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Abstract. A new bijection between the diagonally convex directed (dcd-) polyominoes and ternary trees
makes it possible to enumerate the dcd-polyominoes according to several parameters (sources, diagonals,
horizontal and vertical edges. target cells). For a part of these results we also give another proof, which is based on
the cycle lemma. Thanks to the fact that the diagonals of a ded-polyomino can grow at most by one, the problem of
g-enumcration of this object can be solved by an application of Gessel’s g-analog of the Lagrange inversion
formula.

Résumé. Une nouvelle bijection entre les polyominos dirigés diagonalement convexes (polyominos d.d.c.)
et les arbres ternaires permet I’énumeération des polyominos d.d.c. suivant plusieur paramétres (sources, diagonalcs.
arétes horisontales et verticales, cellules cibles). Pour une partic de ces résultats nous donnons unc preuve
supplémentaire, qui est basée sur le lemme généralisée de Raney. Grice au fait que les diagonales d'un polyomino
d.d.c. croissent au plus d’une unité, leur q-énumération peut étre résoluc en utilisant le gq-analoguc de la formule
d’inversion de Lagrange dii a Gessel.

1. Definitions, conventions and notations

Binomial coefficients. Generally, we adopt the convention: if a binomial coefficient has a ncgative
numerator or denominator, then the value of the coefficient is zero. Exceptionally, for those binomial coefficients
-1

which are indicated by an \ arrow we stipulate: ( =1.

The Gaussian polynomials are defined by

K)_{i-a)(1-a" e
H (-a Jo-a7}-(1-a7)

k -1
Ifk <0 orr <0, we agree that li }=0 .Again,theonlyexceptionis[ }=l .
r

Formal sums. Let h(z)=h(z ; q) be a formal power series in z, whose coefficients are formal Laurent series
in q. For n > 0 we set

(z") h(z) := thecoefficientofz" in h(z)
h[n](z) = h(z)h(qz)---h(q ! z)
i) = h(za " )b(a'zq” }-'h(q'(""')z;q" )

-163-



Segments. For ne N, n denotes the set {ie N:1<i<m}.
Lattice paths. We shall only work with those lattice paths whose step-set is {(L0),(0.1)}. A path with

1
VETUCES Vo, Vi,....., Va is “1/2-good” if all the vertices vi,.....,Vy, lie in the half plane y < —x.
2

Ternary trees.  Given a ternary tree T, we first visit the root and then traverse its subtrees from left to
right. Let zand vbe two vertices of T. We put u<v iff the first visit to u precedes the first visit to v. Thus we obtain
the prefix order on T (Fig. 1a). Further, we say that / is an odd (resp. even) leaf of T if |[{k leaf of T: A<J}| is an
odd (resp. even) number (Fig. 1b).

(@) ()
Figure 1. A ternary tree T. (a) The vertices of T are labeled after the prefix order. (b) The odd and even leaves of
T arc shown.

A cell is a unit square [i, i+1]x[j, j+1], where i, jeZ. A polyomino is a finite union of cells which is
connected and has no finite cut set. Two polyominoes will be considered equivalent if there is a translation that
transforms one into the other (reflections and rotations are not allowed).

A diagonal of a polyomino P is a nonempty intersection between P and a diagonal dine” U [i, i+1]x[j-1.
1€Z

j-i+1], where je Z. A polyomino whose diagonals consist of consecutive cells is said to be diagonally convex.

A polyomino P is directed if it has the following property:

if c is a ccll of P not lying on the southwestern-most diagonal of P, then c-(1.0)cP or ¢-(0.1)cP (or
both).

The cells of the first (i. ¢. the southwestern-most) diagonal of a directed polyomino are called sources.
thosc of the last diagonal are called target cells.

The polyomino in Fig. 2 is diagonally convex and directed. It has one source and two targct cclls.

To any 1- source diagonally convex directed (dcd-) polyomino P having k diagonals we associatc a
scquence <py, . . ., pa2> defined by:

p, =p, =0, Py =Xy +1-X; (25isk), Py =Y, +1-Y, (2=i<k)

where X, (resp. Y)) denotes the maximal abscissa (resp. ordinate) of the j" diagonal of P. We call <p,, ... ,pa> the
sequence of losses of P because pa;.y (resp. ps;) represents the number of unoccupied available places at the bottom
(resp. top) of the polyomino’s i diagonal. See Fig. 2 for an example.

