, 10: dxt/frgL

from 3w\: dytfL

from 3o\ i

from Ji 01

from 3i 11

dtgfL

dytfT fL

dlTrgTL

On account f=g, for /=I these contributions add up to

fr= dt (fr+1) (f+x) (f+y) (1)

For the function f, := f(l+f)'' we have f=f, (l-fi)-1. By letting t=l in (1) we obtain the following equation for f, (in
the fonn appropriate for Lagrange inversion):

fl=d[f, (l-f, )-l+x](f, (l-f, )-l+y] .

Further, by solving (1) with respect to fr we get

dt(f+xXf+y) if, ^
l-dt(f+x)(f+y)-I-t^-^ '

(2)

(3)

Theorem 2. The number of 1-source dcd-polyominoes having k diagonals, 2t horizontal edges, 2m
vertical edges and e target cells is equal to

e. f-. k-e-1 . VkVk
kl2k-(-m-li^Jlm
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Proof. By Proposition 4.a) and (3), the number of polyominoes in quesuon is
< dlcx'ym t° > f;. =< dkx'ym > ff . Now the theorem follows by an application of the Lagrange inversion formula

[8] to (2).

Theorem 2 generalizes the results of Delest, Fedou and Penaud, who obtained the coefficients of fr in
three cases: x=y=t=l; d=t=l & x=y; x=y=l;

Let us make an agreement: the equation obtained by swapping x andy in a given equation (n) \vill be
denoted by (n').

In the case t=l & /^l the eight contributions to fn. sum to

[ 1-dxy/2 - d (f+1) (f+y)] FL - dx/ (f+1) gL= dxy/3 . (4)

Using (1) with t=l, we can write the equation (5):=x'(f+x)-(4) - /-(4') in a way that there are no fs in the
coefficients of FL and gi. Then the system (5) & (5') gives us FL and gL as linear functions off.

Next we substitute these expressions for fi and gi into what the sum (contribution from
Jooo)+ .̂ (contribution from ̂111) is for t?sl and /^l. By a rather long algebra including one more applicauon of (1)
we obtain

[(x/+y)A+dxy/2]ATfr+xyt[(l-/2)A+dx/2(l-/)]A
^-= [(A+d.x72)(A+dy/2)-/2A2]A,

(6)

where AT= 1-dxyV2 and A= 1-dxy/.

Then we define fj^ (rcsp. ̂  ) to be the sum of terms offa containing even (resp. odd) powers of/.
FS'T. to be £^ +/£^ with / substituted by s' and
fsT to be d(l - s)-l . (sfj. - fs'T ) with s substituted by sd-'.
Thcorcm 3. a) fsr is the (s=sourccs. d=diagonals, x= 1/2 horizontal perimeter, y= 1/2 vertical perimeter.

t=targct cells) generating function for dcd-polyominocs.

fT. -sxyt(l-
b) We have f^=s-, -- t-L-^-

[l+sx(l-sxy)-l||l+sy(l-sxy)-l|-sd-l .
c) The number of dcd-polyominocs with r sources, k diagonals. 2t horizontal edges. 2m vcnical edges and

c target cells is equal to

a. b. cSO

(-l)b+ccra+b
a+k

Ya+cYr-a-2Y. .. a+k-e-1 _Y a+k
J^ a J^b+c-1^2r+2k-t-m-b-c-3^a+b-r+/+l

a+k
a+c-r+m+1

Proof, a) It follows from the definitions offsr and 3(r. k. /. m. c) that <srdk. \'ym tc > ^ =|J(r. k. /. m. c)|

By Proposition 3. |J(r, k. /. m. e)|=|(P(r. k. /. m. e)|. Thus the assenion is proved.
b) follows easily from (6).
c) First we expand the rhs of the formula in b) as a geometric series. Then the formula follows by using

Proposition 4.a) and Theorem 2.

