STATISTICS FOR SPECIAL ¢,t-KOSTKA POLYNOMIALS
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ABSTRACT. Kirillov and Reshetikhin introduced rigged configurations as a new
way to calculate the entries K, (t) of the Kostka matrix. Macdonald defined
the two-parameter Kostka matrix whose entries K,(g,t) generalize K, (t).
We use rigged configurations and a formula of Stembridge to provide a com-
binatorial interpretation of K,(q,t) in the case where 4 is a partition with
no more than two columns. In particular, we show that in this case, K,(q,1)
has nonnegative coefficients.

Kirillov and Reshetikhin ont introduit le concept de “rigged configurations”
fournissant un nouveau moyen de calculer les coefficients K, (t) de la matrice
de Kostka. Macdonald définit la matrice de Kostka & deux paramétres dont les
coefficients K, (g,t) généralisent les K ,(t). Nous utilisous les “rigged config-
urations” et une formule de Stembridge pour fournir une interprétation com-
binatoire des K,(g,t) dans le cas ol le diagramme de x ne contient pas plus
de deux colonnes. Nous montrons, en particulier, que dans ce cas, K ,(q,t) a
tous ses coefficients non-négatifs.

1. INTRODUCTION

In [Mac2], Macdonald defined a basis P5(g,t) of the ring of symmetric functions.
Hall-Littlewood symmetric functions, Jack polynomials, Schur functions, and zonal
polynomials are all either limiting or special cases of the Py(g,t)s. He also defined
a transition matrix, whose entries are denoted K),(g,t), between a renormalized
version of the Py(g,t)s and another basis Sy of the ring of symmetric functions.
(Kxu(g,t))a,u-n generalizes the Kostka matrix (Kxu)a,urn-

Macdonald conjectured that the entries in the two parameter Kostka matrix are
polynomials in ¢ and ¢ with nonnegative integer coefficients. All that is known
a priori is that the entries are rational functions of ¢ and ¢. Garsia and Haiman
have constructed, for each partition p of n, a finite-dimensional bigraded S,,-module
whose irreducible multiplicities they conjecture to be rescaled versions of the entries
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Kxu(g,t). In [GH], they give several constructions of S,-modules conjectured to
have this property, together with an announcement of the special cases for which
~ they can prove their conjecture. The main special cases correspond to the entries
Kau(g,t) in which p is either a hook, or has at most two rows or two columns. Their
results do not provide any explicit combinatorial interpretation of the entries.

In the paper [Ste], Stembridge gave a direct proof of the hook case of Macdonald’s
conjecture, and gave a formula for the polynomial in the two-column case, which

proves the entries are polynmials. His formula is

(1) Knarinen(@) = 0@ 617, 7] Kngrinos )

+=0
where K3:1n-2:(t) is the Kostka (charge) polynomial [Macl] and [A| = n. We use
(1) to show that there are statistics ¢, and cut, defined on the set M of Kirillov and
Reshetikhin rigged configurations which correspond to standard Young tableaux of
shape A such that

Theorem 1.1.

(2) Kxgrin-2r(g,t) = Z qfut,(a(o).L)tcr(a(O),L)
(«(0),L)eM]

Theorem 1.1 proves that Kj5rja-2-(g,t) has nonnegative coefficients.

This paper is divided into 5 sections. In Section 2, we explain the necessary
Kirillov and Reshetikhin material, and introduce notation. In Section 3 we rewrite
Kj2rin-2-(q,t) as a sum of “difference” polynomials. In Section 4 we show the
difference polynomials are nonnegative by showing they are generating functions

for sets MY, of rigged configurations. In Section 5 we finish proving Theorem 1.1.