P [9]
5] 8|9
415161718
3 516
2 a]s5]6|
L Figure 2. The sequence of losses of the polyomino P is: pi=p=0. ps=l. p= . =pn=0,

pi==p13=2. pra=l. pis=p16=0. p17=1, p1s=0. For example, py, is zero and p;; is two because the sixth diagonal
occupies all the available places at the bottom and leaves two places free at the top.
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2. Introduction

Polyominoes are used in physics and chemistry to model crystal growth, polymers etc. Despite strenuous
cfforts. counting the general polyominoes remains an unsolved problem. However. over thc past 40 vears
considerable progress has been made in solving various simpler, but non-trivial models. For instance. nice results
arc known for the classes of parallelogram, column-convex, COnvex, directed and diagonally convex directed
polyominoes. See [2] or [16] for a survey.

The dcd-polyominoes model was used for the first time by the physicists Privman and Svrakié¢ [12: 13,
p.99], who obtained the area generating function for the 1-source case. The enumeration by the perimeter was
carried out later by Delest and Fédou [3] and Penaud [11].

In the present paper we enounce two easy propositions about dcd-polyominoes (Section 3), definc a new
bijection between the dcd-polyominoes and ternary trees (Sec. 4) and employ this new bijection in the dcd-
polyominocs non-g-enumeration (Sec. 5). In Sec. 6 a part of the results of Sec. 5 is proved again by using Rancy’s
generalized lemma. In Sec. 7 the ded-polyominoes are g-enumerated with the aid of Gesscl’s q-analog of the
Lagrange inversion formula.

3. Basic properties

It scems to be useful to state some simple facts about ded-polyominoes. which can be proved casily by
induction on k.

Proposition 1. Let P be a 1-source dcd-polyomino with k diagonals and let <py, . . ,p> be its scquence of
losses. Then

2)
(a) For jek, the j* diagonal of P contains j— X p, cells.
1=1
(b) P has 2-|{jek : p;1=0}| horizontal edges and 2-[{jek : p;=0}| vertical edges.
Proposition 2. A sequence of nonnegative integers <py, . .. ,pa” is the scquence of losses of somc 1-
2)
source dcd-polyomino if and only if X p; < j (Vje k) )

1=l

4. A new bijection between dcd-polyominoes with one source and ternary trees

Using Schiitzenberger’s methodology [14], Delest and Fédou in [3] obtained the following interesting
1 (3k+1 o
, which is also the

result: the number of 1-source dcd-polyominoes with k diagonals is equal to Xl k

number of ternary trees with k internal nodes. Although two different bijections between 1-source dcd-polyominoes
and ternary trees were already given in [3] and [11], we believe that the following elementary one-to-one
correspondence between those polyominoes and 1/2-good paths still deserves to be mentioned.

Let P be a 1-source dcd-polyomino with k diagonals and let <p;, . . . ,pa> be its sequence of losses. We
assign to P a lattice path B,(P) starting at (0,0), ending at (2k+1,k), beginning with a horizontal step and making
p, verticals steps with abscissa i (Vi € 2k) (Fig. 3).

1=l

21
The north-most points of By(P) with abscissas 2j-1 and 2j ( €k) are QJ:[Zj—L b3 pi] and

2j 251 2j 1
R, :[2j,2pi } respectively. By Proposition 2, Y, p; <3 p; <j. Thus Q and R, lie below the line y=—x and
i=1 i=l i= 2
B,(P) is a 1/2-good path.

Next, let W be a 1/2-good path from (0, 0) to (2k+1, k). It is well-known (see, for example, Dershowitz
and Zaks [4]) that there is a unique ternary tree with k internal nodes T=B,(W) having the property:

the i (ic 3k+1) vertex of T in prefix order is an internal node iff the i step from the endpoint of W is a

vertical step (Fig. 4).
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Theorem 1. The composition B, oB, is a bijection between the 1-source dcd-polyominoes with k
diagonals and ternary trees with k internal nodes.

Remark. Notice that the dcd-polyominoes with r sources can be naturally embedded into those with ohe
source. The embedding C; consists in replacing the first diagonal of a given polyomino by a ‘triangle” [\ , (Figs. 5

and 6).
_~T9.9)
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Figure 3. The path W=B,(P). where P is the polyomino of Fig. 2. The steps of W are numbered in the reverse
order in view of Fig. 4.