6. The non-q-cnumeration with the aid of Raney's generalized lemma

Let P be an element of IP(l):=ff^l, k. /, m. e), the family of 1-source dcd-polyominoes having k diagonals.
2 t honzontal edges. 2m vertical edges and e target cells. Let <pi,. . . , p2k> be the sequence of losses of P. Now we

define a kind of'Raney mapping" by

R(P):= < 1. -pi, -p:. 1. -P3, -P4, .... 1. -P2k-l, -P2k> . (7)
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Using Propositions 1 and 2, it is eas>' to characterize the image R(^(l)) of the (injectivc) correspodence R.
It consists of those integer sequences < 1, ai. a;. 1. 33.34, .... 1. au-i.a^ which satisfy:
i) a, <0 (Vie 2k) ;
ii) |{i k:a2,_, }|=t ;.

iv) £(l+a;,., +a2, )>0 (Vjek)

iii) |{iek:a2, =0|=m;

i+a2, )=eV) S('+a2,-
1=1

Let A be the set of integer sequences having all the above properties, except the properr,' iv). To define an
element of A we first choose any / odd positions (indices) and any m even positions (indices) where we want ai=0.

In the remaining 2k-/-m positions we can put any composition of the number -(k-e) with pans a, <0. Thus the
number of ways to define an element of A is

I A |= k-e-1
2k-/-m-l (8)

Notice that for Si= < 1, ai, a;, 1. aj, a^, .... 1, a^-i. a2k>   A its cyclic shifts Si, s;= < 1, ai, a^. ..., 1. a^. i,
a:k. 1. ai. a; > ,..., Sk= < 1, a^..\, azk, 1, ai. a;, .... 1, a^-a, a^.; > belong to i too. Raney's generalized lcmma | 9. p.
348] tells us that exactly e of the sequences si, 52, ..., Sk have all partial sums positive. This is equivalent to say that
exactly c of the sequences Si, Sz, ..., St belong to R(^'(l)).

Imagine all |A | elements of t together with all k of their cyclic shifts being listed in an array. Since the
columns of the array are pennutadons of<!i3R( y (1)). the elements ofR(^' (1)) occur |R( j9' (1)) | times in each
column and k|R( y (1)) | times in the whole array. Since the elements ofR(^' (1)) occur c times in each row. they
occur c|A | times in the whole array. Therefore k|R( ̂  (1)) |= e|A | and

|^(l)|=|R(^(l))|^|. |=^_7e-, _ip](^.
\

Thus we have got a new proof ofTheorem 2. Let us mention that Rancy's lcmma can also be applied in
the enumeration of column-convex directed polyominocs |6|.

7. The q-cnumcration

In this section the generating functions for dcd-polyominocs have four variables: d=diagonals. x= 1/2
horizontal perimeter, y=l/2 vertical perimeter, q=area. Instead of <p(d,.\, y, q) we usually write (p or <()(d) .

Definition 2. As before, t^. denotes the one-cell polyomino. Let ^ be the set of one-source dcd-
polyominoes with P target cells. Let ̂  be the subset of ̂  containg those polyominoes whose next to last diagonal
is of length a. Further, let ̂  stand for the set ofdcd-polyominoes with a sources and P target cells (thus ̂  = i<ip).

The generating functions for the sets <J o, ̂  and ̂  will be denoted by f,, f^ and ,fp, respectively.

Definition 3. The number of diagonals, honzontal perimeter, vertical perimeter and area of a given dcd-
polyomino P will be denoted by D(P), H(P), V(P) and Area(P), respectively.

Let P be an element of i<e. As the diagonals of P grow at most by one, for every ie e there is a number z(i)
such that the z(i) diagonal is the last diagonal of length i in P. For convenience, we put z(0)=0.