2. KIRILLOV AND RESHETIKHIN’S RIGGED CONFIGURATIONS

Kirillov and Reshetikhin [KR1][KR2] introduced rigged configrations as a new
way to calculate K,(t) for any pair of partitions A and p of n. Fix n, a positive
integer and A, a partition of n. Let a = (a!,a?,...,a%) be a sequence of partitions
such that |af| = A\jy1 +Aig2+.... For any such sequence, if 4 is any partition of n,
let ar(p1) be the sequence of partitions (1 = a% al,... ,a%) andif misa nonnegative

integer, let a(m) = ((n —m,m),al,a?,...a?). a(p) is called a configuration.
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Define, for k > 1,

1
3) PH(a(n)) = D (af ' = 2af +af ')

=1
A rigged configuration is a pair(a(u), L), where L labels the columns of the parti-

tions in «. In particular,

(1) 0 < L¥ < PF(a(p)) for k > 1 and 1 < i < o where the length of column i
of afis i, .

(2) If column i of o* has the same length as column i + 1, then L¥ < L%, ,.
Not all sequences a(p) will have labels. Kirillov and Reshetikhin call a sequence
a(p) a p-admissible A configuration when there is at least one labelling function L,
that is, when PF(a(g)) > 0. They have defined a bijection between p-admissible A
rigged configurations and column strict tableaux of shape A and content p.

Further, Kirillov and Reshetikhin define the charge of a rigged configuration
e((ap), L)). Let

c(a(p)) = n(p) = Y piot + Y af(af — obtY),

i>1 E,i>1

where n(p) =5 (1 — 1)p;.
Then

c((a(n), L)) = c(a(w) + Y Lk.

ik>1

The Kirillov and Reshetikhin theorem is now

Ky, (t) = Z te((a(u),L))
(a(p),L)

where the sum is over all p-admissible A rigged configurations.
In this paper, g = (2™1"~2™), so that a(u) = a(m). We need several properties

which are peculiar to this case.

(1) Let
(4) d(a) = > af(af —afth).
ki>1
Then

) el = ("5")+(5) - - miat - mat+ee)
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(2) By the definition of Pf(a(m))

(6) PHa(m+ 1) = { Blelm) =1 ifi=k =1

Finally,let M, = {(a(m), L)|a(m) is a (n — m, m)-admissable A configuration and L is a label}.

Call M the set of standard rigged configurations.

3. DIFFERENCE POLYNOMIALS

In this section, we rewrite Stembridge’s formula (1), changing it to (8). (8) is
crucial because we will show the polynomials M*_, (t) are generating functions for

sets of rigged configurations.

Lemma 3.1. The coefficient of ¢* in Kjgryn-2.(q,1) is

Z _1\k=(r—3) (k—r+s)(n—r—a+1)+(k—(;—')) E r s1n—2¢
(7) g( 1) t Y tK,\z 1n-2¢ (1)

Proof. Lemma 3.1 is a consequence of the g-binomial theorem [And, 3.3.6]. O

Definition 3.1. Define the polynomials M2 (t) recursively by MR (t) = Kxgmyn-am (t)
and MZ¥!(t) = ME(t) —tr=2m=(d+)pd (1),

Lemma 3.2. The coefficient of ¢F in Kjyryn-2-(q,t) is [;]tMr"_k(t), so that

© Knarnon(at) = 3 1] M (00

k=0

Proof: We use induction on 7+k and (7) to show that Mrkj(lkH)(t) = [k_r*_l]t_l(coeﬂ'.
of ¢¥+1 in Kj3r1a-2-(¢,t)). The lemma is true if r = 0 or k = 0. Assume

=1 " ; 5 3
Mg = [z]t (coeff. of ¢ in Kygs1n-2(g,t)) if a and b are nonnegative integers
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such that a + b < r + k.
k
MGy (®) = MEH, (@)
= M(l:'—l)—k(t)—°tn_2(r_1_k)_(k+l)M(’:-—l)-k+l(t)

i -
= [’ k ] (coeff. of ¢* in Kyp(r-1yya-atr—1(¢,1)) —
t

=1
t"‘z("‘l"‘)‘("“)[;] (coeff. of g¥ in Kygrin-2r(g,t))
t

—-1r-1
_ [T; 1] Z(_l)k—(r—l-s)t(k—(r—1)+3)(n—(r—1)-s+1)+("_(';l_')) 2

t s=0
s r—1
I{ sin—2s t ke
[r—l—k]t[ s ]t rzrin-2e (1)
-1 r
n=2(r-1-k)-(k+1) |7 _ )k (r=9)glk=rs)(n=r-s+1)+(*=G")
t Ht g( 1) t x

