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ABSTRACT. KiriUov and Reshetikhm introduced rigged configurations as a new
way to calculate the entries K\^(t) of the Kostka matrix. Macdonald defined
the two-paraineter Kostka inatrix whose entries K\^(g, t) generalize K\^(t).
We use rigged configurations and a fonnula of Steinbridge to provide a com-
binatorial interpretation of K\^(q, t) in the case where ^ is a partition with
no more than two colunuis. In particular, we show that in this case, K\^(g, t)
has nonnegative coefficients.

Kirillov and Reshetikhin ont introduit Ie concept de "rigged configi. u-ations"
foumissant un nouveau moyen de calculer les coefiicients K\^[t) de la matrice
de Kostka. Macdonald definit la matrice de Kostka a deux peu-ametres dont les
coefficieTits K\^(y, t) generalisentles I^^^(t). Nous utilisoiis les "rigged config-
urations" et une fonnule de Steinbridge pour foumir luie interpretation com-
binatoire des K\^(q, t) dans Ie cas oil Ie diagranune de (i ne contient pas plus
de deux colonnes. Nous montrons, en particulier, que dans ce cas, K\^(q, t) a
tous ses coefficients non-negatifs.

1. INTRODUCTION

In [Mac2], Macdonald defined a basis P\(q, t) of the ring ofsymmetric functions.

Hall-Littlewood symmetric functions, Jack polynomials, Schur functions, and zonal

polynomials are all either limiting or special cases of the P\(q, t)s. He also defined

a transition matrix, whose entries are denoted K\^(q, t), between a renormalized

version of the P\(q, t)s and another basis S\ of the ring of symmetric functions.

(K\^(q, t))\^i-n generalizes the Kostka matrix (K\^)\^n.

Macdonald conjectured that the entries in the two parameter Kostka matrix are

polynomials in q and t with nonnegative integer coefficients. All that is known

a priori is that the entries are rational functions of q and (. Garsia and Haiman

have constructed, for each partition ̂  of n, a finite-dimensional bigraded 5'n-module

whose irreducible multiplicities they conjecture to be rescaled versions of the entries
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A'A^(g, <). In [GH], they give several constructions of 5'n-modules conjectured to
have this property, together with an announcement of the special cases for which
they can prove their conjecture. The main special cases correspond to the entries
7<A^(g, t) in which ̂  is either a hook, or has at most two rows or two columns. Their
results do not provide any explicit combinatorial interpretation of the entries.

In the paper [Ste], Stembridge gave a direct proof of the hook case ofMacdonald's

conjecture, and gave a formula for the polynomial in the two-column case, which
proves the entries are polynmials. His formula is

(1) K^i^(q, t) =^qr-'(tn-rq;t-l), \r\ K^., ^.
T^o LSJ(

(<)

where K^. ^-s, (t) is the Kostka (charge) polynomial [Mad] and |A| = n. We use
(1) to show that there are statistics Cr and cutr defined on the set M^ ofKirillov and
Reshetikhin rigged configurations which correspond to standard Young tableaux of
shape \ such that

Theorem 1. 1.

(2) Kx2rl"-^{q, t)= ^ ^u<, (a(0), £)^. (a(0), £)
(a(0), £)e^lg

Theorem 1. 1 proves that K^r^-^r(q, t) has nonnegative coefficients.

This paper is divided into 5 sections. In Section 2, we explain the necessary
Kirillov and Reshetikhin material, and introduce notation. In Section 3 we rewrite
A'A2--i'-3'-(9, <) as a sum of "difference" polynomials. In Section 4 we show the

difference polynomials are nonnegative by showing they are generating functions
for sets M^ of rigged configurations. In Section 5 we finish proving Theorem 1. 1.