For ie e , the z(i-l)+l , z(i-l)+2 ,..., z(i) diagonal of P fonn a polyomino belonging to A. Let us
denote that polyomino by rii(P). Let 7tf(P) be that what remains of Hi(P) after we cut ofi' the i-1 top cells from each
of its diagonals. It is easy to see that ?ii(P)e i,. Thus we have associated to Pe ic the e-tuple 7i(P)=(ni(P), . .
.., 7t. (P))e^,. SeeRg. 7.
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Clearly, D(P)= SD(TC, (P)). The sequence of losses of P can be obtained from those of TC,CP)'S by
1=1

concatenaiion. Hence by Proposition l.b) H(P)= £H(n, (P)) and V(P)= IV(TC, (P)). But with the area the
1=1 1=1

things are dtEFerent: Area(P)= £[Area(7c, (P))+(i-l)D(7i, (P))].
1=1

The above properties of the decomposition n'. ^-^f, lead us to the conclusion:

f, (d)=f, (d)f, (qd)-. f, (qc -ld)=ffc l(d) (Vee N). (9)

1 I 1

'2.!

v

. ^'1

2.

.
'»

^.

^

^

, <»>

itit

3s

^1

Figure 7. The decomposition TC. The cells of n, (P) (i= 1.2. 3)
arc labeled i. The shaded cells arc those being cancelled from FIj's to obtain TCI'S.

dq

dq

dq

dq

y

Figure 8 The four f,rpc:s of elements of ̂3. 1. Their contributions to fi. i are. from left to right. dqxf», dqfj. dqf» and
dqyfi. Thus f,, i=dq(x+y+2)f»

We see that the function fi is staiiding out among the f, 's. So let us take a closer look at fi.
Since the sets < C^i} and <:i (ee N) form a partition of ̂ , we have f, (d)= dqxy + Z f^, (d). Then. Figure 8

cil

should sufiicc to convince the reader that f^(d)=dq(. \+y+e-l)fjd). These considerations togetiier \vith (9)
imply

f, (d)=dq^,vy^o](d)+Z^+y+e-l)^'(d)^
c£l

(10)

Fortunately, we need not bother about how to solve (10), because Gessel's q-analog of the Lagrange
inversion formula (7[ comes to our aid. Indeed, the q-analog has following obvious consequence:
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Corollan' 2. Let f, (d)=fi(d,q) sausfy

^

f|(d)=dq£g^cl(d) .
ciO

(II)

where the g. are indetemiines. Let g(t) = Z g;t . Then for ee N,
d»0

(k+l)l;

^cl(d)=

-|k]

£dkq 2 (lk-)g (q-'t)
k£l

(k+I)k -11:1
(12)

l+Sd'q 2 (tk)g (q~'t)
k:ai

In our problem

g(t)=xyto+S(x+y+e-l)le=xy[l+(l-x)x-lt] [i+(i-y)y-lt](l-i)-:!
e£l

(13)

and(VieZ. keNo)

-Ik)
(t')g (q-'t)= X

a. b.c^O

a+k-1

k-1

i+k-a-b-c-l

k-1

b(h-l><-c(c-l)

|(l-x)bxlt-b(l-y)cyk^q
-ik

(14a)

The computation of(14a) includes the use of two identities for Gaussian polynomials [10. p. l8, cx. 3]. In
the case x=y=l (14a) simplifies to

-Ik]

(t')g (q-'t)=xkykq-k £
«£0

a+k-1

k-1

i+k-a-1

k-1
(14b)

Thus the generating function for 1-source dcd-polyominoes with c target cells f, is given by (9), (12) and
(14a.b). This results improves that obtained by Privman and §vraki6 [12; 13, p. 99]. Observe that our fomiula for f,
is what Bousquet-Milou and Fedou [I] would call a formula perfectly developed in d.

In the case of r>l sources a literal application of the q-analog is not possible. However, considerations
similar to those in Gessel's proof lead us to the following

Thcorem 4. The generating function for r-source dcd-polyominoes \vith e target cells (r, ee N) is

r('-l) (J+1)J,
£djq
J&r

Proof will be given in a future paper of ours.

r('-l) (J+1)J,. . . .. _ .

^(d)=d-<r-')q^-(x>-)r £d^q^-[(t^)-f, (d)(t^]g":/'^"t^ (15)
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