[r-i'th[:] Kazegn-2(t)

t

We will finish proving the lemma assuming 0 < s < r— 1. The case s = ris a
degenerate special case of what follows. Now we need to show the coefficient of
Kjge1n-2:(t), 0 < s < r— 1, in the last expression in this string of equalities is

equal to

=1
(_1)k+1—r+st(k+l—r+s)(n—r—s+1)+(k+l—;('—')) o & r
k+1 r—1—k||s]’

which is the coefficient of Kxgeyn-2.(¢) in [, },] ~(coefficient of ¢*+! in Kxarin-2:(g,1)).
The coefficient of Ky3s1n-2.(t) in the last expression in the string of equalities is

equal to
(=1)Fti=rtsy(ktimrda)(nor—st)+(*+1={=")

LY Ry S o

—
t(n—Z(r—-1-k)—(k+1))—(n—r—s+1)—(k—r+s) r s r )
k r—kj||s

Using the g-factorial definition of the g-binomial coefficient, this turns into

-1
_1)EHl-rts gkt l—rts)(nor—st 1) (A1) [T s r
(=1) k+1 r—1—k||s %

Tt phtl-rds o (r=s)  (r—k) o (s—r+k+1),
(k+ 1), T (k + 1), (r— k)

( ),

-177-



6 SUSANNA FISHEL

where n, = 1 —t". The quantity in the brackets boils down to one, so we are done.

&

4. DIFFERENCE POLYNOMIALS ARE NONNEGATIVE

In this section, we show that the polynomials MY, (t), defined in the last section,
are the generating functions for sets of rigged configurations, thus showing that

K3r1n-2-(g,t) has nonnegative coefficients.

Definition 4.1. Let M¥ = {(a(m),L) € M?nlL;;_H = L}:;+2 = S Lé;+k =
0}. Note that if a} — o} < k, then (a(m), L) ¢ ME, for any L.

Lemma 4.1. The generating function for the set ME s ME (t); that is,

Z te((ea(m),L)) _ ME (1)
(a(m),L)e Mk,

Proof: The proof is by induction. The lemma is true if k = 0, by the orginal Kirillov
and Reshetikhin result. The definition of M}*1(t) is M (1) —tr=2m=(lprk (@),

In order to prove the lemma we need an injection ¢y an+1 — ME, such that

(1) e(¢x((@(m+1),L))) = c((e(m +1),L)) + n — 2m — (k+1) and
(2) (a(m), L) € M, is not in the image of ¢ if and only if (a(m), L) € MEFL,

Let ¢x(a(m +1),L) = (a(m), L), where

% { Li+1 ifi=landj>al+k+1
J

L ! .
L L}- otherwise

Please note (a(m), L) € ME, by (6) and also that 2. above is satisfied.

To see that 1. above is satisfied,

e((ame1), 1) = ("G D)+(" 5 ) -r-(mi 1ot ~meDabec@ Y 1

2 2 -
g2l
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and

c(¢r(a(m+1),L)) = c(a(m),L)

i

—-m m 1 1 "i

) )+(2)—(n—m)al—ma2+c'(a)+§ i
3,72

Il
/X
3

("G ) nmme (M) —<m+1>-i'f§1-<m+ 1))od -
(m+Dad+ ) L~k

i,j>1
c(la(m+1),L)+n—2m—k—-1

O

A consequence of Lemma 3.1 and Lemma 3.2 is the following formula:

M0 = O Sy O )C) i  Knmanacnen (1)

Lemma 4.1 therefore has the following corollary.