1

Figure 4. The ternary tree T=B, (W), where W is the

path of Fig. 3.
e c(P) [sl
P 5 ‘4( ) |8
4 [7] 4|5 ' i
34 1]2]3 4 s 817
2 1]2 S
1 4] 1{2] 1°
Figure 5. This is ... Figure 6. The polyominoes P and C,(P).
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S. The non-g-enumeration with the aid of the new bijection

Definition 1. Let #(r, k, /, m, €) be the set of dcd-polyominoes having r sources. k diagonals. 2¢
horizontal edges, 2m vertical edges and e target cells.

Let J (r, k, /, m, e) be the family of ternary trees T which have the following properties: i) T has r+k-1
internal nodes; ii) the event ‘the prefix order successor of an even (resp. odd) leaf of T is again a leaf” takes place /
(resp. m) times; iii) the left branch of T is of length ¢; iv) the prefix order list of vertices of T ends with at least
2r+1 leaves.

Proposition 3. The composition B2oB,oC, is a one-to-one correspodence between #(r, k, /, m, ¢) and J (r.
k,/, m, e).
Proof. A closer look at the mappings B,, B, and C,.

Thus it is of interest to study fri(d, x, y, t, /), the generating function for non-trivial ternary trees in
variables d=internal nodes, x=syllables (even leaf, leaf), y=syllables (odd leaf, leaf), t=Icngth of the left branch.
I=final leaves.

We shall also need the functions fi(d, X, y, ):=fr. /-1, fr(d. X, y, ):=fr. /) . £(d, X, y): =l /sy . g1(d. X,
y. L ):=1fr (d,y, x, t, /) and similarly defined g, gr and g.

Proposition 4. a) The cocfl. of d*xy™" in fy (resp. gr) is the number of 1-sourcc dcd-polyominocs having
k diagonals, 24 (resp. 2m) horizontal edges, 2m (resp. 21) vertical edges and ¢ target cells.

b) We have fr=gr.

Proof. Since every non-trivial ternary tree ends with at least three lcaves, a) follows from Proposition 3
with r=1. Part b) follows from a) by reflecting the dcd-polyominocs in the line y=x.

Now we partition the non-trivial ternary trees into eight classes Jooo. Joor. - . . . Ji: the trecs belonging to
the class J,,, have a non-trivial left (resp. middle. right) subtrec iff o (resp B,y) is 1. Kecping in mind that cvery
ternary tree has odd number of leaves, we find that the contributions to {1, arc:

from Jooo:  dxyt? from Joo1:  dyvtfy
from Jo10:  dxt/gp from Jo,:  dtgfy
from Jigo:  dxytPfy from Jy0,0  dytfrfy
from o: def'rgL from ATE dlf'rgfL

On account f=g, for /=1 these contributions add up to
fr=dt (fr+1) (f+x) (f+y) (D

For the function f;:= f (1+f)" we have f=f,(1-f;)". By letting t=1 in (1) we obtain the following equation for f; (in
the form appropriate for Lagrange inversion):

fi=d [fi(1-f) " +x ] [(1-f)"+y] . 2)

Further, by solving (1) with respect to fr we get

dt(f+x)f+y) _ s 3)

fT:l—dt(f+x)(f+y)—l-t.ﬂ o

8

Theorem 2. The number of 1-source dcd-polyominoes having k diagonals, 2t horizontal edges, 2m
vertical edges and e target cells is equal to

oS [4)(n)
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Proof. By Proposition 4.a) and (3), the number of polyominoes in question is
k !/ m_e

<d“xy"t" > =< d*x'y™ > £° . Now the theorem follows by an application of the Lagrange inversion formula
8] to (2).

Theorem 2 generalizes the results of Delest, Fédou and Penaud, who obtained the coefficients of fr in
three cases: x=y=t=1; d=t=1 & x=y ; x=y=1.

Let us make an agreement: the equation obtained by swapping x and y in a given equation (n) will be
denoted by (n’).

In the case t=1 & /#1 the eight contributions to fr. sum to

[1-dxy? - d (F+1) (F+y)] fi - dxJ (F+1) go=dxy? . 4)
Using (1) with t=1, we can write the equation (5):=x"'(f+x)-(4) - [(4’) in a way that there are no f’s in the

coefficients of fi and g;. Then the system (5) & (5°) gives us f and gy as linear functions of f.
Next we substitute these expressions for fi and g into what the sum (contribution from

Jooo)+...+(contribution from Jyy;) is for t1 and /1. By a rather long algebra including one more application of (1)
we obtain

n)a +dxyl® Aty +xyt[(l—12)A+dx12(l—1)]A
[(A +da ) A +dy12)—12A2]AT

£y =/ ” (6)
where Ar= 1-dxyt/” and A= 1-dxy/.