2. KlRILLOV AND RESHETIKHIN'S RIGGED CONFIGURATIONS

Kirillov and Reshetikhin [KR1][KR2] introduced rigged configrations as a new
way to calculate K\,, (t) for any pair of partitions A and fi of n. Fix n, a positive
mteger and A, a partition of n. Let a = (al, a2,... , ax) be a sequence of partitions
such that [a* | = A,+i + A, +2 +.... For any such sequence, if p. is any partition of n,
let a(/^) be the sequence of partitions (^' = a°, a1,... , ax) and if m is a nonnegative
integer, let a(m) = ((n - m, m), al, a2,... , ar). a^) is called a configuration.
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Define, for fc ^ 1,

(3) ^(^))=E(Q.t-l-2a.t+a.<:+l)
1=1

A rigged configuration is a pair(a(/z), L), where L labels the columns of the parti-

tions in 0'. In particular,

(1) 0 < L,fc < Ptk(a^)) for A; > 1 and I ̂  i <ak^ where the length of column ;
of ak is /, .

(2) If column i of ak has the same length as column i +1, then L,t < L^^.

Not all sequences a({J.) will have labels. Kirillov and Reshetikhin call a sequence

a(p.) a. /^-admissible A configuration when there is at least one labelling function L,

that is, when P^(a(fi)) ^ 0. They have defined a bijection between ̂ -admissible A

rigged configurations and column strict tableaux of shape A and content p..

Further, Kirillov and Reshetikhin define the charge of a rigged configuration

c((a(^), L)). Let

c(a(/. )) = nW - ^^. a.1 + ^ ̂ (a,t - a,fc+1),
t>l t, i>l

where n(fi) = ^,(i - 1)^,.
Then

c((^), L))=c(a(^))+ ^L,t.
i, ii:>l

The Kirillov and Reshetikhin theorem is now

K^t)^ ^ t<(^W)
(»W,L)

where the sum is over all ̂ -admissible A rigged configurations.

In this paper, p. = (2ml"-2m), so that a(p) = o:(m). We need several properties

which are peculiar to this case.

(1) Let

(4)

Then

(5) c((a(m))) =

c'(a)= ^a,k(a,t-a,<:+1).
ifc, i>l

n- m\ fm

2 )+[2 - (n - m)a\ - ma^ + c'(a)

^
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(2) By the definition of ̂ (a(m))

(6) ^(^+1))={^^-1 ^^1r(m)) otherwise

Finally, let M0^ = {(a'(m), L)\a(m) is a (n - m, m)-admissable A configuration and L is a label}.
Call M^ the set of standard rigged configurations.

3. DIFFERENCE POLYNOMIALS

In this section, we rewrite Stembridge's formula (1), changing it to (8). (8) is
crucial because we will show the polynomiak M^(t) are generating functions for
sets of rigged configurations.

Lemma 3. 1. The coefficieni ofqk in K^r^-^(q, t) is

(7) ^(-l)^-(-)^-^)("-^iH(k-T")|^ . J [^ ^. ^. (t)
s=o ir ~ Kit LSJ <

Proof. Lemma 3. 1 is a consequence of the g-binomial theorem [And, 3. 3. 6]. D

Definition 3. 1. Define the polynomials M^(t) recursively by M^(t) = K^^^-^(t)
and M^[t) = M^(f) - <"-2'"-(d+i)M^i(<).

Lemma 3. 2. The coefficieni of qk tn K^r, ^^q, t) zs [[], M^(t), so that

(8) K^^(q, t)=^\[\M^(t^
k^o

Proof: We use induction on r+k and (7) to show that M^^t) = [^^] -l(coefF.
of qk+1 in A'A2. in-2r(g, ()). The lemma is true ifr= 0 or jb= 0. Assume

MS-a= [a]( (coeff- Of?a 1" A'A2»l»-=x. (g, ()) if a and b are nonnegative integers
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such that a+b < r+ k.

M^\^t) = M^_, (t)
= M^_, (t) - tn-^r-^-(^M^_^(t)

[r- 11-1
(coefF. ofqk in K^r-^^-^^)(q, t)) -

t

^-2(. -l_i)_(, +i)^j-1^^ ̂ ^ -^K^n-^q, t))
= r71 ^(-i)k-(r-l-')^-(r-l)+')("-(r-l)-'+l)+(fc-(^l-')) x

k -It ^
r-1

A'A2'1"-2'(<) -
Lr-l-Aj<L s J/

-1 r
^_2(r-l-t)-(t+l)j^ y-^_^fc_(r-, )^t:-r+, )(n-r-, +l)+("-(:-. )) ^

1-^-11 ^

[. ;.]. [:]/<".--"'