Corollary 4.1. The polynomial

k _ . k
(("3™)+(3) Z(—1)ft‘(é)—("'('z"+’))‘('";") [ ] Kxgmsin-20mts) (1)
j=0 . o

has nonnegative coefficients.

Let Ky,(t) be the cocharge polynomial; that is, Ku(t) = t"WEK, ,(t~1), where
n(p) =y (¢ — 1)p;. Then we rewrite the sum in Corollary 4.1 in terms of cocharge
polynomials and Lemma 4.1 has a second corollary.

Corollary 4.2. The polynomial

k o TE
Z(—l)’t(2) [ ] Ky gmts1n-20ms) ()
j=0 J t

has nonnegative coefficients.
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5. PROOF oF THEOREM 1.1

In this section we finish proving the main theorem of this paper. We define
the statistics ¢, and cut, on MY, the standard rigged configurations. Then we

construct a surjection from M onto U;_,MPF_, which respects the statistics.

Definition 5.1. Let (a(0),L) € MY and let a; = L‘11§+"’ that is, a; is the label .
of the ith column of length 1 in («(0),L). Let Qal-ai+1 = 00 and let ap = 0.
We define cut,(a(0),L) to be the least j, 0 < j < r, such that J+1l+4aj4 > r.
If there is no such j, we let cut.(«(0),L) = r. Note that if o} — al < r, then
cut.(a(0),L) < al — al.

Definition 5.2. Let («(0),L) € M. Let k = cut,(a(0),L). Then we define
cr((2(0), L)) = ¢((a(0), L)) = (n = r)(r — k).

Definition 5.3. Let k = cut,(a(0),L). Define ¥(((0), L)) = (e(r—k), L), where

_ 0 i=landoj+1<j<al+k
L = L —(r—k) i=landaj+k+1<j<al
L; otherwise

Since P{(a(m+1)) = P{(a(m)) - 1,if L} < PH(a(0)), then L} < Pi(a(r — k)),
so that ¥(a(0),L) € M?_,. Since [:Jl =0foraj+1<j<od+k ¥(x(0),L)) €
M?_ . Also note that the image of ¥ is U;zoMi_j.

Lemma 5.1. Let (ar — k), L) € M¥_,. Then

S ger((a(0),L)) — m te((a(r=k),L))
((0),L)e¥-1((a(r—k),L)) t

Proof: First we show that

a;-*—k
o(¥((@(0), L)) = e((0), L) = ( > LY~ (n—r)(r—k)
izal+4l
so that
aj+k
cr(@(0),L) = Y L!+c(¥(a(0),L))
izal+l
ad+k
9) = Y Ll+c(a(r—k),L)
i=al+l
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c(¥(((0), L)) = Z Li —(ei—oy = k)(r—k)+ Y Li+c(a(r—k))
i=k+14al i>1,521
a;+k
= X L= X L-(el-od—k)(r—k)+
i>1,5>1 j=altl
("GN (735) - = KDat — (- Bk @ by )
i i 1 n-— k) r—k ’ »
= j%le J;HL ( 2 >+< 5 )+nai+c(a)+lc(r-——k)
otk 1 n—(r—k r—k
= cle(0, D) <> ZHL ( (2 ))+( 9 )H(r_k)
a,+k
= c(a(0),L)= > Ll—(n-r)(r—k).
j=a +1

Also note that
U ((a(r—k), L)) =
{((0), L)|L} < r—kfor aj + 1< j < al+k,
Lj :L}-}—(r—k) forj>al+k+1,

and L} = [:; otherwise}

Thus

Z er(a(0),L)
(«(0),L)e¥=1(a(r—k),L)
. 1 c(a(r—k),L
= 2, (orm Fo TCUDD )
0<LY, <-<L'  <r—k
02+l o

1
2tk

= r c(a(r—k),L)
HE

This last lemma, the fact that the image of ¥ is U3 oM —j» and Lemma 3.2 and
Lemma 4.1, finish the proof of Theorem 1.1. O
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