Then we define f'T"L (resp. f_ 1L ) to be the sum of terms of fr. containing even (resp. odd) powecrs of /.

for to be £f, + /7 with / substituted by s' and

fsr 10 be d(1-5)" - (st — G ) with s substituted by sd".

Theorem 3. a) fsr is the (s=sources, d=diagonals, x=1/2 horizontal perimeter, y=1/2 vertical perimeter.
t=targct cclls) gencrating function for dcd-polyominocs.

£, - sxyt(1-sxyt) "'

byWehave [y =s [l+sx(l—s><)/)_| ][l +sy(l-sxy)” ]_Sd—I

¢) The number of dcd-polyominocs with r sources, k diagonals, 2¢ horizontal edges. 2m vertical edges and
c target cells is cqual to

b c
5 ‘“l ’ a+b a+c r-a—-2 at+k-e-1 a+k a+k
b bk b+c—1)2r+2k-t-m-b-c-3 ja+b-r+/+1 fa+c-r+m+l

Proof. a) It follows from the definitions of fsy and J(r. k. /. m. ¢) that <s "d*xy™tc > L =l(r. k. L. m. o)
By Proposition 3. |J(r, k. /. m. e)|=|¢(r. k. /. m. ¢)|. Thus the assertion is proved.

b) follows easily from (6).
¢) First we expand the rhs of the formula in b) as a gecmetric series. Then the formula follows by using
Proposition 4.a) and Theorem 2.

6. The non-q-enumeration with the aid of Raney’s generalized lemma
Let P be an element of #{1):=/(1, k. /, m, e), the family of 1-source dcd-polyominoes having k diagonals.
2 thorizontal edges. 2m vertical edges and e target cells. Let <p,, . .. ,pa> be the sequence of losses of P. Now we

define a kind of “Raney mapping” by

R(P):=< 1. -py, -p= . L. -p3, -Pas ... L. <P, P - &)
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Using Propositions 1 and 2, it is easy to characterize the image R(#(1)) of the (injective) correspodence R.
It consists of those integer sequences < 1, a;. ay. 1. as.a4, ..., 1. as.1.a2> which satisfy:
i) a <0 (Vie 2k) .
i) fiek:apaf=15 iii) Hieg:aﬁo}{:m;

) k
iv) Y(1+ay, +235,)>0  (Vi€k) - V) Y(l+a,, +ay)=¢
1=1 1=l
Let & be the set of integer sequences having all the above properties, except the property /v). To definc an
element of & we first choose any / odd positions (indices) and any m even positions (indices) where we want a;=0.
In the remaining 2k-/-m positions we can put any composition of the number -(k-¢) with parts a, <0. Thus the
number of ways to define an element of 4 is

_(k\(k k—-e-1 )
|5 '—(lj(m)(Zk—l—m—lj, ®)
R
Notice that for ;= < 1, a, a, 1. a3, a4, .... 1, a1, ax > € } its cyclic shifts s;, s;= < 1, a3, &, ... 1. axa,
ay. 1.3 22>, .. 8= < 1, @, an, 1, a. @y, ..., 1, ax.3, ax.2 > belong to 4 too. Raney’s gencralized lemma | 9. p.
348] tells us that exactly e of the sequences s, S, ... S have all partial sums positive. This is cquivalent to say that

cxactly c of the scquences s, S2, ..., Sk belong to R(#(1)). ;
Imagine all |3 | elements of 4 together with all k of their cyclic shifts being listed in an array. Sincc the

columns of the array are permutations of 2R( & (1)). the elements of R(# (1)) occur [R(.# (1)) | times in cach
column and k|R( # (1)) | times in the whole array. Since the clements of R(# (1)) occur ¢ times in cach row, they
occur ¢| | times in the whole array. Therefore k|R( # (1)) |= ¢|4 | and

If<‘>|=lR<fU>>l=fl“=§(zkk_75?nl-1rz‘xm |
R

Thus we have got a new proof of Theorem 2. Lct us mention that Rancy’s lemma can also be applicd in
the cnumeration of column-convex directed polyominocs [6].

7. The q-cnumeration

In this section the generating functions for dcd-polyominoes have four variables: d=diagonals, x=1/2
horizontal perimeter, y=1/2 vertical perimeter, g=arca. Instead of @(d, X,y,q) we usually write ¢ or o(d) .

Definition 2. As before, I\ , denotes the one-cell polyomino. Let 4, be the set of one-source dcd-
polyominoes with P target cells. Let 4., be the subset of 4, containg those polyominoes whose next to last diagonal
is of length o Further, let 4, stand for the set of dcd-polyominoes with o sources and B target cells (thus 4, = 14;).