We will finish proving the lemma assuming Q <: s < r - 1. The case s = ris a

degenerate special case of what follows. Now we need to show the coefficient of

K\-i, ^n-^. (t), 0 <; s <; r-l, in the last expression in this string of equalities is
equal to

-1
f_l^+l--+'((*+l-r+<)("-r-. >+l)+(k+l-,<r-'))|^ r [ | s

[k+1] [r - 1 - -kl1. 1'

which is the coefficientofJ-l'A2-i"-2-(<) in [^^J~ (coefRcientofg<;+1 in K\-2'-in-^(q, 't))-
The coefficient of K^, ^n-i, (t) in the last expression in the string of equalities is

equal to

(_l)*+l-r+^(t+l-r+»)(n-r-<+l)+(fc+l-2<r-'>)x

(
r - l]'I-L;-.][r:^

^n_2(r-l-t)-(k+l))-(n-r-, +l)-(*-r+»)|r| | s |[r|
[k\ [r-k\[s\

Using the g-factorial definition of the g-binomial coefficient, this turns into

^+l-r+^(<;+l-r+>)(n-r-, +l)+(t+I-^-')| r | | s ||r|
[k+l\ [r-^k\[s\

_r<_^+i_, +, ̂  (r-s)( ^ (r - k)t ^ (s - r+fc + 1)<.
l(FH)<1"" "~x'-r-+(H-T)(x ' (r-A)< "}1
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where n, = 1 -(". The quantity in the brackets boils down to one, so we are done.
D

4. DIFFERENCE POLYNOMIALS ARE NONNEGATIVE

In this section, we show that the polynomials M^((), defined in the last section.

are the generating functions for sets of rigged configurations, thus showing that
A. A2--i-3r(g, <) has nonnegative coefficients.

Definition 4. 1. Let Mk^ = {(a(m), £) £ ^|^^, = ^^,
0}. Note that if a\ -a^<k, then (a(m), L) ̂  M1^ for any L.

... =L^

Lemma 4. 1. The generating function for the set Mk^ is M^(t); thai is,

E tc(WmW) = M^(t)
(a(m), £)£^l^

Proof: The proof is by induction. The lemma is true if A = 0, by the orginal Kirillov
and Reshetikhin result. The definition ofM^+l(t) is M^(t)-tn-2m-(k+l)M^^t).
In order to prove the lemma we need an injection <jik : M^ -^ Mk^ such that

(1) c(^((a'(m + 1), L))) = c((a(m + 1), £))+n - 2m - (<;+ 1) and
(2) (a(m), L)   M^ is not in the image of ̂  ifandonlyif(a(m), L) e M^.

Let <?it(cr(m + 1), L) = (a(m), Z), where

^^)L}+1 [{i=l^dj>a^+k+l
.7 [ L^ otherwise

Please note (a(m), L) G M^ by (6) and also that 2. above is satisfied.

To see that 1. above is satisfied,

("~(^+l))+(m^lN )-(n-(m+l))Qi-(m4-l)^+c'(a)4-^£}c((a(m+l), £))=f"-(m+l^+fm _+1
<J^1
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and

c(^(a(m+!), £)) = c(a(m), L)

("-2m)+(^)-("-m)Qi-m^+c'(a)+E^
»j>l

= (" -2 m) + (T) - (" - m)ai - ma^ + c'(a) + E£} + (ai - (a^ + k))
<J>1

= (n-<^+1))+"-». +(m^)-(^+l)-(n-(»+l)). i-
(m + l)a^ + ^ L} -^

. J^l

c(a(m +l), L)+n-2m- k-l

a

A consequence of Lemma 3. 1 and Lemma 3. 2 is the following formula:

M^t) = t(- ) ̂ (-i^-(0-("-(-))-(-) 1^1 ^^,, _^, o).
j=0 l-/Jt-1

Lemma 4. 1 therefore has the following corollary.

Corollary 4. 1. The polynomial

<(-H?)^(-i^-G)-(n-<-')-(-)|^| /<^, _^,, «)
.JJ (-13=0

has nonnegative coefficients.

Let K\^(t) be the cocharge polynomial; that is, K\,, (t) = t"^'>K\^(t~1), where
n(p.) = ^_, (2 - 1)^». Then we rewrite the sum in Corollary 4. 1 in terms ofcocharge

polynomials and Lemma 4. 1 has a second corollary.

Corollary 4.2. The polynomial

k

^(-iy<(0|fc| K.^^^W
j=0 LJJ(

has nonnegative coefficients.
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5. PROOF OF THEOREM 1.1

In this section we finish proving the main theorem of this paper. We define
the statistics Cr and cutr on M^, the standard rigged configurations. Then we
construct a surjection from M^ onto U^o-A/(?-it which respects the statistics.

Definition 5. 1. Let (a(0), £) £ M°o and let a, = L^, that is, a. is the label.
of the ith column of length 1 in (a(0), L). Let a^ -,^ = oo and let OQ = 0.
We define cutr(a(0), L) to be the leasi j, 0 <, j <r, such thai j +1+ Oj+i > r.
If there is no such j, we let cu^(a(0), Z. ) = r. Note thai if a\ - a^ ̂  r, then
cutr(a(0), L) <a[ - a^.

Definition 5. 2. Lei (a(0), L)   A^g. Let k = cut, (a(0), L). Then we define
c, ((a(0), £)) = c((a(0), £)) - (n - r)(r - A-).

Definition 5. 3. Let k = cut, (a{Q), L). Define ̂ ((a(0), £)) = (a(r-k), L), where

0 i=l anda^+l^j <a^+k
Li] = ^ L\-(r-k) i=^- a.nda\-<rk+\<j<a\

L'j otherwise

Since P,\a(m+l)) = P}(a(m)) -1, 'ifL]^ ̂ (a(0)), then L] $ ?il(a(r - k)),
so that ̂ (a(0), L)   M°, _k. Since L] = 0 fora^+ 1 <j^ a^+fc, ^((a(0), £)) e
M^_,,. Also note that the image of ̂  is U^o^-j-

Lemma 5. 1. Let (a(r - k), L) e M^_^. Then

^ (C, ((a(0), £)) ̂  jrj ^((a(r-^), £))
(a(0), £)e$-i((a(r-)t. ), £)) L"-"

Proof: First we show that

a^+k

c(^((a(0), L)))=c(a(0), £)-( ^ £,i)-(" - ^)(r-fc)
. =a;+l

so that

a^+k

c, (a(0), L) = ^ L,l+c(^(a(0), 7. ))

a^+t

(9) ^ L}+c(a(r-k), L)
i=a^+l
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";
c(^((a(0), £))) - ^ L,1 - (a; - ^ - fc)(r-A-)+ ^ L}+c(a(r - ^)

«=<:+l+a^ . >1,J>1

a^+k

E L}- E £}-(ai-^-fc)(r-A. )+
'. >1,^1 J=a^+l

[^" - (^ -A)) + ^^ _("_(, _ ^))^^ _ (, _ k)^ + c/(a)] by (5)
= E/)- E ^l+(n-(;-'))+(r2fc)4-i+c'(. )^(. -.)

^l j=c^+l

= .(«(oU)-Q-E'/;+("-(;-t))+(r, i)+K- k)

a^+k

= c(a(0), L)- ^ L}-(n-r)(r-fc).
;'=a^+l

Also note that

^-l((a(r-^), Z))=

{(a(0), L)|L} ̂ r-kfora^+Kj^a^+k,

L] = L] +(r-k) for j>a^+k+l,

and Ltj == L'j otherwise}

Thus

by (9)

^c, (a(0), £)

(a(0), £)£»-i(a(r-t), £)

, E^. L4+^c(a(r-<:)'£)
0<L^^<-<L^,^<r--k-~'*^+1- -"a^+fc-

[r| ^c(a(r-k), L)
\k\

This last lemma, the fact that the image of ̂  is UJ^gA/(^_^., and Lemma 3. 2 and
Lemma 4. 1, finish the proof of Theorem 1. 1. D
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