The generating functions for the sets 4 5, 4, and .4, will be denoted by f,, f,, and f,, respectively.

Definition 3. The number of diagonals, horizontal perimeter, vertical perimeter and area of a given dcd-
polyomino P will be denoted by D(P), H(P), V(P) and Area(P), respectively.

Let P be an element of 4. As the diagonals of P grow at most by one, for every ie e there is a number z(i)
such that the z(i)™ diagonal is the last diagonal of length i in P. For convenience, we put z(0)=0.

For i€ ¢ , the z(i—l)+1“’,z(i—1)+2'h,.‘.,z(i)lh diagonal of P form a polyomino belonging to 4. Let us
denote that polyomino by ITi(P). Let m(P) be that what remains of IT;(P) after we cut off the i-1 top cells from each
of its diagonals. It is easy to see that m(P)e 4,. Thus we have associated to Ped. the e-tuple n(P)=(m:(P), . .
. m(P)e . See Fig.7.
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Clearly, D(P)= X D(x;(P)). The sequence of losses of P can be obtained from those of mi(P)’s by
1=l

concatenation. Hence by Proposition 1.b) H(P)= iH(ni(P)) and V(P)= )e:V(ni(P)). But with the area the
i=l i=1
things are different: Area(P)= i[Area(ni(P)) +(i- l)D(ni(P))].
=i

The above properties of the decomposition m:4.—4", lead us to the conclusion:

£(d)=£, (), (ad) @)= (d) (Vee N). ©)

Figure 7. The decomposition . The cells of I, (P) (1=1.2.3)
are labeled i. The shaded cells are those being cancelled from IT;’s to obtain m;’s.

y | dq

. A A=
/

// dq J

[ dq ]
// X
, y

] ~ /
s —_— —

Figure 8. The four types of clements of 4. Their contributions to fy; are. from left to right, dgxfs, dqfs. dqf; and
dqyfs. Thus f3 ;=dq(x+y+2)fs

We sce that the function f; is standing out among the £.’s. So let us take a closer look at f;.
Since the sets { I\ } and 4., (e€ N) form a partition of 4, we have f,(d) =dqxy + Y f,,(d). Then. Figurc 8
ezl

should suffice to convince the reader that fd(d)=dq(x+y+e—l)fc(d). These considerations together with (9)
imply

q(d)=dq{.\yd°'(d)+ z(x+y+e—1)d°'(d)} . (10)

c2l

Fortunately. we need not bother about how to solve (10), because Gessel’s g-analog of the Lagrange
inversion formula 7] comes to our aid. Indeed. the q-analog has following obvious consequence:
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Corollary 2. Let f;(d)=f,(d,q) satisfy

f(d)=dq X g @) . (n

c20

where the g, are indetermines. Let g(t)= X g_t°. Then for eeN,
€20

(k+1)k _Ik)
| Td'q ° (tk">g @q'n
c k21
fI{ (d)= (kDK s (12)
1+ ¥ d"q 2 (tk>g @'
k21
In our problem
g(x):xy1°+z(x+y+e—1)t°=xy[1+(1—x)x"t] [1+a-yya-n7 (13)
e2l

and (Vie Z, ke Ny)

A a+k-1][i+k-a=b-c—1] [k] [k e f o D,
(Ve @'v= % -0 -y ~ (4a)
%

abe20l k-1 k-1 b Cc
"\

The computation of (14a) includes the use of two identities for Gaussian polynomials [10, p.18, ¢x.3]. In
the case x=y=1 (14a) simplifies to

A=k b b ik | d¥K=1] | 1¥k=a=]1
<t)g (@ )=xygq >230 o Lt (14b)

Thus the generating function for 1-source dcd-polyominoes with ¢ target cells f, is given by (9), (12) and
(14a.b). This results improves that obtained by Privman and Svraki¢ [12: 13, p. 99]. Observe that our formula for f,
is what Bousquet-Mélou and Fédou [1) would call a formula perfectly developed in d.

In the case of r>1 sources a literal application of the q-analog is not possible. However, considerations
similar to those in Gessel’s proof lead us to the following

Theorem 4. The generating function for r-source dcd-polyominoes with e target cells (r,ee N) is
=D [61.0) Py N\ L33
A@=d74 7 (o) T 2 [(07)-L@)()E gty (15)

j2r

Proof will be given in a future paper of ours.
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